Tag Archives: MEEM

Michigan Tech Exhibits in 2018 AutoMobili-D

AutoMobili-D with cars and people

Michigan Tech will participate in the 2018 AutoMobili-D exposition in Detroit. The event will run from Jan. 12-21. A portion of this program overlaps with the North American International Auto Show.

AutoMobili-D features 150,000 sq. ft. of dynamic display communities in the Cobo Center Atrium overlooking the international waterway and the adjoining Planet M hall.

Michigan Tech will be located in the “Universities” section of AutoMobili-D which will have about 30 universities including MIT, U-M and Carnegie Mellon. Michigan Tech’s booth will feature our unique research capabilities related to automotive research and unstructured environments.

Predebon represents Michigan Tech at Michigan auto show funding new autonomous test track

Bill Predebon (ME-EM) represented Michigan Tech at the Governor’s press conference on the American Center for Mobility (ACM) at the International Auto Show in the Cobo Center for Detroit on Jan. 16. Subaru of America gave a two million dollar sponsorship to the ACM with state, business and education officials on the stage. All of the representatives from the ACM University Consortium were present on stage.

$2M launches new wave of funding for Michigan’s autonomous test track

The announcement at Detroit’s auto show about Subaru’s new connection to the ACM is only the first significant development projected for the site in 2018. ACM officials promise more to come as the site gains traction.

Read more at Mlive, by Paula Gardner.


Three Enterprise Teams Compete in Fifth Annual Rekhi Innovation Challenge

BoardSport Color Gradient GraphicThe Fifth Annual Rekhi Innovation Challenge kicked off on Friday Nov. 10, 2017. Three Enterprise teams are competing for funding this year: Blue Marble Security, BoardSport Technologies and Velovations. The Rekhi Challenge is a crowdfunding competition to help promote and support student innovation and entrepreneurship through Michigan Tech’s crowdfunding site, Superior Ideas. The team that raises the most money will receive a monetary match of up to $5,000.

Monetary awards for total number of unique visitors, total number of unique funders, most social media engagement, most creative marketing plan and the first team to raise $1,000 will also be presented to teams at the conclusion of the competition.

Superior Ideas was established in 2012 to help bring university research and public service projects to life. The site uses crowdfunding to raise money and awareness for university research and public service projects that may not qualify for grant funding.

The Rekhi Innovation Challenge was developed in collaboration with the Enterprise Program Office and the Vice President for Research Office with support from Michigan Tech alumnus and longtime donor Kanwal Rekhi. The Silicon Valley-based entrepreneur, earned his master’s degree in electrical engineering from Michigan Tech in 1969.

Enterprise teams that have participated in past challenges include Innovative Global Solutions, Robotics Systems, Supermileage Systems, Aerospace, Blizzard Baja, GEAR and Open Source Hardware. Velovations took first place in the last competition with $2,550 in donations and a match of $2,550 from Rekhi, bringing the grand total to $5,100 in funding for their RENEW-U project.

RENEW-U is an ergometer for wheelchair users to exercise upper-extremity muscles in order to improve strength and mobility. Over the last four years, the Rekhi Innovation Challenge has provided more than $58,000 in support for 23 different student projects, attracting 267 unique donors.

For this year’s Rekhi Innovation Challenge, Blue Marble Security Enterprise is raising money to reach out to various community members and groups to increase interest in STEM fields among middle and high school students, particularly women.

BoardSport Technologies wants to develop a SmartBoard that will track snowboarders via GPS and REECO location to ensure a speedy rescue if caught in an avalanche or lost.

Velovations Enterprise is working with a local trails club to design and build a multi-purpose trail groomer with modular parts that can be swapped in the field to accommodate varying conditions.

If you’d like to learn more about any of these projects or donate, visit Superior Ideas. The Rekhi Innovation Challenge will run through March 31, 2018. Help support student innovation and entrepreneurship at Michigan Tech by making a donation today.


Inspired by nature—Getting underwater robots to work together, continuously

Nina Mahmoudian, Mechanical Engineering-Engineering Mechanics
Nina Mahmoudian, Mechanical Engineering-Engineering Mechanics

Imagine deploying multiple undersea robots, all in touch and working together for months, even years, no matter how rigorous the mission, brutal the environment, or extreme the conditions.

