Author: Sue Hill

Sue Hill is the Digital Content Manager for the College of Engineering.

Who is Studying Miniature Magneto-optic Devices at Michigan Tech?

Four images on different scales showing pillar arrays on a surface.

The successful fabrication of miniature optical components is key for progressing current optical technologies. A family of such miniature optical components must be able to efficiently rotate linearly polarized light at small scales. Estefanio Kesto, under the guidance of Dr. Miguel Levy, is studying the interaction between light and ferromagnetic iron garnet nanostructures. It has been observed that the polarization rotation of linearly polarized light, known as the magneto-optic response, traveling through such a nanostructure will be enhanced. The ferromagnetic iron garnet nanostructures pictured above, which enhance the magneto-optic response, are being studied to further miniaturize polarization rotators and other interferometric components. Additionally, Professor Levy and his research group are diving into the unexplored region of magneto-optic beam splitting and its applications in classical and quantum computing.

Pillars fabricated and image taken by Estefanio Kesto, undergraduate student in electrical engineering, using ACMAL’s Hitachi FB-2000A FIB, Hitachi S-4700 FE-SEM, and Asylum Research MFP-3D Origin+ AFM.

Read more about the Dr. Miguel Levy’s research in the following articles:

All-dielectric magnetic metasurface for advanced light control in dual polarizations combined with high-Q resonances

Nonreciprocal magneto-optic beam splitting

Two-dimensional array of iron-garnet nanocylinders supporting localized and lattice modes for the broadband boosted magneto-optics

Visit the Applied Chemical and Morphological Analysis Laboratory’s webpage to learn more about our shared facility and instruments available to the Michigan Tech research community: ACMAL

ACMAL Welcomes Erico T. F. Freitas

Erico T. F. Freitas

Research Scientist Erico T. F. Freitas has joined ACMAL and Materials Science and Engineering. He will manage the FEI 200kV Titan Themis STEM in ACMAL’s Electron Optics Facility. Freitas has experience in nanostructured materials characterization, with specialties in TEM, STEM, EELS, EFTEM, EDX, and electron diffraction.

Freitas worked previously in the multiuser electron microscopy facility managing the TEM at the Universidade Federal de Minas Gerais, Brazil.

ACMAL Holiday Schedule

ACMAL will have limited hours over the upcoming holiday break. 
The university will be closed on Dec 23 through Jan 1.  The building will be locked on those days. Unrestricted users will have unlimited access to the building and labs.  Restricted users have access during the other days.  We ask that newly trained users make appointments during the period so someone is near in case there are troubles.

Dr. Ed Laitila and Liz Miller will be out the entire 2 week period.  Dr. Tim Leftwich, Josh King, Kyle Hrubecky, and Aleister Kerr will be available by appointment.

If there are problems contact us.  Our contact information is:

Liz: 906-370-6538
Ed: 906-369-2041
Aleister: 520-576-3557
Josh: 404-808-2803
Tim: trleftwi@mtu.edu

Happy Holidays,

Elizabeth Miller

Who is Imaging Hemolysin X Treated Red Blood Cells at Michigan Tech?

Sequence of six images showing the disintegration of cell membranes.

The Laboratory of Mechanistic Glycobiology research group, led by Dr. Tarun Dam, is studying how the function of biomolecules from plant cells translates to human cells. Hemolysin X is a biomolecule that can disrupt and disintegrate cell membranes. The image above depicts how Hemolysin X systematically disintegrates a red blood cell.  The research group is looking into how this molecule reacts with other types of mammalian cells, including cancer cells.

Image taken by Jared Edwards, Chemistry PhD candidate, on ACMAL’s Hitachi S-4700 FE-SEM.

Learn more about the Laboratory of Mechanistic Glycobiology research group: Laboratory of Mechanistic Glycobiology

Visit the Applied Chemical and Morphological Analysis Laboratory’s webpage to learn more about our shared facility and instruments available to the Michigan Tech research community: ACMAL

Who is Imaging Electrospun Polycaprolactone Fiber Scaffolding at Michigan Tech?

