Category Archives: Seminars

Civil Engineering Seminar: Bio-Inspired Surfboard Fins: Comparisons of Flow Fields and Lift/Drag Forces using CFD models and Experimental data

Civil Engineering Graduate Seminar:
Speaker: Megan MacNeill, Civil Engineering Graduate Student
Thursday, December 4, 2014, 4:00 – 5:00 PM, Dow 642

Title: Bio-Inspired Surfboard Fins: Comparisons of Flow Fields and Lift/Drag Forces using CFD models and Experimental data”

This presentation will give a brief overview of the dynamics of wave surfing, in addition to presenting my current thesis research approach and findings. The theory of wave development and how to surf will be touched upon to give the audience insight into the physics of surfing. An in-depth summary of the purpose of surfboard fins and fin hydrodynamics will also be covered.
The project compares 10 different surfboard fins by means of computational fluid dynamic modeling and experimental analysis from data gathered in the water channel in Dillman Room 110. The fins were self-designed by inspiration of dorsal fin profiles from aquatic species. The single fin set- ups are compared by means of lift and drag forces as well as visual flow analysis. The geometric modeling and CFD approach will be discussed accompanied by the experimental methodology. Because this project is in its beginning stages, there is little known about the results. Future plans for the project will be discussed along with potential post-project ideas.

EPSSI Seminar: Shock Tube Recreations of Shock Waves and Jets Generated During Explosive Volcanic Eruptions

The Earth, Planetary, and Space Sciences Institute
proudly presents:
Ezequiel Medici, MTU ME-EM Research Engineer
The EPSSI seminar for Monday, December 1, 4:00 p.m., M&M U113

“Shock Tube Recreations of Shock Waves and Jets Generated During Explosive Volcanic Eruptions”

Abstract: At the beginning of a suddenly explosive volcanic eruptions two types of phenomena can be observed, the formation of a shock wave immediately followed by a supersonic jet of expanding vapor-solid-liquid mixture. The intensity of the shock wave and the structure of the supersonic jet can carry a significant amount of information about the intensity and the dynamics of the volcanic eruption. Despite the hazard they represent to the immediate surrounding area of the volcano vent, these atmospheric shock waves and the subsequent sonic wave can be safely measured at a long distance from the vent. This characteristic makes the measurement of shock/sonic waves suitable for safe, real-time remote sensing of the conditions at the volcanic vent during the eruption. Preliminary results, based on the experiment performed on the shock tube, indicate a strong correlation between the energy released by the eruption, calculated by standard methods post eruption, and the intensity of the shock wave as measured through its pressure field. This correlation could ultimately lead to a more reliable model of shock/sound wave propagation which will serve as an early warning system for the air traffic control.

Immediately after the shock wave, an over pressurized jet mixture of vapor, solid particles, and liquid begins to expand. This mixture typically contains a relatively high concentration of solid particles of different size. To study the coupled interaction between the expanding gas and the particles, a series of analog explosive volcanic experiments using the atmospheric shock tube were performed. High-speed shadowgraph imaging of the expanding jet mixtures is recorded for different initial jet energy, particle sizes and particle concentrations. The study and observations of the interaction between the mixture of expanding gas and particles can elucidate the mechanisms acting during the initial stage of the formation of ash plumes or pyroclastic flows.

Environmental Engineering Seminar: Virus Removal from Water and Bioterapeutics

Environmental Engineering Graduate Seminar: Monday, December 1, 2014, 3-4 PM, GLRC 202, Public Welcome
Speaker: Dr. Caryn L. Heldt
Title: Virus Removal from Water and Bioterapeutics

The removal of viruses can save millions of lives through the creation of safe drinking water and reducing the cost of biotherapeutic production to increase access to live saving drugs. In order to create more robust virus removal methods, we need to better understand the surface characteristics of viruses. The most well-known surface characteristic of viruses is negative charge. To take advantage of this, we created filtration membranes with a positively charged polymer. An ideal virus removal membrane would have low transmembrane pressure, high water flux, high pathogen removal, and have a long, workable lifetime. To provide these qualities, we created a nanofiber filtration material that has a microporous structure for high water flux and low transmembrane pressure. Viruses adsorbed to the high surface area nanofibers through electrostatic interactions for virus removal. A lesser-known surface characteristic of viruses is hydrophobicity. We have evidence that viruses are hydrophobic and therefore, we have explored novel flocculants for virus removal that take advantage of virus hydrophobicity. We have been able to remove two viruses with theses flocculants, and we continue to explore the effect of other viruses in our flocculant system. The flocculant system is more applicable to the removal of viruses from biotherapeutics, but other flocculants, based on hydrophobicity and are less expensive, could be applied to water treatment.