It is possible, though not quite yet. “Limited energy resources and underwater communication are the biggest issues,” says Michigan Tech Researcher Nina Mahmoudian. Grants from a National Science Foundation CAREER Award and the Young Investigator Program from the Office of Naval Research are helping Mahmoudian solve those issues and pursue her ultimate goal: the persistent operation of undersea robots.

“Autonomous underwater vehicles (AUVs) are becoming more affordable and accessible to the research community,” she says. “But we still need multipurpose long-lasting AUVs that can adapt to new missions quickly and easily.”

Mahmoudian has already developed a fleet of low-cost, underwater gliders, ROUGHIEs, to do just that. Powered by batteries, they move together through the water simply by adjusting their buoyancy and weight. Each one weighs about 25 pounds. “ROUGHIE, by the way, stands for Research-Oriented Underwater Glider for Hands-on Investigative Engineering,” adds Mahmoudian.

“My most exciting observation was a Beluga mother and calf swimming together. It’s very similar to our recharge on-the-fly concept.”

Nina Mahmoudian

“The ROUGHIE’s open control architecture can be rapidly modified to incorporate new control algorithms and integrate novel sensors,” she explains. “Components can be serviced, replaced, or rearranged in the field, so scientists can validate their research in situ.” Research in underwater control systems, communication and networking, and cooperative planning and navigation all stand to gain.

Mahmoudian observes Mother Nature to design robotic systems. “There is so much to learn,” she says. “My most exciting observation was a Beluga mother and calf swimming together. It’s very similar to our recharge on-the-fly concept. The technology is an early stage of development.”

Mahmoudian’s students apply and implement their algorithms on real robots and test them in real environments. They also give back to the community, by teaching middle school students how to design, build, and program their own low-cost underwater robots using a simple water bottle, called a GUPPIE.

“As a girl growing up, I first thought of becoming an architect,” says Mahmoudian. “Then, one day I visited an exhibition celebrating the 30th anniversary of space flight. That’s when I found my passion.” Mahmoudian went on to pursue aerospace engineering in Iran, and then graduate studies at Virginia Tech in the Department of Aerospace and Ocean Engineering. “Underwater gliders share the same physical concepts as airplanes and gliders, but deal with different fluid density and interactions,” she says.

Now at Michigan Tech, Mahmoudian’s work advances the abilities of unmanned robotic systems in the air, on land, and under sea. “Michigan Tech has easy access to the North Woods and Lake Superior—an ideal surrogate environment for testing the kind of autonomous systems needed for long term, challenging expeditions, like Arctic system exploration, or searching for signs of life on Europa, Jupiter’s moon.” She developed the Nonlinear and Autonomous Systems Laboratory (NAS Lab) in 2011 to address challenges that currently limit the use of autonomous vehicles in unknown, complex situations.

More than scientists and engineers, Mahmoudian wants simple, low-cost AUV’s to be available to anyone who may need one. “I envision communities in the Third World deploying low-cost AUVs to test and monitor the safety and quality of the water they use.”


Vital signs—Powering heart monitors with motion artifacts

Electrocardiogram research Ye Sarah Sun

More than 90 percent of US medical expenditures are spent on caring for patients who cope with chronic diseases. Some patients with congestive heart failure, for example, wear heart monitors 24/7 amid their daily activities.

Ye Sarah Sun
Ye Sarah Sun, Mechanical Engineering-Engineering Mechanics

Michigan Tech researcher Ye Sarah Sun develops new human interfaces for heart monitoring. “There’s been a real trade-off between comfort and signal accuracy, which can interfere with patient care and outcomes,” she says. Sun’s goal is to provide a reliable, personalized heart monitoring system that won’t disturb a patient’s life. “Patients need seamless monitoring while at home, and also while driving or at work,” she says.

Sun has designed a wearable, self-powered electrocardiogram (ECG) heart monitor. “ECG, a physiological signal, is the gold standard for diagnosis and treatment of heart disease, but it is a weak signal,” Sun explains. “When monitoring a weak signal, motion artifacts arise. Mitigating those artifacts is the greatest challenge.”

Sun and her research team have discovered and tapped into the mechanism underlying the phenomenon of motion artifacts. “We not only reduce the in uence of motion artifacts but also use it as a power resource,” she says.

Their new energy harvesting mechanism provides relatively high power density compared with traditional thermal and piezoelectric mechanisms. Sun and her team have greatly reduced the size and weight of an ECG monitoring device compared to a traditional battery-based solution. “The entire system is very small,” she says, about the size of a pack of gum.