Six panels of three different polymer nanofibers at low and high magnifications.

Dr. Smitha Rao, assistant professor for Biomedical Engineering at Michigan Tech, and the Biomedical µDevices research team developed a way to be able to observe how breast cancer cells grow and migrate in various environments. The project developed scaffolding systems that mimic structures that could be found in human tissue. They engineered three polycaprolactone scaffold structures to test different topographical and mechanical features: hexagonal, mesh-like and aligned.

The image was taken by Dr. Smitha Rao’s graduate and undergraduate students using ACMAL’s Hitachi S-4700 FE-SEM.

Read more about Dr. Rao and the Biomedical µDevices research team’s work:

Visit the Applied Chemical and Morphological Analysis Laboratory’s webpage to learn more about our shared facility and instruments available to the Michigan Tech research community: ACMAL

If you have you have an image you would like to be featured, submit it here:

New Remote Teaching and Research Capabilities

Over the past year, several ACMAL labs have been equipped with new software and cameras for improved remote teaching and research! These new remote capabilities allow for live/recorded demonstrations to be shared with large classes or for research clients and to view live data collection.

Below are descriptions of these instruments and laboratories affected:

FEI 200kV Titan Themis Scanning Transmission Electron Microscope (STEM)

ACMAL STEM

The STEM is Michigan Tech’s newest electron microscope addition that has atomic resolution imaging capabilities. The instrument has the following capabilities and modes: conventional TEM mode, scanning TEM mode, electron energy loss spectroscopy, energy filter TEM, high angle annular dark field, ChemiSTEM, Super-X Energy Dispersive X-Ray, and nanometer scale tomography. 

New remote capabilities include:

  • Zoom screen-share from both the TEM laboratory web camera and instrument control monitors
  • Huskycast (Panopto) recording of lab space, TEM lab camera, and instrument control monitors

Learn more about the STEM: ACMAL – FEI 200kV Titan Themis STEM

Contact Elizabeth Miller (eafraki@mtu.edu) for more information.

FEI Philips XL 40 Environmental Scanning Microscope (ESEM)

ACMAL ESEM

The ESEM can be used to image a wide range of material types at a microscale including hydrated, contaminated, organic, or inorganic samples. This microscope itself has several modes and features that make it a flexible instrument for any research needs: SE/BSE imaging, thin window EDAX EDS, electron backscatter diffraction, high and low vacuum modes, and hot or cold stage options.

New remote capabilities include:

  • New laboratory web camera
  • Zoom screen-share abilities from both the microscope control and AzTEC analysis computers
  • Remote technical assistance with Raritan DKX4-101 KVM-over-IP
  • Remote operation with Raritan DKX4-101 KVM-over-IP

Learn more about the ESEM: ACMAL – FEI Philips XL 40 ESEM

Contact Elizabeth Miller (eafraki@mtu.edu) for more information.

X-Ray Facilities: Scintag XDS2000 Powder Diffractometer and Scintag XDS-2000 PTS

XRD Powder

ACMAL’s X-ray facilities (XRF) has instruments capable of performing x-ray diffraction (XRD) analyses on both powder and solid samples. Sample data such as present phases, lattice parameter, percent crystallinity, and texture analysis can all be found using MTU’s Scintag XDS2000 Powder Diffractometer and Scintag XDS-2000 PTS XRD instruments. These instruments have the following features to expand the types of samples that can be analyzed: zero background sample holder, custom powder sample holders, custom irregular shaped solid holder, custom liquid holder, ICDD-JCPDS database, and Anton-Paar high temperature stage.

New remote capabilities include:

  • New cameras installed in both the instrument lab and sample preparation lab.
  • Huskycast (Panopto) recording for both cameras and lab computer monitors.
  • Zoom sharing available in both labs and computer monitors.

Learn more about X-ray facilities: ACMAL – X-Ray Facilities

Contact Dr. Edward Laitila (ealaitil@mtu.edu) for more information.