Grad Student Draws on 19th Century Findings for 21st Century Research

Tech Today

by Marcia Goodrich, senior writer

Deep in the stacks of the J. R. Van Pelt and Opie Library, Joe Miller stumbled upon a 112-year-old book that gave him a start.

Miller is a civil engineer specializing in heavy-timber roof design. He settled at Michigan Tech to get his PhD and to learn more about keyed beams than anyone in the history of carpentry. Keyed beams, lovely and useful though they may be, are in one sense an also-ran in the world of wood.

Miller explains in the context of the Upper Peninsula, where the old-growth, white-pine forests were ferociously clearcut in the 19th century. “By 1900, all the large trees were forested,” he said. The massive timbers required for constructing large buildings and reinforcing mine tunnels were no more. Builders needed a cheap, local alternative, so they began making big beams out of two smaller ones.

They cut mated notches in the lesser beams, fastened them together, and pounded close-fitting wedges, or keys, into the notches. The technique keeps beams stiff and bound tightly together, which prevents them from slipping (and breaking prematurely) when heavily weighted in the middle.

Keyed beams have been around since the 18th century. More recently, builders have adopted other technologies, but they aren’t always popular. “A lot of my clients had problems with steel beams or glue-laminated timbers,” Miller said. “Aesthetically, they wanted to use a more-natural approach that could be achieved locally, with local materials.”

Now, with keyed beams gaining a new following, Miller is developing the first theoretical model to represent their capacity under load. In other words, how much weight can they take before they break? And what factors determine if a keyed beam will be stiff enough?

Which brings us back to the library and the 112-year-old book. Miller was perusing the library’s offerings on the subject when he stumbled across an 1897 reference volume, buried in the basement, authored by Edward Kidwell of Hancock.

Kidwell, as it turns out, was on the faculty at the Michigan School of Mines. And he was one of the earliest researchers to conduct valid scientific tests on keyed beams and document the results. “It wasn’t until I’d chosen a school and a dissertation topic that I found his book,” Miller said, still struck by the coincidence. On top of this, Miller found Kidwell’s century-old reports to be both reliable and engaging.

“I appreciated his candor,” he said. In the book, Kidwell was critical of earlier keyed beam experts whose assertions did not stand up to scrutiny. “I also tested his methods, and everything he said appears spot on,” Miller said. “And Kidwell provided enough detail so that I could plug his numbers into my model.”

In addition to working with Kidwell’s findings, Miller has been testing his model against experimental evidence gathered in his own lab, where he has been building and testing keyed beams fabricated from solid oak, yellow poplar and wood laminate. “I’ve found that the inclination and shape of the keys can have an incredible effect” on the strength of the beam, he said.

“To be reinvestigating a concept that’s been around 300 years is kind of cool,” he said. It’s also cool to be building on foundational work conducted right here over 100 years ago.


Tech’s Research Expenditures Up 28 Percent

From Tech Today

Michigan Tech’s science and engineering research expenditures increeased more than 28 percent during fiscal year 2007, according to figures just released by the National Science Foundation.

The NSF ranked Michigan Tech 66th in the nation in research spending, among universities without a medical school. The fastest growing disciplines were environmental science and electrical and computer engineering.

For the first time this year, NSF also ranked the research spending of non-science and engineering fields. Two departments at Michigan Tech–humanities and visual and performing arts–ranked in the top 100 nationwide.

Full Story


Graduate Student Council Seeks Award Nominations

Each year, the Graduate Student Council honors the Graduate School’s Outstanding Graduate Mentor, Outstanding Student Scholar and Outstanding Student Leader. The awards are presented to recipients at the Research Colloquium Banquet in April.

If you would like to nominate someone for one of these awards, see information about the awards, including the submission process, on the Graduate Student Council’s activities page at http://gsc.students.mtu.edu/activities.html . The nomination deadline is 5 p.m. on Friday, March 20.

If you have any questions, contact Randy Harrison, public relations chair of the council, at rsharris@mtu.edu .


Binding Fees to Increase in Summer 2009

Effective summer session 2009, binding fees for a thesis, report, or dissertation will increase due to increased charges from our bindery.  Students completing their degree requirements in summer 2009 will need to discard any old bindery forms (TD-Bindery) they have downloaded and complete the new form that will be available beginning May 12, 2009.

Summary of fees beginning in summer:

  • Binding and printing black and white letter sized pages: $22.50/copy
  • Color pages (letter sized):  $0.37/page
  • Black and white pages (larger than letter sized, up to 11×17): $0.21/page
  • Color pages (larger than letter sized, up to 11×17): $0.55/page
  • Cotton paper: $0.14/page
  • Media Pocket: $4.90/copy

Grants for Graduate Research in Wildlife

Each year the Michigan Involvement Committee of Safari Club International awards several grants to graduate students who are working on wildlife research in Michigan. Last year eight awards were given, ranging in value from $1,000 to $3,000 dollars.  Students must be 1) accepted or enrolled in a Wildlife or related discpline, 2) planning a career in Wildlife Management field, and 3) familiar with hunting, hunting ethics, and the role of hunting in wildlife management.   For more information contact Jodi Lehman at jglehman@mtu.edu.