“We not only reduce the influence of motion artifacts but also use it as a power resource.”

Ye Sarah Sun

Unlike conventional clinical heart monitoring systems, Sun’s monitoring platform is able to acquire electrophysiological signals despite a gap of hair, cloth, or air between the skin and the electrodes. With no direct contact to the skin, users can avoid potential skin irritation and allergic contact dermatitis, too—something that could make long-term monitoring a lot more comfortable.

Ye Sarah Sun self-powered ECG heart monitor
Sun’s self-powered ECG heart monitor works despite a gap of hair, cloth or air between the user’s skin and the electrodes.

AV START Act May Boost Autonomous Vehicle Testing

Gary Peters and Jeff Naber
U.S. Sen. Gary Peters and Jeff Naber

HOUGHTON — Testing of autonomous vehicles, such as that being done at Michigan Technological University, could get a boost with legislation working its way through Congress.

The American Vision for Safer Transportation through Advancement of Revolutionary Technologies (AV START) Act was approved by the Senate Commerce, Science and Transportation Committee in October. U.S. Sen.

Gary Peters, D-Mich., sponsored the bill along with Sen. John Thune, R-S.D. U.S. Sen. Debbie Stabenow, D-Mich., is a co-sponsor of the legislation.

In March, Peters visited Tech’s Advanced Power System Research Center to get informed of Tech’s research and development efforts into autonomous vehicles.

Jeff Naber, director of the center, said the bill will enable the advancement of autonomous vehicle functions.

Read more at the Mining Gazette, by Garrett Neese.


Three Student Teams Chosen for Accelerate Michigan Innovation Competition

3D PrintingThree Michigan Tech student teams have been chosen to compete in the Accelerate Michigan Innovation Competition in Detroit on Nov. 16, 2017. The student teams will compete for a total of $21,000 in funding.

Statewide, 27 teams were selected through submission of a one-minute video and a brief write-up about the company product or service, revenue model and team capabilities.

The Tech student teams are Looma, Makerhub and FitStop. Looma is a food and nutrition app that helps users eat healthier by providing preference-based recipe suggestions with integrated calendaring for preparation time and grocery lists for shopping. Makerhub is a web application that connects individuals who own 3-D printers with others who need 3-D printed parts. FitStop is a web application that connects people who are traveling for business or leisure with gyms or fitness centers in the city they are traveling to.

Three Michigan Tech-affiliated start-ups will also participate in the competition. They are StabiLux Biosciences, Goldstrike Data and Orbion.

By Jenn Donovan.


Working Luncheon, MDOT Call For Research Ideas

MDOT PavementThe MDOT Office of Research is soliciting research priority ideas for their upcoming funding years FY19/20/21. This is a great opportunity for Michigan Tech researchers from various departments to expand their research portfolio into transportation topics.

The topics are very versatile, from hard core pavement engineering to water and environmental aspects, life cycle cost engineering, even workforce development. Details on MDOT research priorities can be found here.

In the past, Michigan Tech Transportation Institute (MTTI) has submitted Tech’s research ideas to MDOT as a combined package for a stronger, unified presence. Our plans are to do so again.

From noon to1 p.m. Thursday (Nov. 9, 2017), in Dillman 309A, MTTI will be hosting a lunch meeting for discussions, gathering of ideas and to provide a setting for collaboration on the research idea topics listed. We will also share a couple of past ideas that were later turned by MDOT to RFPs and we’ll provide some insight from discussions with MDOT.

We’ve created a spreadsheet to gather information on topic ideas you’re interested in providing to MDOT. Email Pam Hannon to get a link to the spreadsheet. Contact Pam also, if you’d like to join us in the meeting by Tuesday (Nov. 7).


Lake Superior Water Festival 2017

Lake Superior Water FestivalThe Water Festival provides an opportunity for students to learn about and celebrate our most precious natural resource – the Great Lakes! A wide variety of topics from science and engineering to creative writing will be presented. Students attend four 35-minute activities. Some of the topics to be presented include Remotely-Operated- Vehicles, Leave No Trace Outdoors, cleaning wastewater, U.S. Coast Guard careers, Lake Sturgeon ecology, atmospheric research in a cloud chamber, and more.

