Improving Fuel Cell Performance and Durability

Michigan Technological University has been awarded $897,000 to investigate methods of improving automotive fuel cell performance and durability. The award is part of a $2.7 million Department of Energy collaborative project with Rochester Institute of Technology (RIT), General Motors (GM), and Michigan Tech (MTU).

Jeffrey Allen, (in photo) Assistant Professor in Mechanical Engineering – Engineering Mechanics, is the MTU investigator for this project. Collaborators on this project include the principal investigator Satish Kandlikar, the James E. Gleason Professor of Mechanical Engineering at RIT, and Dr. Thomas Trabold, Senior Research Engineer with GM Fuel Cell Development Center.

The project, Visualization of Fuel Cell Water Transport and Performance Characterization, will explore water transport and accumulation in automotive fuel cells with the goal to develop components and materials which minimize water accumulation and freeze damage which degrade performance and durability of automotive fuel cells.

The three year project, beginning March 1, 2007, will involve undergraduate, master’s degree and doctoral engineering students. The project is part of a $100 million hydrogen research and development program announced by the Department of Energy supporting President Bush’s Advanced Energy Initiative.


Improved MEMS Chemical Vapor Sensors

A team of Michigan Tech researchers has won an $800,000 contract from the State of Michigan 21st Century Jobs Fund to develop improved MEMS chemical vapor sensors.

Mechanical Engineering Associate Professor Michele Miller (in photo) leads a project team of faculty from Mechanical Engineering (Professor Gordon Parker, Assistant Professor Henry Sodano), Chemistry (Assistant Professor Haiying Liu, Professor Sarah Green), and Electrical Engineering (Associate Professor Paul Bergstrom). The Michigan Tech faculty will collaborate with researchers at the University of West Virginia, Sandia National Labs, and one or more Michigan MEMS companies to improve sensitivity, selectivity and reliability of MEMS based sensors for detecting nerve gas and other chemical vapors. One goal for the project is to fabricate novel porous structures for increasing sensing surface area. Another key goal is to incorporate chemical and structural behavior into a multi-regime design optimization. Expected outcomes are new MEMS sensors with superior performance and a new design methodology for dealing with the vast design parameter space of chemo-mechanical devices.


High Pressure Combustion Laboratory

A team of Michigan Tech researchers has been awarded a National Science Foundation Grant for $1.3M to develop a high pressure combustion laboratory.

Mechanical Engineering Associate Professor Jeff Naber (in photo) leads a project team of colleagues from Mechanical Engineering (Professor Carl Anderson), Chemical Engineering (Professor Daniel Crowl), and Math Sciences (Professor Franz Tanner). The Michigan Tech faculty will collaborate with Assistant Professor Scott Post of Bradley University, and engineers at the Keweenaw Research Center. The focal point of the laboratory will be a configurable high pressure combustion vessel with optical access. The laboratory will provide the foundation for basic and applied research for clean and efficient combustion with petroleum based and alternative fuels including biodiesel and ethanol. It will also provide the ability to examine the flammability and combustion characteristics of hydrogen and other fuels at elevated pressures and temperatures to improve safety standards and handling. The experimental investigations will be closely linked to computational research directed at developing and optimizing the next generation of clean engines. The laboratory will enhance established efforts in alternative fuels research at the University and enable new opportunities for collaboration within and outside the University.

Advanced Power Systems Research


Michigan Tech’s Center for Environmentally Benign Functional Materials and the Sustainable Futures Institute

Michigan Tech researchers have been awarded $1.7 million to develop structural foams that could be used in security applications.

The 15-month, Phase 1 contract was awarded by Raytheon Company as part of a $3.7 million program funded by the Advanced Research Projects Agency to develop lightweight, portable barriers that could be used to help protect vulnerable targets and provide safe crowd control.

“We need very strong and lightweight barriers that could be erected quickly at any location and can be removed very quickly, and we can do that with polymer foams,” said principal investigator Ghatu Subhash, a professor of mechanical engineering-engineering mechanics. “They will also be environmentally benign, fire-resistant and pose no health hazards.”

The research is being conducted through Michigan Tech’s Center for Environmentally Benign Functional Materials and its Sustainable Futures Institute. Co-principal investigators on the project are associate professor Gerard Caneba and professor David Shonnard, both of the Department of Chemical Engineering.


