Category: News

Interesting stories about and for our students.

Doctoral Finishing Fellowship – Summer 2023 Recipient – Thusitha Divisekara

I completed my bachelor’s and master’s degrees at the University of Peradeniya in Sri Lanka. In the fall of 2018, I started my PhD in chemistry at Michigan Tech and joined the research group of Dr. Lynn Mazzoleni. The group’s primary research focuses on using ultrahigh-resolution mass spectrometry to study the chemistry of organic aerosols in the atmosphere.


In my research, I have developed a new post-data processing approach for liquid chromatographic high-resolution mass spectrometric data. The need for this approach arose from the requirement to effectively analyze complex mixtures in the environment. Mimicking ambient BBOA is one of the significant challenges scientists face in atmospheric research. Therefore, I improved liquid smoke to simulate the ambient BBOA by mixing them with different environmental species. This significantly impacts aerosol research as it provides an option for environmentally relevant lab studies.


I would like to thank my advisor Dr. Lynn Mazzoleni for her guidance, support, and encouragement during my research journey. Her mentorship has been invaluable to me and has played an integral role in helping me with my accomplishment. Also, I sincerely thank the Graduate Dean Awards Advisory Panel for selecting me as a recipient of the finishing fellowship, which will allow me to focus on finishing my dissertation and publishing my work.

Doctoral Finishing Fellowship – Summer 2023 Recipient – Claudia Bartlick

I started my PhD journey in 2019 and currently work with Dr. Julia Burton and Dr. Christopher Webster at the College of Forest Resources and Environmental Science. My research is part of the “Northern Hardwood Silviculture Experiment to Enhance Diversity,” where I investigate how plant species in managed northern hardwood forests respond to different environmental factors and silvicultural practices. Forests provide crucial economic and ecological services, and my work aims to develop sustainable management strategies that balance profitable forests and the conservation of forest services in the future. With the arising challenges posed by climate change, it is essential to address the risk of losing biodiversity and explore ways to maintain and enhance the species composition in managed forests. In addition to my research, I have a passion for teaching. As a former teaching assistant at Michigan Tech, I have found sharing knowledge to be rewarding and plan to include it in my future career. 

I am deeply grateful for being awarded the Finishing Fellowship. Receiving the Fellowship is an incredible honor and allows me to focus on completing my degree and publishing my research. I would also like to extend my gratitude to my co-advisors, Dr. Julia Burton and Dr. Christopher Webster, and the members of my advisory committee, Dr. Robert Froese, Dr. Yvette Dickinson, and Dr. Chelsea Schelly, for their constant support and guidance. Further thanks also to the College of Forest Resources and Environmental Science for creating an encouraging community and an exceptional academic environment, contributing to both my personal and professional growth.

I am excited about the opportunities that lie ahead and look forward to finishing my dissertation and taking on new challenges.

Doctoral Finishing Fellowship – Summer 2023 Recipient – Yasasya Batugedara

I started my PhD in the Department of Mathematical Sciences at Michigan Tech in the Fall of 2018, with a discrete mathematical background. But, my enthusiasm grew for Applied Mathematics, especially for the research problems to which I can relate real-life Scenarios.

Therefore, under the tutelage of my advisor Dr. Alexander Labovsky, I started to study incompressible flows, especially in turbulent regime.

Turbulence is a wonderful area of research. While the Navier-Stokes Equations are used to study the flow, one can only simulate the flow in turbulent situations. When simulation methods are used, there is always the need for new high-accuracy methods.

Moreover, in the presence of a magnetic field, the characteristics of the flow will change, leading to the Magneto-Hydrodynamic system to simulate the flow. Therefore, my area of research interest includes the study of Navier-Stokes Equation, Magneto-Hydrodynamic Equation, Large Eddy Simulation, and high-accuracy methods that can be developed separately, or along with turbulence modeling.

I’m grateful to my advisor for the kind guidance and support. I’m really honored to be his student. Also, I thank the Department of Mathematical Sciences for nurturing me to excel in both research and teaching.

Finally, I’m grateful to the Graduate Dean Awards Advisory Panel and the Graduate school for considering and awarding me this fellowship which will be a great support.

Michigan Tech gratefully acknowledges support from The Dr. Donald Dawson Endowed Finishing Fellowship for this award.

DeVlieg Graduate Summer 2023 Research Recipient – Tiffany Degroot

My name is Tiff DeGroot, and I am a PhD Candidate in Forest Science in the College of Forest Resources and Environmental Science. I came to Michigan Tech through a winding path. In my early 20s, I waited tables and cleaned horse stalls to pay for general education courses until I could transfer into a bachelor’s program. Then I completed my BS in Biochemistry, Molecular, and Cellular Biology at the University of New Hampshire, while working nights and weekends at an indoor skydiving facility. After graduation, I saved up as much money as I could and purchased a plane ticket to South Africa to pursue my lifelong dream of studying African wildlife. I saw my first wild giraffe, tracked elephants and cheetahs, and set up camera traps to monitor leopards. When I returned to the US, I joined a global conservation non-profit, the International Fund for Animal Welfare (IFAW). My position at IFAW focused on communicating conservation efforts to a broad audience. 

