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Abstract

We introduce a novel fetch architecture called Poor Man’s Trace Cache (PMTC).

PMTC constructs taken-path instruction traces via instruction replication in static

code and inserts them after unconditional direct and select conditional direct control

transfer instructions. These traces extend to the end of the cache line. Since available

space for trace insertion may vary by the position of the control transfer instruction

within the line, we refer to these fetch slots as variable delay slots. This approach

ensures traces are fetched along with the control transfer instruction that initiated

the trace. Branch, jump and return instruction semantics as well as the fetch unit

are modified to utilize traces in delay slots. PMTC yields the following benefits:

1. Average fetch bandwidth increases as the front end can fetch across taken con-

trol transfer instructions in a single cycle.

2. The dynamic number of instruction cache lines fetched by the processor is re-

duced as multiple non contiguous basic blocks along a given path are encoun-

tered in one fetch cycle.

3. Replication of a branch instruction along multiple paths provides path separa-

bility for branches, which positively impacts branch prediction accuracy

xix



PMTC mechanism requires minimal modifications to the processor’s fetch unit and

the trace insertion algorithm can easily be implemented within the assembler without

compiler support.

xx



Chapter 1

Introduction

High performance superscalar processors feature wide issue widths. To reap the

benefits of increased issue width and execution resources, the front end must be

able to provide comparable instruction fetch width. As the issue width increases, it

becomes more challenging for the front end to maintain an average fetch width of

correct path instructions near the issue width. For an 8 issue superscalar, an average

fetch width of 4 instructions is typical in integer code. The fetch limitation is due to

the relatively short depth of a basic block in comparison to the issue width. Often the

fetch width is limited by control transfer instructions. When a taken branch or jump

is encountered, the remaining instructions in the fetch buffer are along the wrong path

and not valid for decoding. To increase the average effective fetch width we propose a

novel technique, called Poor Man’s Trace Cache (PMTC), to rescue the wasted fetch
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slots when direct control transfer instructions (DCTI) are encountered. Rescuing the

fetch slots can be done by attaching a variable sized delay slot to a DCTI where the

target is known at compile time. The delay slot extends from the DCTI to the next

cache line boundary. The delay slot can be filled with a trace consisting of a block of

instructions copied from the target. As a result, whenever the DCTI is located before

a cache block boundary, instructions alongside the taken path, including additional

branch instructions can be inserted into these unused fetch slots. In some cases the

trace can be a combination of instructions across several targets, spanning multiple

cache lines. Delay slots can be safely added to every unconditional jump instruction

and selectively applied to statically biased taken branches controlling loops. Hence,

the proposed technique takes advantage of the static taken bias of these instructions.

Instruction fetch is limited by the accuracy of branch prediction resources. Fetched

instructions must be along the correct path or else the processor will incur an addi-

tional penalty to remove the wrong path instructions. Instruction fetch techniques

that seek to increase fetch bandwidth must also seek to improve branch prediction

accuracy to effectively use the increase in bandwidth. Techniques that solely increase

fetch bandwidth simply result in more instructions being discarded by the processor.

PMTC has a unique benefit of occasionally compressing the fetch depth for a chain of

control transfer instructions. Control transfer chain reduction happens when another

control transfer instruction is located within the trace. Chain reduction removes

2



the need to fetch the intermediate target cache line. When the cache line size is

greater than the average basic block size this happens frequently. Copying branches

into multiple traces also provides path separability for those branches which can be

utilized by the branch predictor and branch target buffer (BTB). Some hard to predict

control transfer becomes easy to predict as the path separability is made explicit in

the static program.

PMTC presents a novel way to address the fetch problem since it improves both the

fetch bandwidth and the branch prediction accuracy. The simple assembly modification

algorithm described in Chapter 4 in tandem with very simple micro-architecture mod-

ifications discussed in Chapter 5 provide these benefits. Relevant micro-architecture

background is presented in 2. The following chapters describe the trace insertion

algorithm and its implementation in an 8 issue superscalar. Performance and im-

plications that the static traces have on dynamic program execution are examined

in Chapter 6. Performance is analyzed using integer and floating point benchmarks

from SPEC 06. Earlier dynamic and static techniques dealing with the fetch problem

across taken control transfers are described in Chapter 7.

3





Chapter 2

Background

2.1 Superscalar Micro-Architecture

Fetch
Decode Execute

Instruction Buffers

m n

Figure 2.1: Decoupled Execution Model

Superscalar processor micro-architecture is typically found in state of the art general

purpose applications. Superscalar processors implement a decoupled fetch execute

architecture as shown in Figure 2.1 [58].
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MEMEX
Fetch 1 Fetch 2 Fetch 3

Tage Branch
Predictor BTB

ROB
Branch Queue

LD/ST Queue ST Buffer

Decode Rename Dispatch Central
Window

Instruction Fetch

L1 I-Cache L1 D-Cache

Select
Wakeup EX MEM Write


Back

Retire

Register
Read

Register FileRAS PC

Figure 2.2: Superscalar Processor Pipeline

Instructions are fetched and issued into instruction storage. In a decoupled fashion

instructions are then dispatched from storage to the execution hardware. The term

superscalar typically implies a set of micro-architectural characteristics including in-

order issue, out-of-order execution, speculative execution, wide instruction pipelines

and in-order instruction retirement. Typical superscalar processors employ deeper

pipelines similar to that shown in Figure 2.2. The objective of a superscalar processor

is to maximize exploitable Instruction Level Parallelism (ILP) dynamically.