Civil Engineering Graduate Seminar: Analysis of Pile- Supported Slabs under Concentrated loads

Civil Engineering Graduate Seminar
Thursday 30th October, 2014; Dow 642, 4 – 5 pm

Aneesha Reddy, Current Graduate Student, Civil Engineering, Michigan Tech

Presentation Topic: Analysis of Pile- Supported Slabs under Concentrated loads
A dissertation submitted in partial fulfillment of the requirements for the degree of:
Master of Science in Structural Engineering
Submitted to the University of East London on 27th September, 2013

The purpose of the project is to find out the maximum loads that can be applied to pile-supported ground floor slabs while complying with the critical slope requirements of TR34. A numerical analysis of pile supported ground floor slabs under unit point load of 1KN is performed using STAAD.Pro. The parameters varying for this research are thickness of the slab (150mm, 200mm, 250mm and 300mm), the span lengths of the slab (3m, 4m, 5m and 6m) and the panel type on which the point load is applied (Interior, edge and corner panels). The maximum deflections obtained for each slab are used to calculate critical slopes formed on the respective slabs. The critical loads calculated are compared to the permissible slopes given by TR34. The maximum loads to be applied on the slab are calculated and design charts are created for FMA Property I and DMA for Property I and II. These design charts can be used to directly find out the maximum concentrated load that can be applied.

Civil Engineering Seminar: Uncertainty in Civil Engineering Design

Bulleit-2010
Civil Engineering Graduate Seminar: Speaker: Dr. William Bulliet, Civil & Environmental Engineering, Michigan Tech
Thursday, October 23, 2014; 4:05 – 5:00 PM Dow 642 Public Welcome

“Uncertainty in Civil Engineering Design”

Civil engineering design includes many uncertainties, some of which are obvious and some of which many engineers may never have consciously considered. The level of uncertainty for civil engineering systems, mostly non-prototypical engineered systems, is larger than smaller scale engineered products because prototype testing is not possible. This presentation will examine the uncertainties facing engineers who design non-prototypical engineered systems and consider the ways that engineers have developed to manage those uncertainties in a manner that allows design decisions to be made. Uncertainty in design is impossible to escape, and the way it is managed affects both engineers and society. The way engineers approach uncertainty has philosophical, technical, and even ethical implications for the design and construction of civil engineering systems.

Environmental Engineering Seminar: Rubbish, Stink and Death in the Developing World: Déjà Vu All Over Again

oct20ENVE5991 Environmental Engineering Graduate Seminar: Monday, October 20, 2014
GLRC 202, 3-4 pm
Steven C. Chapra, Professor and Berger Chair, Civil and Environmental Engineering Department
Tufts University

Title: Rubbish, Stink and Death in the Developing World: Déjà Vu All Over Again
A reception will follow the seminar.

This talk traces the origin and evolution of engineering-oriented water-quality control and management. Three attributes of polluted water underlie human concern for water quality: rubbish (aesthetic impairment), stink (ecosystem impairment), and death (public health impairment). The historical roots of both modern environmental engineering and water-quality management are traced to mid-19th century London when British engineers and public health workers worked to control and manage the major water-quality problems derived from urban wastewater. The talk then turns to current and future conditions in the developing world. In particular, striking parallels are observed between the 19th-century Dickensian slums of Europe and North America and the current water-quality crises in the burgeoning mega-cities of the 21st century.

The last part of the talk focuses on how hydroepidemiological models could prove useful in mitigating and managing waterborne diseases in modern urbanized rivers. We have combined two well-established models: a pathogen fate and transport model and an epidemic model to predict the outbreak and progression of diseases caused by waterborne pathogens along an urbanized river channel. The fate and transport model predicts the transport and evolution of the pathogen in the river system, and the epidemic model predicts the outbreak of the disease once populations along the river have ingested that contaminated water. The communities then act as pseudo-incubators for the disease, effectively increasing the amount of pathogen in the river channel. A combined model provides a more holistic view of the waterborne infectious disease paradigm through the inclusion of a river and a human population component. We provide a case study for this model by examining the Cholera outbreak in Haiti in October 2010, and calibrating the model to the Artibonite River that runs through Haiti. This case study has provided confirmation of our model results to a certain extent. The model can serve as a decision support system to determine the best management practice and public health interventions, and also may be used to in response to bioterrorism attacks. If used effectively, these hydroepidemiological models will lead to improved access to safe water and sanitation worldwide by serving as a tool to educate and guide decision making for water resource engineers and public health practitioners alike.