With a background in science and a keen interest in applied conservation, I decided to return to academia. I started by pursuing a Master’s Degree in Forest Ecology and Management at Michigan Tech. My project focused on camera trapping and noninvasive methods of mammal monitoring in Equatorial Guinea in central Africa. After one semester, I was invited to expand this project to a PhD. My project now spans multiple spatial scales, and will address mammal diversity, distribution, and communities across Equatorial Guinea. The results of this research will not only contribute to the scientific community, but will also be used to directly inform the on-the-ground management of protected areas in Equatorial Guinea. 

When I am not in the lab, coding, or sorting camera trap photos, you can usually find me in my garden, training my rescue dog, or in the pottery studio.

I am incredibly grateful to the DeVlieg Foundation for allowing me the opportunity to focus on my project this summer. With an entire semester dedicated to my work, I will make good progress towards my second publication by completing a study that compares the use of camera trapping and environmentally-derived DNA (a non-invasive genetic monitoring technique) to assess mammalian diversity in Equatorial Guinea.

Michigan Tech gratefully acknowledges support from The DeVlieg Foundation for the DeVlieg Summer Research Award.

Doctoral Finishing Fellowship – Spring 2023 Recipient – Sid Gopujkar

I started working at the APS LABS for my Masters’ thesis in Fall 2017. The research and the people at the APS are so amazing, that it wasn’t a difficult decision to stay for my PhD. I started my PhD in Summer 2018 under the guidance of Dr. Jeremy Worm, who is the associate director of APS LABS.

Majority of my PhD work has been on gasoline engines- how they can be further improved and made more efficient. The projects I have worked on have been industrial projects for major automotive companies like General Motors, Ford, Stellantis and Nostrum Energy. The current automotive climate is all about electrification. But I believe that the internal combustion engine, which is one of the major factors that has brought civilization to the advanced stage it is at right now, still has a massive role to play in the future. But the beauty of working at the APS LABS is that you are not confined to a single subject, and get exposure to all sorts of power systems. In the last five years, I have worked with hybrid electric vehicles as well, and also on a project to consider the environmental and economic impacts of electrifying the Mackinac Island ferry.

The last five years have been memorable and fulfilling, and a lot of that is thanks to my advisor, Dr. Jeremy Worm. With the help of the Finishing Fellowship, I will be able to write the final chapter of doctoral journey (figuratively and literally), and move a step closer to my goal of becoming an academic.

Doctoral Finishing Fellowship – Spring 2023 Recipient – Cameron Shock

From a young age, I always wanted to understand how the world worked and took a deep interest in science. I was constantly asking big questions, such as why do objects act as they do, what happens if you keep cutting an object, and how did the universe begin. This led me to become interested in physics, which seemed to focus on the most fundamental aspects of our universe. I was drawn to the way that physicists use experiments and math to explain the behavior of matter and energy at the smallest and largest scales. I loved reading about the latest discoveries in physics and learning about the theories that scientists were developing to explain them, and wanted to understand for myself. Pursuing this goal led me to my current path.

I began my PhD in 2019 following my Masters, working under the advisory of Dr. Issei Nakamura in the Department of Physics. My research has focused on utilizing molecular dynamics simulations to model highly charged and polar liquids, with emphasis on ionic liquids and polymerized ionic liquids. These materials have potential uses as electrolytes in batteries and supercapacitors, as nanolubricants in molecular devices, for phase separation of HFCs, and much more. These materials are interesting from a fundamental physics perspective as well, since the complicated nature of their dielectric properties are not well understood in the current literature. My work has helped uncover an understanding behind these properties as well as showing the capabilities and pushing boundaries of models used to simulate these materials.

My utmost thanks to the Graduate Dean Awards Advisory Panel for awarding me this finishing fellowship. I would also like to thank my graduate advisor Dr. Issei Nakamura and the Department of Physics at Michigan Tech for the support through this process of the PhD and providing such fantastic opportunities for learning, growth, and experience.

Doctoral Finishing Fellowship – Spring 2023 Recipient – Nikhil Mittal

My passion for research developed early on in my life as I saw my father going to the laboratory, doing research using cool equipment. He inspired me to ask intriguing questions in life and find answers to them. My journey in biomedical research began during my undergraduate in biotechnology where I was introduced to the concepts of cell and molecular biology research and its application. In my undergrad, I got firsthand experience of working in a research lab where I learned to independently run PCR (polymerase chain reaction) and electrophoresis gels. This sparked my curiosity to further develop my career in research. That’s when I joined Michigan Tech as a master’s student in the biomedical engineering department. At Michigan Tech, I learned about the development of biomaterials and their physiological applications. During this time, I also got the opportunity to do an internship at a Biotech company.

