

MSE SEMINAR

Materials Science and Engineering Michigan Technological University Tuesday, April 30, 2013 11:00 am – 12:00 pm Room 610, M&M Building

Graduate Student Presentations

Chemical Enrichment of Iron Sulfides Using Microwave Energy

Matthew Andriese

Graduate Student
Materials Science and Engineering Dept.
Michigan Technological University

Abstract

Magnetic iron sulfide ore particles heat rapidly by microwave (MW) irradiation causing decomposition and melting of phases. In open atmosphere, the oxidation reaction of sulfides is a highly exothermic event but under microwave energy the electrochemically driven reaction results in the generation of plasma creating extremely high local temperatures. A melt-flux solution of silicates (*si-mt*) and metal sulfides (*sul-mt*) is produced during the plasma event with a portion of sulfur dissolving into the flux. The *sul-mt* is metal-sulfide (Fe,Ni,Cu)_{1-x}S liquid that forms immiscible droplets in the *si-mt*. Upon cooling, *sul-mt* segregates by the initial formation of sub-solidous magnetic monosulfide solution (Fe,Ni)_{1-x}S followed by subsequent formation of intermediate sulfide solution (Fe,Cu)_{1-x}S. Ferrospinel (Fe₃O₄) aids with MW heating of ore particles and encourages formation of (Fe,Ni)_{1-x}S from *sul-mt* by magnetic devitrification.

