Tag: sustainability

2024 MTU Sustainability Month

This year, Michigan Tech celebrates the 2nd Annual Sustainability Month with a variety of events put on by our very own Students for Sustainability, Keweenaw Youth for Climate Action, the Sustainability Demonstration House, and the Office of Sustainability and Resilience. Check out the events below to join us in celebrating Earth Month!

  • Craft Night ~ April 8, 7:30-8:30pm @ Fisher 125 Join Students for Sustainability for a chill craft night of painting rocks and making homemade cards with watercolor paints!
  • Waste Reduction Drive ~ April 13, 9am-3pm @ SDC Arena Entrance Want to recycle but not sure where? Drop off your used deodorant tubes, dental products, razors, writing utensils, socks, and egg cartons to the SDC to have them recycled by our awesome sustainability leaders from the MTU Sustainability Demonstration House! Contact Kellin for details at kjgasser@mtu.edu
  • 3rd Annual KYCA Art and Music Festival ~ April 13, 2:30-7:30pm @ Rozsa Lobby Last year was a huge success and we’re doing it again! Listen to local music, meet with sustainability-related enterprises and student organizations, admire earth-themed artwork, and learn about ways to become involved!
  • Sustainability Leadership Awards Presentation ~ April 17, Noon-1pm @ MUB Ballroom B Celebrate campus sustainability leaders and get an update on university-sustainability happenings.
  • 4th Annual Earth Day Dinner ~ April 18, 4:30-7:30pm @ Wadsworth Dinning Hall Come enjoy a plant-based meal and learn about composting.
  • Earth Day Teach-In ~ April 19, 3-5pm @ Admin Building In alignment with the Sunrise Movement, join MTU students to walk in awareness of Climate Change.

For additional sustainability updates from Michigan Tech, follow the Office of Sustainability and Resilience on Instagram, @sustainablemtu .

New MS in Sustainable Communities

The Department of Social Sciences is now home to a new MS degree program in Sustainable Communities!

Sustainability is one of the fastest growing career domains, and this degree program presents an exiting opportunity to get involved. The Sustainable Communities MS helps prepare professionals to work in both private and public sectors. The degree can be completed as a coursework only option or as a research degree with a report. The degree program is also going to be available as an accelerated MS for current Michigan Tech students across any major!

Sustainability is a highly interdisciplinary topic, and this degree program is designed so that students can tailor their MS degree experience to meet their needs. All students complete three core courses in social sciences (one required, two selected from a short list). The rest of the degree can be completed with either individual courses or with existing graduate certificate programs. This allows students to choose to create a stackable set of experiences that build expertise within specific domains or to develop deeper knowledge within social sciences. Students in the Sustainable Communities MS also have opportunities to work with community partners and build projects that contribute to community wellbeing.

Chelsea Schelly, associate professor of sociology and Sustainable Communities MS degree advisor, puts it this way:

“Contributing to more sustainable communities requires that we question all we take for granted in the ways systems and institutions are designed to meet (or deny) human needs and comforts. Faculty in the Department of Social Sciences share a passion for teaching students how to use skills from the social sciences to understand sustainability challenges and contribute to a more sustainable future. The biggest challenges to community-scale sustainability were created by humans—and they can be changed by humans, too.”

For more information about this degree program, you can visit the Graduate School’s program site above and contact Chelsea at cschelly@mtu.edu

Tech Forward Sustainability Listening Session

The Tech Forward Initiative on Sustainability and Resilience recently held a campus-wide listening session to hear from more voices across campus. The event was focused on small-group discussions about what Michigan Tech does well, and what can be done differently when it comes to research, education, and campus life issues related to sustainability. Roughly 70 people showed up for a two-hour event on a weeknight, which is a really great indication of just how many people feel strongly about this topic! The folks working within the Tech Forward group are still accepting feedback, so if you did not get a chance to attend the event, please go to this Google Form and share your thoughts about how research, education, or campus life could be improved in regards to sustainability issues – or, feel free to tell us what we are doing that is already going well!

