Category Archives: Research

50 Years of Fisher Hall

Fisher Hall
Fisher Hall

Fisher Hall has reached a milestone this fall: the big 5-0.

Anyone attending Tech within the last fifty years knows this campus landmark, which has been many things for many people—home for mathematics and physics majors, headquarters for gen ed courses, terror for first-years in chemistry, budget entertainment, and even a venue for true love (more on that later). Fisher has a character all its own—an identity that is as much tied to the Huskies who walked its halls as it is seated in the building’s physical attributes.

Fisher Hall is dedicated on October 7, 1964, replacing Hubbell Hall as the new home for the mathematics and physics department and engineering graphics. Much fanfare follows.

Read more at Michigan Tech Magazine Fall 2014, by Karina Jousma.

Proposals in Progress November 20, 2014

PI Andrew Barnard and Co-PIs Scott Miers (MEEM) and Yoke Khin Yap (Physics), “Carbon Nanotube Speaker Efficiency Improvement and Prototype Design,” US Department of Defense, Office of Naval Research

PI Will Cantrell (Physics/EPSSI), “Collaborative Research: Bottom-Up Cloud Modeling: Building Molecular Level Foundations for Heterogeneous Ice Nucleation in Clouds,” Clemson University

PI Ranjit Pati (Physics), “Collaborative Research: Parallel Fabrication of CNT-Based Spin Transistors Toward Post-CMOS Molecular Scale Spin Logic,” NSF

Read more at Tech Today.

Mazzoleni on the Future of Pico Mountain Observatory

Atlantic observatory faces rocky future
Mountaintop facility in Azores can track pollution from North America.

For the past 13 years, atmospheric scientists have been tasting the air above Pico Mountain, a dormant volcano in the Azores archipelago. From a perch at 2,225 metres, just below the mountain’s summit, the Pico observatory can dip directly into the gases and particulates that sweep across the Atlantic Ocean.

Other high-altitude stations in the oceans, such as on the Canary Islands, are closer to Africa, and their measurements can be influenced by dust and particles from biomass burning, says Claudio Mazzoleni, an atmospheric physicist at MTU. “In the case of Pico it’s north enough to get mostly air coming from North America and travelling to Europe,” he says. “There isn’t any other place that is on that path at that elevation.”

Read more at Nature, by Alexandra Witze.

Nature, one of the top science journals in the world, published a news article about the Pico Observatory atmospheric research of Associate Professor Claudio Mazzoleni (Physics) and Associate Professor Lynn Mazzoleni (Chem).

From Tech Today.

New Funding for Pandey and Nemiroff

Ravi Pandey (Phys) has received $75,000 (with a potential award total of $726,291) from the US Department of Defense-Army Research Laboratory for the first year of a potential three-year research and development project titled “First Principles Studies of Structure-Property Relationships in Two-dimensional Nanomaterials Beyond Graphene for Defense Applications.”

Robert Nemiroff (Phys) has received $30,000 of $238,362 from the National Aeronautics and Space Administration for the first year of a three-year project titled “Supporting Astronomy Picture of the Day.”

Read more at Tech Today.

Jaszczak Publishes on Spectacular Sulfides

The Mineralogical Record
The Mineralogical Record

Professor John Jaszczak (Physics), adjunct curator at the A. E. Seaman Mineral Museum, published a paper in the September/October issue of The Mineralogical Record, “Spectacular Sulfides from the Merelani Tanzanite Deposit, Manyara Region, Tanzania.” The paper’s coauthors are Simon Harrison, Mike Keim, Mike Rumsey (Natural History Museum, London) and Michael Wise (Smithsonian Institution).

Vol. 45, No. 5 September – October 2014

From Tech Today.

Super-Terminal Raindrops Verified

Warp-Speed Raindrops

It’s a rain race out there. In the meteorological equivalent of breaking the light-speed barrier, new research shows that the smaller droplets in a rainstorm often surpass what appears to be the speed limit for rain.

“What surprised us was not so much seeing the superterminal drops,” says physicist and co-author Raymond Shaw of MTU, “but seeing the deeper, compelling patterns.” He explains that as rain falls harder, the fraction of superterminal, or speeding, small drops increases.

Read more at Science Magazine, by Phil Berardelli. This article was posted on June 12, 2009.

Geophysical Research Letters 2014
Geophysical Research Letters 2014

Further evidence for super-terminal raindrops
M. L. Larsen1, A. B. Kostinski and A.R. Jameson
DOI: 10.1002/2014GL061397

A network of optical disdrometers (including laser precipitation monitors and a 2-dimensional video disdrometer) was utilized to determine whether the recent reports of “super-terminal” raindrops were spurious results of drop breakup occurring on instrumentation. Results unequivocally show that super-terminal raindrops at small (less than 1 mm) sizes are ubiquitous, are measurable over an extended area, and appear in every rain event investigated.

Read more at Geophysical Research Letters, published by Wiley Online Library in 2014.

Confirmed: Some raindrops fall faster than they should

Five years ago, scientists reported that raindrops, especially small ones, often fall through the air much faster than they should. Some researchers have suggested that these “super-terminal” raindrops (ones traveling more than 30% faster than their terminal velocity, at which air resistance prevents further acceleration due to gravity) were fragments of larger drops that had splattered off the team’s instruments, with the smaller bits retaining the speed the larger drop had before it struck the instrument. But new research hints that the speedier-than-expected drops are the result of natural processes—and that, moreover, they make up a substantial fraction of rainfall.

Read more at Science Magazine, by Sid Perkins. This article was posted on August 26, 2014.

Kamal Dhungana Research

Kamal Dhungana Research
Schematic diagram of a fluorinated boron nitride nanotube based spin filter device.

Fluorinated boron nitride nanotube as an ideal spin filter

Advisor: Dr. Ranjit Pati

Understanding the electronic structure and the transport property of nano scale materials is of fundamental importance, since these materials are the ultimate candidates for the future of nano technology. Several nano materials, such as quantum dots, semiconducting nano-wires, and organic molecules, have been explored both theoretically and experimentally as the components of electronic circuitry over the last two decades. Among several interesting nano materials, metal free magnetic nano materials are found to be very enticing due to the presence of magnetism in the absence of magnetic ions. Traditionally, the magnetism comes from partially occupied d and f states in the materials; however, this understanding is not always true since s and p states are found to contribute to the magnetism in the metal free magnetic materials. The main advantage of these materials is their high Curie temperature; as a result, they can be utilized in room temperature spin-electronics (spintronics). Recently, using a first-principles approach, we have demonstrated that the fluorinated boron nitride nanotube (BNNT), which is a metal-free magnetic entity, can be used as an excellent spin filter. All majority spin carriers are almost completely blocked while passing through the fluorinated BNNT channel, allowing only the minority spin carriers to pass. We have shown that the long range ferromagnetic spin ordering in fluorinated BNNTs occurs at a temperature much above room temperature.

For more information, please visit my webpage: http://www.phy.mtu.edu/~kbdhunga

By Kamal B. Dhungana

Reference:

Kamal B. Dhungana, Ranjit Pati, Fluorinated Boron Nitride Nanotube Quantum Dots: A Spin Filter. J. Am. Chem. Soc., 2014, 136, 11494–11498.