My research experience during my master’s and internship motivated me in advancing my professional career and join PhD. In 2018, I got the opportunity to join Dr. Sangyoon Han’s Mechanobiology laboratory. My research focus is to understand the mechanism of how cells sense the stiffness of their surrounding environment. Specifically, I am investigating how and when exactly the mechanical link between a cell and its extracellular matrix (ECM), known as focal adhesions, sense different stiffness and molecules involved in the process. For this purpose, I use soft elastic gels (biomaterials), live-cell imaging microscopy, and machine learning-based image analysis to study how different ECM stiffness can affect the force transfer through these connections. Mechanical stiffness of the matrix has been known to dictate cell behavior such as their survival, proliferation, migration, altered drug response and even tumor progression. With my research, I aim to provide new insights in physiology and pathophysiology for developmental disorders, cancer progression and metastasis and designs of tissue transplantation. This is critical in determining treatment strategies for these diseases. Along with research, I was fortunate to mentor and supervise many undergraduate and masters’ students for their respective projects. I also got the opportunity to present my work at different conferences and win grants for my research.

I am grateful to my advisor Dr. Sangyoon J. Han for his continued support and guidance over my PhD years at Michigan Tech. I am also grateful to my committee and biomedical engineering department for supporting me with my PhD journey. I am thankful to the Graduate school and Graduate Dean Awards Advisory Panel for granting me this fellowship. This fellowship will help me dedicate all of my time to complete my dissertation.

Doctoral Finishing Fellowship – Spring 2023 Recipient – Beth Bartel

I arrived to MTU in August 2020 as a geoscientist and science communication specialist wanting to develop into a researcher in disaster risk reduction. I now study how people live with natural hazards with the goal of improving our ability to adapt to our changing environments.

My dissertation examines evacuation processes at Fuego volcano, Guatemala, where Tech has a long history of volcanological and risk reduction research. In 2018, an eruption of Fuego volcano destroyed three populated areas; one evacuated, resulting in no casualties, while two did not, resulting in hundreds of deaths. My work aims to understand information availability, use, and limitations in evacuation decision-making during this deadly eruption and present day. The overarching goal of my research is to decrease risk to communities on the flanks of Fuego volcano through informing improved evacuation practices. The research will also inform forensic disaster research and risk reduction in other contexts as well.

This fellowship will enable me to complete my dissertation in Spring 2023 to start my next chapter, a postdoctoral Mendenhall Fellowship with the USGS Volcano Hazards Program starting in June 2023. I am proud to be joining the ranks of the many other MTU alumni working in the Natural Hazards Mission Area at the USGS. I will be the first social scientist within the Volcano Hazards Program. I am grateful to my supportive, multidisciplinary committee, for which I chose MTU. Thank you to my co-advisors Greg Waite (GMES) and Rüdiger Escobar Wolf (GMES) and committee members Luke Bowman (GMES), Angie Carter (SS), and Kari Henquinet (SS).

Doctoral Finishing Fellowship – Spring 2023 Recipient – Sadaf Batool

I joined Michigan Technological University as a Fulbright PhD Scholar in 2017. I earned a master’s degree on the fly in Mechanical Engineering-Engineering Mechanics in 2019. My doctoral research focuses on modeling and predictive control of a multi-mode engine. As we know, engine-out emissions increase air pollution and contribute to climate change. The transportation sector is one of the sources of air pollution. My research focuses on improving thermal efficiency and reducing engine-out emissions. 

Low-temperature combustion modes are among the advanced combustion technologies which offer high thermal efficiency and reduced engine-out NOx and soot emissions. A conventional spark ignition (SI) engine is modified to achieve low-temperature combustion modes. The main challenges associated with the low-temperature combustion modes include combustion timing and engine load control, high maximum pressure rise rate, cyclic variability and limited operating range. I have developed linear and nonlinear model predictive controller frameworks to control combustion phasing and engine load while restricting cyclic variability and maximum pressure rise rate for different low-temperature combustion modes. In addition, I have developed a closed-loop model predictive controller which ensures mode switching between conventional spark ignition (SI) engine and a low-temperature combustion mode to achieve better efficiency and reduced emissions. The developed controller performance is validated for the multi-mode engine operation in real-time.

I greatly appreciate the Graduate Dean Awards Advisory Panel for awarding me the finishing fellowship. I would like to extend my gratitude to my co-advisors, Dr. Jeffrey Naber and Dr. Mahdi Shahbakhti, for their guidance, support, and encouragement throughout my research.