Sixth Annual Byron Fellowship Program

The Sixth Annual Byron Fellowship Program will take place May 17-22, 2009 at Turkey Run State Park. The Byron Fellowship is an interdisciplinary course in sustainable communities that uniquely engages participants through place-based learning. We are looking for 12 to 16 exceptional upper class undergraduates, graduate students, or recent graduates that have a passionate interest in building sustainable communities.

During the 5-day program, participants will learn from a collection of academic teachers and active practitioners. Participants and mentors represent a wide spectrum of disciplines including the arts, natural science, social science, engineering, and theology. The teaching methods include tutorial mentoring, collaborative discussion, and individual reflection.
More information regarding the event is available at: http://www.byronfellowship.org

An informational brochure in PDF format is available: http://byronfellowship.org/ByronBrochure2008.pdf

Applications can also be downloaded from our website: http://byronfellowship.org/byronapplication.doc

Rolling admissions have begun and will be open through April 15th .  The student cost of the program is limited to a subsidized rate of $250, which includes food and lodging for the event. Need based scholarships are available.

Kari Brown is available to answer questions, email kari@mtu.edu and thank you for your support.


Fulbright Scholar Dream Come True

Printed in the Daily Mining Gazette

By Michael Babcok, DMG Writer

For Michigan Technological University graduate student, Richard Basary, coming to America was a dream and a goal.  The University’s reputation in Materials Science and Engineering attracted the Fulbright Scholar from Indonesia.  “Indonesia needs people who know about technology,” Basary says, “but with a servant heart.” After graduation, he plans to return to his home in Papua and make a sustainable difference in how people take advantage of renewable sources.

Read full story online.


Beautiful Bugs in Blue: The Making of Luminous Bacteria

Published in Tech Today

by Marcia Goodrich, senior writer

A team of Michigan Tech researchers led by Associate Professor of Chemistry Haiying Liu has discovered how to make a strain of E. coli glow under fluorescent light. The technique could eventually be used to track down all sorts of pathogens and even help in the fight against breast cancer.

E. coli bacteria are naturally found in animal intestines and are usually harmless. But when virulent strains contaminate food, like spinach or peanuts, they can cause serious illness and even death.

The researchers’ trick takes advantage of E. coli’s affinity for the sugar mannose. Liu’s team attached mannose molecules to specially engineered fluorescent polymers and stirred them into a container of water swimming with E. coli. Microscopic hairs on the bacteria, called pili, hooked onto the mannose molecules like Velcro, effectively coating the bacteria with the polymers.

Then the researchers shined white light onto E. coli colonies growing in the solution. The bugs lit up like blue fireflies. “They became very colorful and easy to see under a microscope,” said Liu.

The technique could be adapted to identify a wide array of pathogens by mixing and matching from a library of different sugars and polymers that fluoresce different colors under different frequencies of light. If blue means E. coli, fuchsia could one day mean influenza.

With funding from a Small Business Innovation Research grant from the National Institutes of Health, Liu is adapting the technique to combat breast cancer. Instead of mannose, he plans to link the fluorescent polymers to a peptide that homes in on cancer cells.

Once introduced to the vascular system, the polymers would travel through the body and stick to tumor cells. Then, illuminated by a type of infrared light that shines through human tissue, the polymers would glow, providing a beacon to pinpoint the location of the malignant cells.

The technique would allow surgeons to easily identify and remove malignant cells while minimizing damage to healthy tissue.

The team’s work using polymers to detect E. coli was partially supported by the US Department of Agriculture and has been published in Chemistry–A European Journal.

The article, “Highly Water-Soluble Fluorescent Conjugated Fluorene-Based Glycopolymers with Poly(ethylene glycol) Tethered Spacers for Sensitive Detection of Escherichia coli,” is coauthored by Liu, postdoctoral associate Cuihua Xue, graduate students Singaravelu Velayudham and Steve Johnson, undergraduates Adrian Smith and Wilbel Brewer and Professor Pushpalatha Murthy, all of Michigan Tech’s chemistry department; and graduate student Ratul Saha and Professor Susan T. Bagley of the biological sciences department.


Graduate Student Selected to Attend Leadership Conference

Published in Tech Today

Timothy Colling, senior research engineer with the Michigan Tech Transportation Institute, has been selected to participate in the Eno Transportation Foundation’s Leadership Development Conference in Washington, DC, in May.

The conference brings together the top 20 graduate students in transportation engineering from across the country for the one-week program, in which participants meet top government officials, leaders of transportation organizations and members of Congress to get a firsthand look at how transportation policy is developed and implemented.

Colling is a doctoral student in civil engineering and assistant director of Michigan’s Local Technical Assistance Program (LTAP).

His advisor, Professor Bill Sproule (CEE), says that this is “a tremendous opportunity” for Colling and “a recognition that he is one of the country’s future transportation leaders.”