Typical superscalar processor characteristics are described in more detail in the fol-

lowing sections.

2.1.1 Instruction Fetch

Instructions are fetched in-order from the static program text. The fetch width, which

varies by design, spans multiple instructions. It is typical for the front end to read

two instruction cache lines during the fetch process allowing instruction delivery from

6



a basic block that spans more than one cache line. The fetch process may consist of

multiple pipeline stages.

2.1.2 Control Speculation

Superscalar processors employ control speculation to allow instruction fetch and ex-

ecution to continue while branch outcomes are yet unresolved. Control speculation

hardware is accessed during the fetch process. Control speculation is split into two

components, namely target prediction and outcome prediction. Target prediction is

typically handled by a Branch Target Buffer (BTB). This structure identifies any con-

trol transfer instructions among the fetched instructions. The BTB also distinguishes

between control transfer type including direct or indirect, conditional or uncondi-

tional and if the instruction is a return. The branch predictor is accessed for any

conditional control transfer instructions identified by the BTB and provides the out-

come prediction. When a return is detected by the BTB, the Return Address Stack

(RAS) is popped to obtain the destination address of the return. Figure 2.2 shows

the integration of the branch predictor, RAS and btb with the processor front end.

7



2.1.3 Parallel Decode and Renaming

Superscalar processor architectures employ parallel decoding of the instructions pro-

vided by the fetch unit. The register file is typically larger than what is defined by

the Instruction Set Architecture (ISA). Logical registers are mapped to physical reg-

isters using a reference table. Using this mapping, it is possible for the processor to

dynamically eliminate anti and output dependencies, and expose additional ILP. The

rename stage renames the destination registers by allocating a new physical register

to each instruction and updates source register names based on the current mapping.

Once the fetched instructions have been decoded and renamed, they are dispatched

into an instruction buffer.

2.1.4 Out Of Order Dispatch and Execution

Instructions are dispatched from the instruction buffer when their input operands

become available. Operands become available once producing instructions complete

and the register file is updated with the result or their result is available on a bypass

and forwarding network. In this fashion, instructions may be executed out of pro-

gram order. Superscalar processors feature multiple execution pipelines for parallel

execution of independent instructions. Execution units of various types are present.

8



There may be dedicated integer, floating point and memory address execution units.

2.1.5 Memory Speculation

Load instructions may be issued early, before prior store addresses have been deter-

mined, in order to dynamically shorten the load latency. To achieve this, superscalar

processors typically employ some form of speculative disambiguation via an algorithm

similar to store sets [10]. Using this algorithm loads are issued speculatively until con-

flicts with prior stores arise. Once a conflict arises, it is recorded within a store set to

prevent future conflicts. Loads wait for all stores in their store set to complete before

executing. When a memory order violation is detected, miss-speculation recovery is

triggered similar to a control miss-speculation.

2.1.6 Preserving Sequential Consistency

When a miss-speculation occurs, the processor must recover the last valid in-order

state to preserve sequential consistency and support precise exceptions. Superscalar

processors typically utilize additional structures to assist in recovery. The Reorder

Buffer (ROB) maintains information about every instruction in program order. When

a miss-speculation occurs, older instructions in the ROB may be retired safely. Once

9



retirement reaches the miss-speculated instruction the correct in-order state has been

established. Instructions following the miss-speculation must be re-executed or dis-

carded. An alternative to reorder buffer based design is to use checkpointing [21].

Memory contents must also preserve the in-order state to support precise exceptions.

Speculative loads do not change the contents of memory. Speculative stores would

change memory contents and break the sequential consistency. In order to prevent

this, superscalar processors buffer store instruction payloads in a Store Buffer (SB)

until the store instruction is at the head of the ROB, known to be non-speculative

and ready to retire. Once the store retires, the data payload may leave the SB and

be written to memory as it is now part of the in-order state.

2.2 Branch Prediction Mechanisms

Increasing pipeline depth negatively impacts performance in the presence of control

transfer. Branch outcome and target address are required to direct the fetch unit

without interrupting the instruction stream. However, as the pipeline depth increases,

the latency for recognizing a branch, resolving the outcome and computing the target

also increases.

Three pieces of information are required in order to correctly handle transfer of control

10



within the instruction stream: whether an instruction is a control transfer instruction

and its type, outcome for conditional transfer and target address.

There are a number of ways control transfer can be handled.

1. The processor can do nothing until the target and outcome are known by stalling

when a branch is detected. Stalling will insert a bubble, or useless instructions,

into the instruction stream but it will not trigger recovery.

2. Branch target address and outcome can be speculatively predicted. This will

not alter the instruction stream but will trigger recovery and pay a subsequent

penalty if the prediction is incorrect.