The whole group sharing ideas near the end of the event

Giving farmers a new crop: Solar Farms and expanding BTM methods for farmers

 

This is a guest post from Lena Stenvig, an undergraduate student at Michigan Tech. Lena is studying Computer Science and minoring in Environmental Studies. Lena took the photos included in this blog post. She can be reached at lsstenvi@mtu.edu

 

The cherry orchard at Garthe Farms LLC

America is all about its family-owned farms. From its popular food chains serving America-grown burgers to its corn-mazes in the fall attracting people from all around, none of it would be possible without the original small-town humble farmers that do their job equally for supporting their families and for the love of what they do every day; but now our farmers need help. When people moved away from their family farms over to less body-intensive jobs for work, fewer farms began producing more product on more land. Even so, many farmers struggle to produce enough crop to sustain themselves and their family. Around 91 percent of farming families have at least one family member working at a job that is not the farm. This is where Behind the Meter, or BTM comes in.

Behind the meter is a means of producing your own energy so that you are not pulling all of the energy you use from the grid, and as a result pay less for your electricity bill. A popular technique to behind-the-meter is installing solar-panels in one’s yard on upon the roof. In this way a household can produce green energy to lower its carbon footprint and can save on the electricity bill. A typical household has room for a few solar panels. Enough to sustain itself for most of the summer months, but usually not enough when the winter heating bill kicks in. A modern American farm has much more land than your typical resident. Even if most of it is used for farming, there are certainly space that could easily be allocated for a small solar farm. Having worked for Garthe Farms LLC this summer, a cherry farm deep in cherry country near Traverse City, MI, I have seen first-hand where and how this can work. My uncle, Gene Garthe, runs this farm and in recent years invested in four large solar panels that sit in empty space near the driveway nearing the farm house. These four solar panels produce enough energy to run what electricity is needed for the farm, and that is all they desire and need.

Despite producing plenty of energy via solar, Garthe Farms is not a emissions-free facility. Large machinery is used to harvest the cherries from their trees. There are three machines that are necessary in cherry harvesting: the Shaker, which shakes the cherries from the trees, the Catch Frame, which catches the cherries shaken by the Shaker and conveyors them into a tub, and the tractor that takes the tubs when full to the loading dock and brings the Catch Frame a new tub in which to fill more cherries. All three of these machines require diesel fuel to run, and as much work as one can complete towards electric vehicles, it is not economically feasible at the moment to make a machine that chugs through an entire tank of fuel in eight hours of work to operate on an electrically-rechargeable battery. To make up for their fuel usage, perhaps it is better that farms simply produce a form of green energy that can make up for the amount of fossil fuels they consume.

 

Cherry harvest in motion: The Shaker (far) moves to the next tree while the Catch Frame (near) is receiving a new tub in which to place the harvested cherries.

 

In this way farmers can reverse the BTM method. If they can produce their usual crop while also producing energy in either the form of solar or wind, they can sustain their household while also receiving return on what they put out to the grid. This can work if they can have some of their own personal solar panels to run what they need to on the farm, and then working with solar or wind companies to lease certain areas of their land to be utilized for said energy production. For wind, this is easy by simply taking up a small portion of land for each windmill. The minimally invasive turbines do not take up much room on the farm and do not hinder the crops from receiving enough sunlight. Solar panels can prove to be trickier. Because of their method of energy production, solar panels would not work well in a field full of crops that also require sunlight in order to grow. For farms that grow plants that take up less room per unit such as potatoes or corn, placing solar panels in spare spaces around the field while mostly utilizing wind power might be the best option. For farms like my uncle’s, it is a different story entirely.

Much of a cherry orchard’s area is taken up by plants and grasses that grow below the trees, and the trees stand spaced approximately ten feet apart within each row. Each row stands about another twenty five feet apart. Where some farms may be only able to place solar panels near roads or at the end of rows, orchards may place the panels in these locations are more. If one row of trees were to be replaced with solar panels, the loss of trees would be fairly minimal while also adding enormous potential for solar production. Even without removing trees, placing solar panels at the end of rows would not affect the production of fruit while also receiving gain on solar production.

If we are to look closer at our American farms and examine the issues they face today, and if we can only look at the potential they hold for energy production, we may not only be able to solve the growing problem of farms going bankrupt, but also for finding a place to produce greener energy without disrupting land that is not being used and additionally would ecologically be better off as it is. In this way farmers can continue to do what they love, and not have to work more than they have to in order to pay bills and keep their farm from dying. With this I might say the path onto greener pastures might just be creating greener pastures.