Researchers Receive $1.7 Million

Michigan Tech researchers have been awarded $1.7 million to develop structural foams that could be used in security applications.

The 15-month, Phase 1 contract was awarded by Raytheon Company as part of a $3.7 million program funded by the Advanced Research Projects Agency to develop lightweight, portable barriers that could be used to help protect vulnerable targets and provide safe crowd control.

“We need very strong and lightweight barriers that could be erected quickly at any location and can be removed very quickly, and we can do that with polymer foams,” said principal investigator Ghatu Subhash, a professor of mechanical engineering-engineering mechanics. “They will also be environmentally benign, fire-resistant and pose no health hazards.”

The research is being conducted through Michigan Tech’s Center for Environmentally Benign Functional Materials and its Sustainable Futures Institute. Co-principal investigators on the project are associate professor Gerard Caneba and professor David Shonnard, both of the Department of Chemical Engineering.


Subhash Receives 2005 Research Award

Professor Ghatu Subhash, who has gained an international reputation for his research in mechanical engineering and materials science, is the recipient of Michigan Tech’s 2005 Research Award.

This makes him one of a handful of MTU faculty to be honored with both the Research Award and the Distinguished Teaching Award, which he received in 1994.

“I am really honored and humbled–this was a bit unexpected,” said Subhash, the associate chair and director of graduate studies of the Department of Mechanical Engineering-Engineering Mechanics. He credited both the university, his students and his department for supporting him in all facets of the academic mission.

Continue reading


Odegard Earns NASA Grant

A researcher at Michigan Technological University has received a $255,000 grant from NASA. His work in developing computer models for tiny materials could result in stronger, lighter aircraft.

Greg Odegard, assistant professor of mechanical engineering, creates these models to predict the strength of nanomaterials. One nanometer is equal to one-billionth of a meter.

“The materials we use, called nanotubes, are so small that we must rely on computer models to determine their stiffness and strength,” Odegard said. “It is very expensive to do this through experimentation.”

Scientists typically add these small nano-particles to other materials to take advantage of a specific property; for example, strength or resistance to corrosion.

Continue reading


Dr. Lyon B. King Wins Presidential Award

Assistant Professor L. Brad King (MEEM) traveled to Washington, DC, this week to accept a 2003 Presidential Early Career Award for Scientists and Engineers at the White House.

King is among 60 faculty members selected from U.S. colleges and universities to receive a Presidential Award, which is the highest honor bestowed by the U.S. government on outstanding scientists and engineers at the beginning of their careers. The recipients are chosen by the White House from among nominees selected by the top U.S. research agencies, including NASA, the Department of Defense, the National Science Foundation and the National Institutes of Health. King’s name was put forward by the Department of Defense. All nominees have received their PhD degrees within the last five years.

As part of the Presidential Award, King receives a five-year, $500,000 grant to continue his research on very-high-powered ion engines, which could be used for manned Mars missions or ambitious robotic space science missions.

Continue reading


Ion Space Propulsion Lab

L. Brad King (MEEM) has received $185,000 from the United States Air Force Office of Scientific Research for his project, “A Ground-Test Facility for High-Power Electric Thrusters Operating on Condensable Propellants.” This Grant resulted in the design and fabrication of a space- simulation facility used to test electric thrusters for spacecraft. The facility was specifically designed to accommodate thrusters using condensable metal propellants such as bismuth. Apparatus includes a large 2-m x 4-m vacuum vessel evacuated through three 2,000-liter-per-second turbomolecular pumps, a 20-kW DC power supply, a remote translation system, and computer data acquisition center.


Sustainable Futures Receives $3.6 Million

What kind of program is this?

Engineering graduate students with a social scientist as an advisor? Students spending one semester in extreme northern Michigan and the next just a stone’s throw from the Mississippi delta?

Cajun pasties, anyone?

This cross-country, cross-cultural experience all stems from a new $3.6 million grant from the National Science Foundation (NSF) to fund the Sustainable Futures IGERT. Michigan Tech and Southern University in Baton Rouge, Louisiana, will operate the program beginning this fall.

Continue reading