3. Statically remove or reduce the number of branches in the program text. This

can be accomplished through predication of control dependent instructions,

block structured ISA or by combining basic blocks into super blocks to reduce

the total number of branches [35].

4. Multi-path execution. The processor can fetch and execute instructions along

both paths of the branch, assuming the target is known, and discard the in-

correct path instructions once the branch outcome becomes known. This ap-

proach requires branches and their targets to be identified by the front end

and adds complexity managing multiple instruction streams from different ad-

dresses. This approach is not always applicable nor optimal.
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5. Switch to another thread. If the processor has multi-threading support, it can

switch to a dormant thread to prevent wasted processor time. This approach

does not hide the latency of the branch resolution with respect to the original

thread but it removes the need for speculation or recovery.

Branch prediction mechanisms seek to exploit repeated behaviour. Means of pattern

recognition vary by predictor implementation but typically exploit the following:

1. Static bias. Some conditional branches frequently produce the same outcome

regardless of how this branch was reached.

2. Local history. Some conditional branch outcomes are repetitive with respect to

prior outcomes of this branch.

3. Global history. Some conditional branch outcomes may be correlated to prior

outcomes of some or all control transfer instructions preceding this branch.

4. Data correlation. Similar to correlation with prior branch outcomes, some con-

ditional branch outcomes can be correlated with a piece of data like a load or

register value.
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2.2.1 Branch Detection and Target Prediction

Branch detection and target prediction are typically handled and predicted separately

from branch outcome. The typical method of target prediction utilizes a Branch

Target Address Cache (BTAC) also known as a Branch Target Buffer (BTB) [30] [45]

[66].

Instruction

Address

Target 

Address Type

(a) Branch Target Buffer

Continuation

Address

Return

Address

push pop

(b) Return Address Stack

Figure 2.3: Branch Target Predictors

The BTB is a small cache dedicated to associating branch instruction addresses with

target addresses. Figure 2.3a shows the general organization of a BTB. BTB entries

may be extended to contain additional information about a branch such as its type.

In practice the BTB is implemented in an n-way interleaved organization to allow par-

allel access of n entries. The interleaving width n typically matches the fetch width

of the processor such that the BTB can be accessed for every instruction fetched in

a given cycle. The BTB relies only on the instruction addresses and can be accessed

as soon as the instruction addresses are known. While the BTB can handle returns,
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a separate structure is typically employed to increase performance. The Return Ad-

dress Stack (RAS) as shown in Figure 2.3b is responsible for predicting the target

address when a return is detected [28]. The RAS is a first-in-last-out stack structure.

Continuation addresses are pushed onto the stack whenever a call is executed. When

executing a return, the target address can be obtained by popping the head element

of the stack. The stack organization is effective due to the ordered nature of return

targets. Stack depth is typically determined by the maximum call depth.

2.2.2 Predicting Branch Outcomes

Taxonomies of branch prediction mechanisms typically organize predictors based on

how they are implemented to exploit pattern repetition. In this work we take a

simpler approach to classify prediction mechanisms based on what data is used as

input.

branch prediction

static dynamic

program

text

profiled

execution

instruction

address (PC)

local 

history

global

history

data values

(registers)

prior

history

Figure 2.4: Branch Predictor Input Taxonomy
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Figure 2.4 shows a taxonomy of inputs used by most branch predictors. The taxon-

omy is split at the top level between static and dynamic inputs. Static inputs are

available at compile time where as dynamic inputs become available as the program is

executing. Static mechanisms can exploit static analysis of the program text, or ad-

ditionally use recorded outputs from profiled execution, at compile time to annotate

or modify the program text with suggestions of expected branch outcomes. Dynamic

inputs may include the instruction address, or Program Counter (PC), data values

currently held within architectural registers, and a history of prior outcomes. Prior

history can be further divided depending on whether the history only considers the

current branch or extends to cover the outcomes of all prior control transfer.

Dynamic prediction mechanisms may utilize a combination of inputs spanning mul-

tiple leaves within the dynamic side of the taxonomy. Combination of inputs may

be used together to exploit correlation or instead used independently in parallel to

provide multiple outcomes that the predictor may select between. Dynamic predictor

implementations vary drastically across the corpus of branch prediction works. Fig-

ure 2.5 shows an oversimplified implementation of three select predictors to illustrate

classification within the taxonomy proposed in Figure 2.4.

Figure 2.5a shows the organization of the Two-Level Adaptive Branch Prediction

Using a Global History Register and a Global Pattern History Table (GAg) [72]. GAg

implements a global history register and pattern history table. The contents of the
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history register, updated with the outcome of each branch, are used to directly index

the pattern history table and provide a prediction. With respect to the taxonomy,

GAg uses only the global history dynamic input.

Figure 2.5b shows the organization of the Global History with Index Sharing predictor

(GSHARE) [34]. GSHARE is similar to GAg in that it uses the global history and a

shared pattern history table. GSHARE deviates from GAg in the indexing method.

Rather than directly indexing the shared pattern history table using the contents

of the global history register, GSHARE uses a hashed index generated by taking

the bit-wise exclusive-or of the global history with the branch’s instruction address.