 

 

Tiny House Living at MTU

The latest Humans of Michigan Tech story features Sydney, an undergrad who lives in an ambulance turned tiny home. The story barely touches the surface of the environmental, economic, and personal benefits that can come from tiny home living. Tiny homes are a great example of how environmentally responsible living is also economically beneficial – Sydney doesn’t have to pay rent or utility bills and can take advantage of the shared systems like showers and internet provided by the college campus. Sydney is not the first MTU student to live in a tiny home while completing a degree here – a student who built a tiny home on a trailer used to live in my yard, before she graduated and moved away from Houghton. There have even been discussions of developing a community of tiny houses on campus! Sydney and other students who have lived in tiny homes demonstrate that it’s possible, even in the cold snowy climate of the UP. Her story makes me wonder – How many students would live like this, if provided the opportunity to try? How can we teach more students about this possibility? What are the barriers in our way of making more environmentally and economically sound investments for qualify living through tiny homes and access to shared systems? We’re proud of you, Sydney!

 

 

Industrial Ecology

Photo of Shaelyn taken by Daniel Prada (daprada@mtu.edu).

 

 

This is a guest post by Shaelyn Koleber, who is an environmental engineering undergraduate student at Michigan Tech. She can be reached at sjkolebe@mtu.edu

 

Shaelyn took the photos included in her blog post.

 

 

 

Nature is full of self-sustaining ecosystems; there is a constant recycling of resources. There are complementary functions within nature and the environment is able to completely support itself without outside assistance. For example, trees absorb carbon dioxide and give off oxygen, while animals take in oxygen and give off carbon dioxide—a seemingly perfect complimentary cycle. Whether a plant is eaten by an animal or it dies naturally and decomposes on the forest floor, it is still supporting the ecosystem. Whatever nature produces eventually reaches the end of its life and will be consumed back into the ecosystem. A fallen tree limb, a dead animal, or an uneaten fruit or plant that has fallen to the floor are all absorbed and recycled back as useful forms to support the ecosystem. There is no waste produced from environmental processes and the ecosystem is a closed-loop of resources. This same concept can be applied in buildings and manufacturing where the waste produced from these processes can be used to support the ongoing production. Industrial ecology is a sustainability concept to improve the environmental management of industrial processes. Companies can keep a record of materials throughout a product’s life. There are many subcategories of industrial ecology that are used as analyzation and evaluation techniques to ultimately reduce the impact on the environment, such as: material flow analysis (MFA), life-cycle analysis (LCA), and input-output analyzation. Industrial ecology is an emerging concept that works to mimic the self-sustaining cycle of nature.

Introducing the ecological aspect to industry puts a generalized focus on environmental impact. Industrial ecology is a strategic guideline to use fewer resources while also finding a new purpose for exhausted materials and waste. This does not have to occur within one facility. Different businesses could work together to create networked, ecological industries: waste can be seen as a resource. The saying, “one man’s trash is another man’s treasure,” is demonstrated through the concept of ‘industry partnership.’ The by-product from one industrial process can be used as the input for a separate entity. For example, a coal-firing power plant has a lot of excess heat that can be distributed to a nearby community. This would reduce the energy and resources needed to provide heat services to the town, thus providing environmental and economic benefits. This could only occur with the cooperation of multiple companies independently. The transportation of these materials would have to be a short distance for the net environmental impact to be positive. This idea would have tobe mutually adopted for it to be effective, which could be seen in future years as more industries become conscious of their carbon footprint.