2017 Water Festival Presenters and Descriptions

Lake Superior Water Festival Haiku

Haiku: 5 syllables, 7 syllables, 5 syllables

The beautiful five Great Lakes
Sparkling below the sky.
Nothing else compares.
Lake Superior
A gentle breeze and waves
Brings back memories.
Over on the shore
I see the waves crashing in
I feel the cold breeze.
Lake Superior
Causing sailors to fall below
Greatest of all lakes.
Rushing and foaming
Dangerously storming now
Lake Superior
The cold moving water
Crashing on the rocky shore
Icy gray water.

Water study: Students spend day learning at Lake Superior Water Festival

HOUGHTON — High school students from five Upper Peninsula counties learned more about the Great Lakes and the research being done on them at the sixth annual Lake Superior Water Festival Wednesday.

The goal is to get students thinking about Lake Superior in an interdisciplinary way, said Joan Chadde, director of the Center for Science and Environmental Outreach at Michigan Technological University.

Held at Tech’s Great Lakes Research Center, the day included 15 sessions led by Tech researchers, students and staff as well as members of organizations such as the Keweenaw Land Trust and U.S. Coast Guard.

Read more at the Mining Gazette, by Garrett Neese.

Lake Superior Water Festival at Great Lakes Research Center

HOUGHTON, Mich. (WLUC) – High school students from across the Western UP got a new perspective on Lake Superior today.

The Great Lakes Research Center hosted their 6th annual Water Festival today. Nearly 500 high school students learned about a variety of challenges and careers surrounding Lake Superior.

“The goal is for the students to get exposure to science and engineering challenges here in Lake Superior and its watershed, as well as to gain some background in history, communication skills and management,” said Joan Chadde, director of the Center for Science and Environmental Outreach.

Read more and watch the video at TV6 FOX UP, by Mariah Powell.

Lake Superior Water Festival 2017


The Secrets of Talking Nerdy, Part 2

Libby Titus Presentation
Libby Titus Presents Her Communication Secrets

More than 1,200 first-year engineering and computer science students learned the “Secrets of Talking Nerdy” from Michigan Tech Alumna Elizabeth (Libby) Titus ’96 at Michigan Tech’s annual First-Year Engineering Lecture on September 6.

According to Titus, engineering and computer science are group activities: it won’t matter how smart you are if you can’t communicate your ideas. She offers these writing tips for engineers and scientists:

Be clear. “First thoroughly understand the subject yourself, then be a filter and interpreter for your audience. Strip away all complexity so others can understand with minimal effort.”

Make it attractive. “Organize your writing for the reader’s benefit. Use lots of white space. Make it easy to skim. Be consistent with your style choices for format and punctuation, and stick to one or two fonts at the most.”

Proofread. “Your boss or client should never have to correct your writing. Grammar police are everywhere, and we will scrutinize what you write! You will be earnestly judged. No matter how tight your deadline is, you have to proofread!”

Focus on your reader. “If your reader feels smart, you win. Use simple language, so your audience can understand the first time. Any reader might not read past the first two sentences.

Get to the point. Keep it brief. Words don’t bleed. Cut them!”

Don’t write the way you talk. “If you do that, you’ll add too many words. No one likes that. Ask yourself. How can I make it easier for my audience? The answer is simple: Get to the point.”

Creature comforts are crucially important. “To write well, you have to put yourself in a state of deep work. The cost of distraction is high, and it’s about the switch itself. For instance, switching from your project to check texts then back again, no matter how quickly, taxes your productivity much more than the duration of the time spent distracted. I used to think writing was persecution, then I realized I needed to have a grateful attitude. Make sure you have everything you need. Clear space. Natural light. Solitude, or with others working diligently. Ice water in a cup. Everyone’s different. Regular exercise helps me.”

Motivate yourself. “When I feel unmotivated, I remind myself why my work is important. I once had a job watching potatoes on a conveyor belt. All day long.”

Be grateful it’s not fiction! “As technical writers, we should all be grateful of the gift of content.”

Break up the writing into small chunks. Give yourself a deadline for each chunk. Just get started. After a break, it’s much easier to get back to something, rather than a blank page.

Remember, every first draft sucks. In your first draft, you’re just telling yourself the story.

Follow the Growth Mindset (Carol Dweck)
Embrace challenges.
Persist in the face of setbacks.
See effort as the path to mastery.
Learn from criticism.
Find lessons and inspiration in the success of others.

Keep yourself in the chair. You need willpower until the clock runs out, or your document is perfection! Staying in the game is a huge part of winning the game.