Hashing the instruction address with the global history allows a single branch to

occupy different pattern history table indices depending on the prior branch outcomes

similar to GAg, but tries to better capture and exploit the effect of correlation by

including the instruction address. Relative to the input taxonomy, GSHARE uses

both the instruction address and global history dynamic inputs.

Figure 2.5c shows the organization of the Partially Tagged Geometric History Length

Branch Predictor (TAGE) [64] [60] [61]. TAGE accesses multiple predictor tables in

parallel using different history lengths which form a geometric series. TAGE then

uses a selection mechanism to select which table output to use as the final prediction.

Pattern history table entries are tagged to ensure the indexed entry corresponds with

the branch being predicted to increase confidence and avoid aliasing to a prediction
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Figure 2.5: Branch Predictor Implementations

that does not match the current branch. With regard to the input taxonomy, TAGE

uses the dynamic inputs instruction address and global history, where the history is

subdivided into multiple components. TAGE is regarded as state of the art in single

branch prediction.

Work has explored augmenting branch prediction with additional techniques targeting

hard to predict low confidence branches using branch prediction inversion [33] and

reversal via data correlation [1].
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2.2.3 Multiple Prediction

Superscalar processor front end designs such as the Trace Cache (TC), described

in Section 2.3, require multiple branches to be predicted at once. In some cases it

is possible to extend the single branch prediction mechanisms described in Section

2.2.2 to provide multiple predictions via structural replication or adding additional

ports. In general multiple branch prediction mechanisms are organized and updated

differently.

Global History Register

k
Pattern

History

Table















Primary 

Prediction

Secondary

Prediction

k-1

k

Figure 2.6: Multiple Branch Predictor

Figure 2.6 shows the multiple branch predictor proposed in [71]. In this design the

full k bits of the global history are used to index the primary prediction. k-1 bits

of the history register are used as the most significant bits to index two entries in

the pattern history table. The primary prediction is used as the least significant bit

of the secondary indexing and drives a multiplexer (MUX) to select the final value

of the secondary prediction. This effectively adjusts the branch history to assume

the primary prediction was already contained in the history register. The multiple
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prediction mechanism shown can be extended further to any number of branches at

the cost of accuracy and delay, and alternative designs may utilize multiple predictions

stored within a single pattern history table index. In general, multiple predictors can

not achieve the same accuracy as single predictor implementations.

2.2.4 Path Prediction

Sections 2.2.2 and 2.2.3 illustrated prediction mechanisms that utilize a branch his-

tory. These mechanisms use pattern history, the history of prior branch outcomes.

Path based history, or of the sequence of previous basic-block addresses, can be used

in place of pattern history [37] [24] [22]. Path based history encodes more informa-

tion than outcomes alone can provide. It is possible for two distinct paths to produce

perceived identical pattern history. While the pattern history is not truly identical,

the limitation on the size of the history register prevents the predictor from being

able to distinguish between them resulting in undesirable aliasing. Using path based

history instead allows for differentiation between distinct paths regardless of prior

branch outcomes.

Figure 2.7 shows the difference between pattern and path based history register con-

tents [37]. The path based history register stores a subset of bits taken from the
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Figure 2.7: Branch History Implementations

branch target address. Each insertion to the history shifts the current contents for-

ward and appends the bits from the current target address. When read, the contents

of the path history register can be logically divided into adjacent components where

each component is a subset of bits from target addresses along the path up to the

current point. Contents of the path history register can be used for indexing and

hashing in the same fashion that pattern history would be used.

2.3 Dynamic Trace Caching

Static instruction ordering prevents continuous delivery of instructions by the pro-

cessor’s front end. The Trace Cache (TC) was designed to address this problem by

adding a supplementary instruction cache that stores instructions in the dynamic
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order rather than static order [58]. Traces consist of instructions spanning multi-

ple basic blocks. By fetching traces from the TC rather than instructions from the

instruction cache, the front end is able to deliver instructions from non-contiguous

regions in the same cycle.

Trace Cache Core Fetch Unit

Instruction 

Cache

BTBRAS

Branch
Predictor BTB logic

mask/interchange/shift
next fetch

address

Instruction Latch

to Decoder

merge logic

fill 

control

Line Fill Buffer

tag

branch flags

branch m
ask

 fall-through address

target address

hit logic

fetch 

address

Figure 2.8: Trace Cache Front End

Figure 2.8 shows the organization of the TC and its inclusion with the processor

front end [58]. The TC stores instructions that make up the trace as well as some

additional information needed to utilize the trace. Branch outcomes corresponding

to the trace are kept as well as the target and fall through addresses succeeding the

trace. The fetch address is provided to the conventional fetch unit in tandem with the

TC. In a given cycle, instructions may be issued exclusively, from either the TC or the

conventional fetch unit using the i-cache. A hit in the TC will cause selection logic to
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direct the output of the trace cache to the instruction latch. Otherwise instructions

will be latched from the conventional fetch unit. As the dynamic instruction sequence

becomes known, it is directed to the fill logic which is responsible for constructing

new traces within the TC.