 

Industrial ecology is also seen in the emerging concept of cogeneration. Cogeneration, also known as combined heat and power (CHP), is when a heat engine is used to generate electricity and heat at the same time. Similar to the previously mentioned example, during the production of electricity, the heat can be harnessed and put to use instead of going to waste. This directly views the heat waste as a source and creates a concept of dual-purpose. Rather than the heat being seen as waste, it is seen as another useful product of the process. Smaller-scale industrial ecology concepts can be seen in the construction of homes or commercial buildings. Current construction techniques and technological resources build each utility with separate input needs and waste disposal. Most housing and commercial buildings do not have any industrial ecology, currently. People who plan on living in a house for an extended period of time or have a desire to live sustainably are more prone to implement advanced technologies. Instead of using an air-source air conditioner, a ground source heat pump can be used as a closed-loop system. These systems pump water from the ground where the temperature is constant year-round. While air-source heat pumps are less expensive and easier to install, ground-source pumps are much more efficient and sustainable. The ground-source pumps are buried pipes that loop around a three-to-six-foot-deep trench. This system is a constant exchange of heat with the ground and can heat or cool a home. Diagrams and explanations of the different heating systems can be found on https://smarterhouse.org/heating-systems/types-heating-systems. It takes less energy to simply move heat around than it is to generate heat; therefore, the ground-source pump does not consume a lot of energy. Since the ground-source heat pumps are more efficient, they are also more cost effective. A consumer that installs this system and plans on living in a home for a long time will see a return on their investment. This is just one example of many technologies/designs that exist as readily-available sustainable systems.

Industrial ecology is a concept that must be practiced by all companies and manufacturers; it must also be well-understood by the general public in order to be fully adopted and implemented into the function of society. Since our society relies heavily on industrial processes, we cannot simply shut them down. However, we can no longer standby and knowingly accept the pollution that companies create through their industrial processes. While it is not reasonable to shut down industrial processes completely, we must keep these companies responsible for the waste and pollution they create. A partial reinvention of industrial processes into industrial ecology will reduce the environmental impact significantly. Without the public’s understanding and demand for such changes, there will be no urgency to place official regulations and therefore create a zero-pollution global industry. This foreseen change will not come easily or naturally; it needs to be talked about and broadcasted on media to mass-educate the public. With a widely supported concept, the engineers, scientists, and policy makers can work together to put the ideas into action. Industrial ecology allows humans to increase their efficient use of ecosystems by mimicking what nature already does. The implementation of this concept will only come with the mutual support from companies, the government, the people, and environmental conservationists. If we continue to move forward with these concepts, the earth can thrive for many eons in our future.

 

 

Off-Grid Energy

This guest post is provided by Alannah, who is a Sustainability Science and Society undergraduate major at Michigan Tech. She can be reached at amwoodri@mtu.edu

 

Photo by Kevin Stace

 

Hi, I am Alannah Woodring a third year Sustainability Science and Society undergrad. Off grid energy production is intertwined with sustainability. These are systems that individuals use to generate their own power removing the need for energy companies. This gives individuals independence, no longer needing to be connected to the energy grid. Most commonly through solar panels residents and communities can create their own micro grid.

Since I was in Middle School, I have considered living in an off grid in a tiny house, earth ship, converted shipping container or other forms of alternative housing. The main reason for this is to reduce my footprint and my overall individual consumption. Currently, in my free time I draw up blueprints for tiny houses and modular homes. My first blueprint started in 2014 and I keep sketching up new ideas. One element all these living spaces have in common is an off-grid energy system. To accomplish this, I would have solar panels with battery reserves create my own energy system. There would also be the ability to connect to the grid if needed. Having the on and off grid flexibility is a necessity when having a mobile living situation. Beyond my desire for an off-grid system there are many possibilities to aid in energy issues within the United States and help developing countries who lack access to energy.

Photo taken in Windsor, California by Kirsten Dirksen. “Agile villages for fire victims as templates to fix CA housing?”faircompaines.com. October 20, 2019.

 

Off grid energy systems could be applied to places that have a failing energy infrastructure. In California during the beginning of October 2019 widespread organized blackouts occurred by Pacific Gas & Energy (PG&E). This was in hopes to reduce the possibility of widespread fires during a few very windy days.

This blackout affected more than 500,000 people. With the usage of micro grid systems people who would not have been affected by strong winds could have left their power on but since they are all part of a large grid majority of people got their electricity shut off. During the 2017 wildfire PG&E was to blame resulting with an 11-billion-dollar settlement that was reached this September. Shutting off the electricity in October was to prevent a wildfire to the magnitude that was seen in 2017. As conditions worsen in California due to climate change the current energy infrastructure is showing a growing number of problems.

