Author: Sue Hill

Recent Advances in ACMAL STEM Facility October 22

Pinaki Mukherjee
Pinaki Mukherjee

Materials Science and Engineering Seminar

Dr. Pinaki Mukherjee

Department of Materials Science and Engineering
Michigan Technological University

Abstract: This talk presents an overview of state-of-the-art capabilities of the aberration-corrected scanning transmission electron microscope (ac-STEM) at ACMAL, Michigan Tech. The FEI Titan Themis microscope we have here is one of a kind in the whole nation in terms of capabilities.

 Tuesday, October 22 at 11:00 am to 12:00 pm

 Minerals and Materials Engineering Building (M&M), 610
1400 Townsend Drive, Houghton, MI 49931

FESEM and FIB Used in Area-selective Atomic Layer Deposition Research

Surface Science cover for volume 690 December 2019.
Raman confocal images of Al2O3 make the cover of Surface Science.

Graduate students Mikhail Trought (Chemistry) and Chathura de Alwis (Chemistry), with undergraduate student alumnus Isobel Wentworth (ChemEng), research assistant professor Timothy R. Leftwich (MSE), and assistant professor Kathryn A. Perrine (Chemistry) published a paper titled “Influence of surface etching and oxidation on the morphological growth of Al2O3 by ALD” in Surface Science on August 9, 2019.

https://doi.org/10.1016/j.susc.2019.121479

The authors acknowledge the Applied Chemical & Morphological Analysis Laboratory (ACMAL) at Michigan Technological University for use of instruments and staff assistance, including Director Owen Mills, for training on the FESEM and FIB.

M. Trought and K. Perrine prepared the samples at Michigan Tech and at the Univ. of Minnesota, performed the surface analysis, analyzed all data collected, and wrote the manuscript. T. Leftwich assisted with the XPS data collection and analysis, and reviewing & editing the manuscript. I. Wentworth and C. de Alwis assisted with sample preparation and FTIR analysis. K. Perrine conceptualized the project.

ACMAL Works with Students on SEM Video Solution

Students by the SEMBlue Marble Security, born out of the Michigan Tech Enterprise program, is a virtual company comprised of American and international undergraduate students focused on securing the future through thoughtful use of technology.

The project Paul Sanders proposed to Glen Archer was straightforward enough — make something old new again. Sanders came upon the challenge through a former colleague at Ford Motor Company, James Boileau.

The company’s goal was to replace the CRT monitors with off-the-shelf LED displays, similar to what you would find in most office computers.

The students were given access to Tech’s JEOL 6400. In addition, Owen Mills, senior research engineer and director of the Applied Chemical and Morphological Analysis Laboratory in the Department of Materials Science and Engineering, provided printed schematics, operations and maintenance manuals. The search for a place to tap the video signals required the visual inspection and search of hundreds of pages of printed schematics. Finally Blue Marble found what they were looking for — a low-voltage signal in an early video display protocol pioneered by IBM called monochrome display adapter (MDA).

Read more at Michigan Tech News, by Mark Wilcox.

Award Winning Adhesives Researcher Credits ACMAL Expertise

Micrograph of micropillar array
Adhesive-coated pillars made using a a silicon template provided by Microfabrication Facility Managing Director Chito Kendrick. The morphology was visualized using the ACMAL E-SEM with the help of Lab Supervisor Jerry Anzalone.

The Bhakta Rath Research Award honors a graduate student and faculty mentor for in-depth work with social impact. The 2019 winners are two biomedical engineers with a sticky past.

A smart adhesive doesn’t adhere all the time. In 2015, when Ameya Narkar started his doctoral research with Bruce Lee, associate professor of biomedical engineering at Michigan Technological University, the two turned to biological sources for a glue that could be turned on and off.

Q: How have your methods helped make the project successful?

Ameya Narkar: Our biomedical engineering department is full of approachable experts. It’s a small team and an effective one. I could walk down to a faculty member’s office and ask for advice when our project branched into areas beyond our lab’s expertise. Plus, I was able to work closely with the people in the Applied Chemical and Morphological Analysis Laboratory and the microfabrication facility. Collaboration is essential to successful research.