The trace cache can maintain high fetch bandwidth when a high TC hit rate is

achieved. The trade off is increased hardware complexity dedicated to trace cache

fill, hit and selection logic as well as increased storage cost since the TC storage is

separate from the instruction cache. In practice TC hit rates are far lower than i-cache

hit rates. The following sections briefly introduce design criteria that can significantly

impact trace cache performance.

2.3.1 Trace Issue

Trace cache hit detection consists of two components.

1. The fetch address must match the beginning address of the trace.

2. All branch outcomes corresponding to the trace must match the predicted

branch outcomes.

Matching the fetch address is handled by tag comparison similar to how the instruc-

tion cache operates. Matching branch outcomes to predictions deviates from the
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conventional fetch unit. Use of a trace cache requires a multiple branch predictor, as

discussed in Section 2.2.3, since all branch outcomes must be known simultaneously.

TC hit rates are thus related to branch prediction accuracy.

Trace cache implementations may use either atomic or partial trace issue policies.

Atomic policies issue the trace in its entirety or not at all. Therefore, all branch

outcomes must match the predictor output to produce a trace hit. Partial trace issue

allows a prefix of the trace up to the entire trace to be issued. Partial issue policies

allow issue of instructions across correct branch outcomes until the first mismatched

branch outcome. Partial issue policies seek to increase hit rate.

2.3.2 Trace Construction

Trace construction consists of buffering instructions issued by the fetch unit along with

any branch outcomes and targets until the trace length or max number of branches

permitted in a single trace is reached. Once the trace has been constructed, it is

written into the trace cache. Instruction sourcing for trace construction can take

place at two different points of the pipeline.

1. Speculative trace construction sources instructions as they are issued from the

processor front end, where instructions themselves may be speculative.
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2. Non-speculative trace construction sources instructions from the retirement

stage of the pipeline once instructions are known to be non-speculative.

Speculative trace construction reduces the latency associated with populating the

trace cache but may trigger additional and potentially harmful evictions as a greater

number of traces are written across the execution of the program.

2.3.3 Retirement and Recovery

Trace retirement occurs once all branches within the trace are resolved and the trace

instructions reach the head of the ROB. Retirement and recovery can be handled by

two different policies.

1. Atomic trace retirement requires all contents of the trace to be along the correct

path. Either all instructions from the trace are retired or all are discarded.

Recovery takes place at the starting instruction address of the trace.

2. Partial trace retirement allows a prefix up to the entire trace to be retired. In

this policy instructions across correctly predicted branches are retired and those

beyond any miss-speculated branches are discarded. In order to recover, branch

targets must be kept for all intermediate branches within the trace. Recovery

takes place at the correct target of the first miss-speculated branch. Partial
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trace retirement prevents redundant execution of correct path instructions.

2.4 Static Trace Caching

The trace cache is a hardware approach to delivering instructions in dynamic exe-

cution order without modifying the static program text. Modifying static program

text provides an alternative way to construct and execute traces. The Software Trace

Cache (STC) is a profile based code reordering technique that modifies the program

text to better reflect the dynamic execution order of instructions [52]. Sequentially

executed basic blocks are mapped to physically contiguous locations in memory to

make the program more amenable to the natural sequential fetching of the fetch unit.

STC can however negatively interact with branch prediction mechanisms. As dynam-

ically executed blocks are placed in contiguous locations, branch outcomes become

biased towards not-taken. Biasing branch outcomes has a negative effect on branch

history contents exploited by many predictors. Branch history when using STC is

primarily composed of 0 bits and begins to saturate thus preventing optimal use and

distribution of entries within pattern history tables.
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2.5 Memory System

Memory Systems for modern processor are designed to balance cost and performance

using a hierarchical design as shown in Figure 2.9a [18]. Memory components closer

to the processor are typically small and fast. As distance from the processor increases

so does size and access latency. The fastest component of the memory hierarchy is

the register file, followed by one or several levels of on-chip cache. Each level of the

hierarchy is designed to exploit both spatial and temporal locality to provide high hit

rates. Temporal locality is exploited by keeping recently used data at higher levels of

the hierarchy. Spatial locality is exploited by moving data in larger blocks between

levels of the hierarchy such that subsequent accesses to contiguous data will hit in a

higher level of the memory.

Basic means of exploiting locality do not cover irregular or sparse workloads effec-

tively. In such cases, inclusion of a pre-fetch mechanism can increase performance by

adding a means to learn the access patterns during execution for later exploitation

[36]. Figure 2.9b illustrates the basic organization of the Stream Buffer Pre-Fetch

mechanism used to exploit sequential fetch [26] [42]. On a cache miss stream buffers

begin pre-fetching and storing contiguous cache lines beginning at the target. Lines

following the requested target are placed in the buffers rather than the cache itself.

As lines are fetched by the processor, they are moved into the cache and stream buffer
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indexing is adjusted. This mechanism can help hide the latency of cache misses for

sequential instruction delivery. Alternative pre-fetch designs buffer or cache non-

contiguous lines spanning multiple basic blocks using history of previous control flow

and path information.