Many California residents cannot afford to rebuild after the fire, and it is estimated that 3,300 people decided not to move back after the 2017 fire. For others who decided to move back they are choosing to live in 480 square feet homes renting for $950. Community members are coming together to get temporary housing permits for those effected from the wildfire. Through the usage of a micro grid system these small homes could have not been affected by blackouts and this would reduce the chance for wildfire if their energy infrastructure was to be built underground. Having power lines above ground does not have to be the status quo but it is the system that the United States is used to having. Coming up with solutions using off grid energy systems to combat rising issues from climate change should be considered widely as climate change is predicted to worsen conditions.

Another potential for off grid energy systems is in counties that do not have energy infrastructure such as power lines already in place. It can take many years for widespread grids to be established in rural and remote areas. By using off grid energy systems rural communities who would have had to wait many years for access would be able to produce energy in a matter of months. This adds self-sufficiency within energy production for developing countries who often lack the complete infrastructure needed to maintain systems.

Furthermore, here is a ted talk that outlines the expansive sustainable potential of off grid energy systems. https://www.youtube.com/watch?v=20adDr7Felw

There are many companies like Powerhive that are helping people in rural areas who cannot afford the initial cost of power lines to be connected to their communities. They instead install solar panels in rural areas to connect communities that would not have access to electricity otherwise. Electricity is a necessity for life within our globalized world. Rural areas surfer the most from inequalities and access to electricity can help bridge the gap. When I was in high school deciding what I wanted to major I knew proving energy to remote and rural areas was always a possibility. I hope that I can work within off-grid energy systems sometime in my life.

 

Source: Powerhive, Powerhive: Resilient Energy Infrastructure for Off-Grid Communities. August 10, 2016

 

 

When having an off-grid energy system individual become more aware of their energy consumption. They look at the peak times they consume energy. With having this system, they can avoid peak energy price changes that electric companies charge.

In Tyalgum, Australia they are a community of a little more than 300 members. They are choosing to have their own off grid energy system to have independence from energy suppliers and go carbon neutral. In Australia much of their energy mix comes from fossil fuels as they have large reserves in their country. The carbon lock in cycle can be observed in Australia. Members of the Tyalgum community feel Australia does not have a progressive enough stance on incorporating renewables, so they have decided to take matters into their own hands.

Reasons for switching to off grid energy systems can be ranging from reducing natural disasters amplified from climate change or just wanting to reduce carbon emissions. No matter the reason for wanting off-grid systems they can help mitigate climate change issues while providing energy justice to people who previously had none. Benefits come from small scale energy generation that many would not consider since off-grid is not a common practice. With more knowledge surrounding off-grid energy individuals can think of energy as a public good. Fossil fuels are not sustainable and rethinking the current energy infrastructure can create a new sustainable blueprint for the future.

Life Cycle Assessment and Sustainability

This is a guest post from Dante Paglia, who is a fourth year computer science undergraduate at Michigan Tech. He can be reached at dfpaglia@mtu.edu

 

Life cycle assessment, also known as life cycle analysis, is used to assess environmental impacts associated with all stages of a product’s life. The stages include the collection of the raw materials, processing those materials, manufacturing the product, distribution via various transportation techniques, use of the product as well as the repair, disposal and recycling during the products end of life. This kind of assessment is used by companies and product designers to better understand their products impacts, discover where the product can be improved, and work toward implementing those improvements. Below is a visual of the stages of a products life that are looked at during a life cycle analysis.

 

The National Institute of Standards and Technology (NIST) [Public domain] image of Life Cycle Thinking, Wikimedia Commons
Photo from: https://commons.wikimedia.org/wiki/File:Life_Cycle_Thinking_Product_System.jpg

 

There are four main phases of a life cycle analysis. The first phase is the goal and scope. This sets the outline of the study and depicts the format of the results as well as who will receive the results of the assessment. The second stage is the life cycle inventory. In this stage the inventory flow of inputs for a product are recorded. Examples of inventory flows include, water, energy, raw materials and waste releases to either land, air or water. In this step, all of the inputs and outputs that are used or created during the products life are recorded. The third stage of a life cycle assessment is the actual impact assessment. The data gathered in the previous step is sorted and assigned impact categories to help weigh the impact the product has on the environment. Lastly, interpretation is done. The information from the results of the analysis must be checked and evaluated. In other words, the results of phases two and three are summarized in the interpretation phase. The completed assessment is then reviewed to understand the impacts of the product and to see where improvements can be made to lessen the overall impact on the environment.