Civil Engineering Seminar: Intelligent Technology in Transportation

Mr. Matt Smith, Intelligent Transportation Systems (ITS) Program Manager, Michigan Department of Transportation presented a seminar at Michigan Tech. Topic: “Intelligent Technology in Transportation” on Thursday, September 25, 2014; 4-5 PM; Dow 642

Watch a video of Intelligent Technology in Transportation

CEE Professor Ralph Hodek, Michigan Tech Vice president Dale Tahtinen, and Matt Smith
CEE Professor Ralph Hodek, Michigan Tech Vice president Dale Tahtinen, and Matt Smith

 

Rail Transportation Seminar: Railway Track Structures Research at Tampere University of Technology

sep8Rail Transportation Program and Environmental Engineering Geologists AEG Michigan Tech Student Chapter present Dr. Pauli Kolisoja Professor, Dept. of Civil Engineering Tampere University of Technology (TUT) in Finland presented a seminar on rail research at TUT at Michigan Tech on Monday, Sept. 9, 12-1 p.m. at DOW 875. He also gave the presentation September 9, for the Civil Engineering Seminar Fisher 10 at 7 p.m. in conjunction with the Railroad Engineering and Activities Club’s first general business meeting

The title of the seminar is: “Railway Track Structures Research at Tampere University of Technology”

The Railway Track Structures Research Team at Tampere University (TUT) of Technology consists of about 10 researchers. The research area includes track components from subsoil stability through the structural layers to sleepers, rails and wheel-rail contact. Essential parts of the research area are also bridges and the life cycle and monitoring of track structures. The main emphasis of activity is experimental research based on diverse arrangements from laboratory scale material analyses to field measurements and full-scale loading tests. Research methods are complemented by calculation analyses of performance of structures and literature reviews of international research results. The basis of the on-going track structure research is the Life Cycle Cost Efficient Track research programme (TERA) implemented in co-operation with the Finnish Transport Agency. This presentation provides an overview of research projects conducted at the TUT and related outcomes.

See Railway Track Structures Research Video

Thomas Oommen, Michigan Tech, Pauli Kolisoja, Tampere University of Technology (TUT), Pasi Lautala,  Director, Rail Transportation Program, Michigan Tech
Thomas Oommen, Michigan Tech, Pauli Kolisoja, Tampere University of Technology (TUT), Pasi Lautala, Director, Rail Transportation Program, Michigan Tech

Environmental Engineering Seminar: Nuts and Bolts of Unconventional Oil and Gas Development

Nuts and Bolts of Unconventional Oil and Gas Development
including all you might like to know about the technology and practice of hydraulic fracturing
Wayne D Pennington, Interim Dean, College of Engineering, Michigan Technological University
Mon Mar 24, 2014 3pm – 4pm, Dow 642

Over the past couple of decades, technology has been developed to produce oil and gas from geological formations that had been overlooked previously due to the lack of appropriate engineering techniques for those types of formations. As a result, the energy picture for the USA and for the world has been seriously modified, and the impact is being felt.
These “unconventional” deposits contain hydrocarbons in significant quantities, but they were locked up in microscopic pores that were at best poorly connected to each other, limiting or preventing flow through the rocks. Existing technologies, such as hydraulic fracturing (in use since 1948) and extended-reach horizontal wellbores were used independently, and then merged, for a highly successful, efficient, and safe method of oil and gas production.
The geologic formations, and the production techniques used in each, that are described in this presentation include: (a) “tight” gas sandstone deposits (produced through multiple-stage hydraulic fracturing in vertical wells); (b) coal deposits (methane produced by drawing down water pressure to release gas from the coal structure; also the source of many “flaming faucets” from domestic water-wells); and (c) shale deposits (generally using multiple-stage hydraulic fracturing in horizontal wells).

Steven C. Bower: “Michigan DOT Research Program Past Successes-Future Opportunities”

Civil Engineering Graduate Seminar: Michigan DOT Research Program
Speaker: Mr. Steven C. Bower, Engineer of Research, Michigan Department of Transportation
“Michigan DOT Research Program Past Successes-Future Opportunities”
This seminar was held on March 20, 2014. Mr. Bower reviewed some of the past research successes of the Michigan Department of Transportation as well as its research priorities for the next several years. Additionally, he outlined the process that is used to develop the State’s needs and prioritization for transportation infrastructure. He is a 1984 Civil Engineering alumni of Michigan Tech.
A social hour sponsored by the Michigan Tech Transportation Institute followed at the Great Lakes Research Center. Continue reading