Figure 2.9c shows a simplified model of memory system integration with the processor.

Both the front end and back end of the processor need simultaneous access to the

cache. The front end needs to fetch instructions in order to supply the back end with

operations to execute. The back end needs to access the cache for loading and storing

values used as input operands for execution. The level one (L1) cache is typically split

into separate instruction cache and data cache components to exploit the exclusivity

and independence of instruction fetch and data access. Memory levels beyond the

L1, or nearest, cache are unified.

2.6 Program Representations

Program representations define how a program is represented and determine what

information is associated with the program. Different representations may be used

when compiling and optimizing code, and for directly executing code. Figure 2.10

shows a simplified code generation process which uses separate representations for

optimization and execution. The following subsections describe relevant intermediate
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representations used for compiler optimization.
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Figure 2.10: Code Transformation Process

2.6.1 Control Flow Graph

Instructions from a program can be grouped into basic blocks; regions of code depen-

dent on the same sequence of control. A control flow graph(CFG) is a representation

composed of a directed graph with basic blocks as nodes within the graph. CFGs

utilize two special nodes to denote the entry and exit points of the program. Edges

between nodes in the CFG represent control transfer within the original program.

Nodes for basic blocks that end in a branch have two outgoing edges, one to the fall

through target and another to the branch target. Nodes for basic blocks that end in

a jump have a single outgoing edge to the jump target. Nodes for blocks that fall

through into the next block without a control transfer instruction have a single outgo-

ing edge to the fall through block. Blocks with multiple successors represent branch

nodes and blocks with multiple predecessors represent join nodes. Data dependencies

are represented separately.
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Chapter 3

Characterizing the Fetch Problem

3.1 Front End Architecture

Figure 3.1 shows a simplified but characteristic model of fetch unit design for super-

scalar processors based on the interleaved sequential fetch unit presented in [11]. The

fetch unit incorporates the instruction cache, branch target buffer, return address

stack, branch predictor and interchange logic. The fetch unit shown uses a fetch

width capable of delivering up to eight instructions. The fetched instructions are

buffered at output to be sent to the decoder. Instruction cache line size is configured

for eight instructions per line. The instruction cache is 2-way interleaved to support

full fetch utilization across contiguous cache line boundaries. If a fetch target lands in
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Figure 3.1: Interleaved Sequential Fetch Unit

the middle of a cache line, as shown, instructions can be considered from the second

cache line to provide the full fetch width. The interchange, shift and mask logic is

responsible for rearranging instructions from cache lines as required and routing the

ordered instructions to the output buffer. The branch target buffer is 8-way inter-

leaved to support accesses for all instructions covered within the fetch width. The

BTB provides branch detection and target information for control transfer instruc-

tions within the fetch block. Branch detection information, as well as return target

provided by the RAS and branch outcome(s) provided by the branch predictor are
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used to drive the BTB logic. BTB logic logic outputs include the next fetch address

and valid instruction information needed for correct interchange, shift and masking

of fetched instructions.

Interleaved sequential fetch unit design is characteristic of the functionality present

within contemporary control flow processors. Fetch width, instruction cache line size,

branch predictor throughput and structure interleaving factor vary between imple-

mentation. It is possible to extend the branch predictor to provide predictions for

multiple branches within a fetch block. Accesses to the fetch unit and its components

can be pipelined or single cycle. Shift and interchange logic can be extended to mask

off not taken regions for taken branch targets within the same cache line(s). The

instruction cache can be supplemented with a dynamic trace cache or loop cache to

supersede instruction delivery in select regions of the program.

3.2 The Fetch Problem

Inability of superscalar processors to fetch the optimal number of instructions is a

direct consequence of the need to fetch multiple instructions from a single starting

address. A single starting address implies sequential ordering of instructions. On the

other hand, branch and jump instructions frequently disrupt this contiguous access

pattern, rendering a number of instructions fetched from contiguous locations useless.
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The starting fetch address as well as the position of a taken branch in the instruction

sequence have a profound impact on the fetch efficiency.
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Figure 3.2: Instruction Fetch Example

Figure 3.2a shows a small program where i4 is a taken control transfer instruction.

Also shown is the fetch buffer for a processor front end capable of fetching and issuing

4 instructions per cycle. When the fetch address is L0, the fetch buffer is filled with

four instructions i1, i2, i3 and i4. Since there are no instructions following the taken

control transfer, all four of the instructions in the fetch buffer are valid for issue as

shown in Figure 3.2b. However, if the fetch target was L1 as shown in Figure 3.2c,

the instructions after the control transfer are not valid for issuing as instructions i5

and i6 are along the not taken path. Figure 3.2d shows the fetch buffer contents for

the ideal case of fetching four instructions.

Full fetch buffer utilization cannot be achieved in a single fetch cycle given the pro-

gram shown in Figure 3.2a. To achieve full fetch buffer utilization in the presence
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of taken control transfer instructions, the program must be restructured to place in-

structions along the taken path in contiguous locations following i4, or represented

in a way that removes the effect of control transfer on instruction sequencing and

validity.

Several dynamic and static techniques have been developed to address the fetch prob-

lem across taken control transfer. These techniques are described in Chapter 2.