Life cycle analyses are a widely popular tool to increase a company’s sustainability. This is because the analysis usually includes information that fits into all three pillars of sustainability. While the overall goal of the assessment is to review environmental impacts, social and economic impacts are considered as well. You can learn more about the three pillars of sustainability by clicking here.

There are many variants of a life cycle assessment where different stages of a products life are analyzed. The three most common kinds are cradle to gate, cradle to grave, and cradle to cradle. Cradle to gate only looks at a product when it is in the hands of the producer, once it leaves the factory its impacts are no longer considered. Cradle to grave takes it a step further and follows a product from the very beginning all the way until it is disposed of. Lastly, cradle to cradle takes things even further and instead of disposal of the product, it is recycled and reused in the process again. Often a cradle to cradle design leads to the least amount of environmental impact. One example of cradle to cradle is discarded asphalt pavement being reused to create new pavement. Below is a graphic showing another example of cradle to cradle design with steel production. This shows how everything, including the waste bi-products of steel production can be used for something useful or simply recycled back into the steel making process.

 

Life Cycle Assessment – What is it?

Photo from: https://www.flickr.com/photos/mitopencourseware/3247853726

 

An example of the use of life cycle analysis is the U.S. Department of Energy produced report that shows the energy and environmental benefits of LED lights over incandescent and fluorescent lights. LED lights proved to be more energy efficient and less harmful to the environment to produce as well as transport than both other kinds. This led to a rise in popularity of LED lights hence providing an overall benefit of large energy savings and significantly less environmental harm. The full study can be found by following this link.

Additionally, life cycle assessment is something that many solar panel producing companies are required to do and have planned out prior to receiving funding from the government. Since solar panels include hazardous materials like cadmium and cadmium compounds, it is not only important to make sure that the raw resources are being retrieved in a safe manner but the end of life of the products needs to be taken into account. If a solar panel is to be disposed of for any reason, whether it be because it broke during production or it is no longer being used or is being replaced, companies need to make sure that their product with these hazardous chemicals is properly disposed of. This means it cannot be tossed into landfills but needs to be recycled in a manner where the harmful compounds are disposed of properly or reused for new solar panels. This article on solar panel recycling explains some of the options there are for safe disposal of unwanted or old panels.  A life cycle assessment helps find issues in these stages and brings them to the attention of the product’s producers allowing them to change their ways.

Life cycle assessment is an important concept to be aware of because every company should be doing some variant of a life cycle analysis for their products. Not every company needs to do cradle to cradle analysis, but they should assess their production in some way. By doing so they can discover issues in their production cycle as well as make improvements to make their product better in terms of energy and environmental harm. With this, their product and company as a whole will become more sustainable and attractive to the large number of investors and customers who are paying closer and closer attention to companies sustainability policies. Most importantly in modern day, the end of life portion of production needs to be analyzed and understood so companies can mitigate the environmental impact their product does. The more recycling options that can be found for products the better to reduce the amounts ending up in landfills causing more harm with their pollution than good they provided overall. Without these kinds of analysis, companies would be able to do whatever is the most cost effective in production, which almost never coincides with sustainability and being environmentally friendly.

 

 

 

 

 

 

 

 

Tech Forward! On Sustainability & Resilience

Michigan Tech has ambitious plans to address the future of education, the contexts in which education operates, and the objectives and aims that a University education serves, given the expected disruptions resulting from external factors (you can read more about Tech Forward here). Discussions and meetings in the fall 2018 semester (you can read more about that process here) resulted in the announcement of big, broad Initiatives intended to create plans for proactively addressing the challenges faced by MTU, Universities, and the societies in which we live. One of the Initiatives is focused on Sustainability & Resilience, and the Working Group has been meeting regularly to discuss possibilities, priorities, and the principles that should guide Sustainability & Resilience activities at MTU — What do you think? What do you think Sustainability & Resilience should look like at MTU?