Read more at Michigan Tech News, by Allison Mills.

S-TEM Tomography Video

Screenshot of particles in a box with 500 nm scale bar
S-TEM Tomography of Li-ion Battery Cathode Particles

Watch the Video

Research by Stephen A. Hackney, Professor, Materials Science and Engineering, Michigan Technological University.

Imaging by Pinaki Mukherjee, Staff, Materials Science and Engineering, Engineer/Scientist, Applied Chemical and Morphological Analysis Laboratory (ACMAL).

Instrument: FEI 200kV Titan Themis S-TEM in ACMAL’s Electron Optics Facility.

Scale bar indicates 500 nm.

There is no audio.

Course in Surface and Interface Science

Surface ArraySurface and Interface Science CH5665/MSE5665

(3 credits)
WF 1-2 p.m., M 1-4 p.m. (lab)

Course Description – covers an advanced study of:

  • surface processes
  • properties of crystalline surfaces
  • surface analysis methods
  • applications towards materials science, heterogeneous catalysis, environmental science, semiconductor and energy industries

Objectives

  • Understand the physical and chemical processes on a surface
  • Distinguish differences between surface science techniques and their respective capabilities
  • Analyze example data from surface science techniques
  • Recognize, review and interpret surface science literature
  • Design an experiment (or project) and choose a surface science technique that would solve a proposed hypothesis

For more information contact:

Dr. Kathryn A. Perrine
kaperrin@mtu.edu

View the Flyer

Surface Analysis Using the XPS

PHI 5800 X-ray Photoelectron Spectrometer
PHI 5800 X-ray Photoelectron Spectrometer

Analyzing the surface of materials takes X-ray vision.

To do so, researchers peer into the surface chemistry of materials using X-ray photoelectron spectroscopy (XPS). At Michigan Technological University, the Applied Chemical and Morphological Analysis Laboratory (ACMAL) delves into surfaces with a PHI 5800 XPS.

Read more at Be Brief: Surface, by Allison Mills.

Timothy Leftwich, research assistant professor of materials science, helps researchers to collect, analyze, and understand their XPS data at the ACMAL facility. Kathryn Perrine, assistant professor of chemistry, helped to bring the XPS instrument to Tech and teaches students and researchers to understand surface processes. They both bring expertise in surface science and analysis of materials.

Gold Quantum Dots Observed with S-TEM

Gold Quantum DotYoke Khin Yap, professor of physics at Michigan Tech, led the study. He explains that the behavior his team observed — atomic-level manipulation of gold quantum dots — can be seen with a scanning transmission electron microscope (STEM). The STEM’s high-powered beam of electrons enables researchers like Yap to watch atomic movement in real-time and the view reveals how gold atoms interact with the surface of boron nitride nanotubes. Basically, the gold atoms glide along the surface of the nanotubes and, they stabilize in a hover just above the hexagon honeycomb of the boron nitride nanotubes.

Read more at Michigan Tech News, by Allison Mills.

Related:

Atomic Zoom: Michigan Tech’s Scanning Transmission Electron Microscope

S-TEM Images for Al-Sc Alloy

S-TEM Al Sc imagesPaul Sanders, Patrick Horvath Endowed Associate Professor of materials science and engineering, and materials science and engineering graduate student Yang Yang, are trying to strengthen aluminum by adding scandium to it.

The aberration-corrected FEI Titan Themis scanning transmission electron microscope (STEM) in Michigan Tech’s Applied Chemical and Morphological Analysis Laboratory, makes an electron beam less than an atom in width. This allows researchers to scan through samples one atom column at a time. Additionally, the lab has a SuperXTM X-ray detector, which is an array of four detectors to collect four times more X-rays than a conventional detector.

Combining the two techniques, researchers can element map at atomic resolution.

Read more at Unscripted, by Kelley Christensen.

Related:

S-TEM Provides Insight to Alloy Behavior