3.3 Fetch Problem Components

The fetch problem can be decomposed into several key components.

3.3.1 Instruction Sequencing

Modern superscalar processors primarily use in-order fetch mechanisms. This works

well when the dynamic instruction sequence matches the static instruction sequence,

however, a problem is introduced when the dynamic sequence deviates from the static

order. When the sequencing does not match, the processor must transfer control

to another instruction address to continue constructing the dynamic instruction se-

quence. This problem is two fold as the processor must also omit or discard any

instructions between the point of control transfer and the destination. Transferring
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control and omitting instructions not present in the dynamic sequence add latency

to filling the back end with useful instructions. This latency is quite significant when

control transfer is conditional and the condition is not yet resolved.

3.3.2 Control Speculation

To reduce conditional control transfer latency, superscalar processors implement

branch prediction as a means to predict the outcome of conditional control transfer

before the outcome is computed. Although control speculation shortens the latency it

introduces another problem that effects fetch performance, the need to recover from

a miss-speculation. Recovery includes redirecting the front end to the correct target

as well as differentiating between correct and incorrect path instructions in the back

end of the processor. The incorrect instructions must be removed without effecting

the in order state of the program. During this time the front end is typically stalled

and does not begin issuing instructions from the corrected target until recovery is

complete. Although there are varied recovery mechanisms, all suffer some penalty

when removing incorrect instructions as well as causing a bubble in the correct path

instruction delivery. When branch prediction is employed, high accuracy is critical to

maintain performance. Fetching more instructions is only useful when they are along

the correct path.
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Maintaining high control speculation accuracy is dependent not only on making cor-

rect predictions, but also recognizing control transfer instructions in the instruction

stream. Processors that utilize branch prediction typically implement separate struc-

tures for identifying control transfer instructions and for making the predictions.

Thus there are multiple physical structures involved and performance is reliant upon

correct outcomes from each.

3.3.3 Cache Residency and Latency

Aside from the performance factors introduced by sequencing and control transfer,

latency associated with retrieving an instruction from memory impacts performance.

Cache residency and the latency associated with moving instructions from each level

of the memory hierarchy interact with the aforementioned factors as well. Fetching

an instruction sooner may mean executing and resolving branch outcomes sooner as

well.

3.3.4 Fetch Width and Fetch Buffer Utilization

High performance superscalar processors feature wide issue widths. To reap the

benefits of increased issue width and execution resources, the front end must be
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able to provide comparable instruction fetch width. As the issue width increases, it

becomes more challenging for the front end to maintain an average fetch width near

the issue width. For an 8 issue superscalar, an average fetch width of 4 instructions

is typical in integer code. The fetch limitation is due to the relatively short depth

of a basic block in comparison to the issue width. Often the fetch width is limited

by control transfer instructions. When a taken branch or jump is encountered, the

remaining instructions in the fetch buffer are along the wrong path and not valid for

issue. In cases where there are still correct path instructions present following the

control transfer, these instructions are not typically fetched in the same cycle. When

there are more branches present than the processor has means to predict, the front

end must stall. Thus part of the front end resources are regularly unused resulting in

lower effective fetch width, or fetch buffer utilization.

3.3.5 Negative Interaction with Memory Speculation

Speculative instructions are not permitted to change the in-order state of the proces-

sor. They can however impact the data cache contents. As loads are issued specu-

latively, they may trigger cache misses and line fills to the data cache. If the load is

discarded as part of miss-speculation recovery, no effort is spent to restore the data

cache state. Thus it is possible that a useful line was evicted for a line that is not

guaranteed to be needed. Performance impacts of data cache pollution are lesser than
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the aforementioned components of the fetch problem, but it must be stated that it is

possible for front end speculation to have negative interactions with other components

of the processor depending on organization.
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Chapter 4

Poor Man’s Trace Cache

4.1 PMTC and the Fetch Problem

Considering the fetch example for the program presented in Figure 3.2, full fetch

buffer utilization cannot be achieved in a single fetch cycle by conventional means.

To achieve full fetch buffer utilization in the presence of taken control transfer instruc-

tions, the program must be restructured to place instructions along the taken path in

contiguous locations following i4. This is statically feasible when the control-transfer

instruction is either a jump, or a branch that is heavily biased towards taken.

In order to see how a trace containing replicated instructions from the taken path

is placed inline with the control transfer instruction, consider Figure 4.1. The cache
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line boundaries are shown with horizontal divisions in the program. When the fetch

target is L1, instructions i7 and i8 are fetched from contiguous locations following

i4. The target is dynamically adjusted such that the next fetch cycle begins fetching

instructions from L2 ’. We now elaborate on the delay slot characteristics, delay slot

and trace insertion algorithm and the relevant changes to instruction semantics.

Cache
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Figure 4.1: PMTC Fetch Example

4.2 Delay Slot Characteristics

PMTC delay slots have the following characteristics:

1. Delay slots may optionally be applied to or omitted from any DCTI.

2. Instructions used to populate delay slots are copied from the blocks reachable
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from the target.