Get feedback. Tell lots of people. Crowdsource for ideas. See criticism as a gift. Try rejection therapy to desensitize. (She recommends googling “rejection therapy” to find a game invented by a Canadian Entrepreneur).

DO read user manuals! And more—read everything and skim everything you come across.

Tips for conciseness:
Try not to verbalize the scientific method.
Lead with the conclusion.
Keep sentences and paragraphs short.
Drop unnecessary words.
Write nothing longer than a page.
Read it one last time to slash as many words as possible.


Titus’s lecture was part of the Visiting Women and Minority Lecturer/Scholar Series (VWMLSS), funded by a grant to the Office of Institutional Equity from the State of Michigan’s King-Chavez-Parks Initiative. The event was sponsored by Novo Nordisk, and Michigan Tech’s College of Engineering, Department of Engineering Fundamentals, Department of Geological and Mining Engineering and Sciences, and Department of Computer Science.


The Secrets of Talking Nerdy, Part 1

Libby Titus Giving the First-Year Lecture
Libby Titus Giving the First-Year Lecture, Fall 2017

Are you an engineer or a scientist? Then you’re a writer and communicator, too. Libby Titus tells how to be an amazing geek who can also write.

More than 1,200 first-year engineering and computer science students learned the “Secrets of Talking Nerdy” from Michigan Tech Alumna Elizabeth (Libby) Titus ’96 at Michigan Tech’s annual First-Year Engineering Lecture on September 6. Here are some highlights from her talk.

It was 1990. Libby Titus was deciding where to go to college. She knew she wanted to get as far away from home as possible without incurring out-of–state tuition. That put Michigan Tech, a 12-hour drive, into the running. “Also, at the time, the only person in my family who had gone to college was my uncle Bob, and he had gone to Michigan Tech. After graduation, he was happily designing kegerators and brewing craft beer. I like beer, so I chose Michigan Tech,” Titus admits.

It turned out to be a much bigger decision than she realized. Titus met her former husband, the father of her two children, while walking across campus the very first day. She earned two bachelor’s degrees from Michigan Tech in 1996—one in environmental engineering and the other in scientific and technical communication.

After graduation, Titus packed up a U-Haul and headed West, taking a job in Salt Lake City for ASARCO, a mining company. “I was the first entry-level engineer and the only woman in the group. I quickly discovered that my ability to communicate equaled survival,” she recalls.

The job felt like torture. A friend, also an engineer, said to her, “Engineering is the easy part. Dealing with people is the hard part.”

She had read that for her resume to be taken seriously, she needed to stay in her first job for three years. “I made it three years and one day.” That’s when Titus moved to Seattle, where she lives now, to begin a new career as a consultant, helping clients with their environmental, health, and safety (EHS) obligations.

“I feel lucky,” she says. “My work is important, I feel appreciated, and I like my colleagues.” Titus currently manages EHS regulatory compliance for Novo Nordisk, a biopharmaceutical research center founded 9 years ago. Her job is to ensure her group of 120 Seattle researchers–Novo Nordisk has over 6,000 worldwide–meet all its compliance obligations for federal, state, and local EHS regulations and permits. She does a lot of training, and a lot of writing.

I decided to become a licensed professional engineer solely so I could command respect as a writer.”
Libby Titus

Professional engineers typically spend at least half of their day communicating, notes Titus. With 20 years of substantive experience now under her belt, she offers important advice for anyone entering the field.

“Engineering and science are group activities. It’s very rare for someone to be by themselves on a project,” she says. “No one wants to work with someone who can’t communicate.”

While at Michigan Tech, Titus took an improv class. “We all formed a circle and had to introduce ourselves and pass around some object made of air. It was pure hell, but it helped me. Take every chance you can get to engage with other people,” urges Titus. “Engineers are known for avoiding opportunities to connect with people. If you are not a confident writer or are afraid of public speaking, more writing and more speaking are the only solutions,” she says. “Confidence comes from practice!”

Adds Titus, “In business, written communication is often more important than what you say verbally. Writing is the greatest engineering challenge of all. It’s amazing how much business effort is wasted to fix poor writing. In one of my previous consulting jobs, we called our product ‘The BHB’, which stands for ‘Big Honking Binder’. The longer it takes to write, the more it costs the client.”

Clients are known to fire engineering consultants who cannot write well. “No matter how smart you are, your great ideas mean nothing until they can be effectively communicated. People will judge you by how well you speak and write.”