3. Delay slot size is determined by the position of the DCTI within an L1 instruc-

tion cache line and the size of the line since the slot ends at the cache line

boundary.

4. Any type of instruction, including control transfer instructions, can be placed

within a delay slot.

5. All instructions from a delay slot are valid for fetching when the DCTI is taken.

6. The DCTI target is dynamically adjusted retroactively to prevent fetching any

instructions previously fetched from the delay slot.

The behavior of select control transfer instructions is modified such that when these

instructions are encountered, the processor takes note of the target but delays the

control transfer until it has fetched as many instructions remaining between the DCTI

and the next cache line boundary as possible. The micro-architecture mechanism

which adjusts the fetch target and invalidates any instructions previously fetched

from the delay slot as necessary is described in Chapter 5. Note that, the behavior

of other control transfer instructions is unmodified.
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4.3 Traces in Delay Slots

PMTC’s trace construction relies on instruction replication. The replicated instruc-

tion traces are stored in the I-cache distributed throughout the original program.

Placing traces in the same cache line as the DCTI guarantees that traces held within

delay slots are fetched in their entirety with the control transfer instruction. During

trace insertion, the code is modified to push the instructions following the DCTI to

the next cache line boundary to open-up the delay slot. A trace of instructions start-

ing with the DCTI target can then be copied into the created slot. PMTC traces may

include copied control transfer instructions. If a DCTI is copied, instructions from

the copied DCTI’s target may also be copied into the trace.

4.4 Identifying Candidates

Every direct control transfer instruction is a valid candidate for trace insertion. How-

ever, not every DCTI should receive a delay slot. DCTIs should only receive a delay

slot if there is an assumed static taken bias and the delay slot would yield one of the

following benefits:

1. When a loop body is smaller than the cache line size and all instructions between
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the target and candidate DCTI fit in the delay slot, the entire loop body is

replicated in the trace. Replicating the loop body produces a static unroll

of the loop, but more importantly it doubles the effective fetch width while

iterating over the loop.

2. Every instruction from the target to the cache line boundary beyond the target

fits inside the delay slot. Better cache alignment across fetch cycles is achieved

as a result.

3. The target contains any control transfer instruction that would be copied into

the delay slot. Copying a control transfer instruction results in fetching the

control transfer instruction a cycle early. Additionally, the intermediate fetch

target may be eliminated entirely. If the copied instruction is either a taken

branch or a jump then the next fetch address will be the target of the copied

control transfer instruction rather than the instruction’s actual location.

Ideally every jump and loop back edge branch will be treated as a candidate for trace

insertion. Since our insertion algorithm is implemented in the assembler without

compiler support, complete loop information is not available. Therefore, we consider

all backwards branches as trace insertion candidates instead. Traces are also inserted

following all unconditional jumps.

Figure 4.2 shows a block of code taken from 400.perlbench after undergoing slot
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.
CLB

ori
jal L1
lbu
addu
addiu
sb
ori
sh
. . .

L1:   slti

addu
bne
xor
andi
subu
bne
. . .




ori
jal L1
--
--
--
--
--
--



lbu
addu
addiu
sb
ori
sh
. . .

L1:   slti

addu
bne
xor
andi
subu
bne
. . .

ori
jal L1
slti
addu
bne
xor
andi
subu




lbu
addu
addiu
sb
ori
sh
. . .

L1:   slti

addu
bne
xor
andi
subu
bne
. . .

Figure 4.2: Populating the Delay Slot

insertion and population following a jump instruction. The code on the left shows

the original sequence of instructions. The center column shows the adjusted code

after the delay slot is inserted. Immediately after insertion the delay slot is empty.

The code on the right shows the modified sequence of instructions after instructions

have been copied into the delay slot from the target.
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4.5 Addressing

Micro-architecture support for PMTC requires distinguishing between the instruction

addresses of copied instructions and the addresses of instructions that they are a copy

of so that proper address adjustments can be made, and precise exceptions can be

maintained. We define an instruction’s actual address to be its address within the

program image. An instruction’s logical address is the actual address of the original

instruction of which the instruction in the delay slot is a copy of. For instructions

not in a delay slot, the actual and logical addresses are the same.

4.6 Semantic Changes

Since traces can be selectively applied to branches, we extend the MIPS instruction

set with dedicated delayed-branch instructions. There are four delayed branch in-

structions added: bned, beqd, blezd and bgtzd. These branches function identical to

their original counterparts except that the instructions following the branch to the

next cache line boundary make up the delay slot. It is assumed that the front end can

invalidate instructions already fetched from the delay slot if they reside at the target

in the next cycle. Although instructions are replicated, they are only delivered to the

processor back end once. Fall through blocks for delayed branches now begin at the
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next cache line boundary. Therefore, when a delayed branch is predicted to be not

taken, the next fetch target is the following cache line boundary. Not taken behavior

for a delayed branch requires the processor to jump over or mask off the delay slot

and fetch subsequent instructions starting at the next cache line boundary.

For any branches in a delay slot branch, targets are not modified. Instead, it is

assumed that the front end is aware of every instruction’s logical address. Targets

remain relative to their logical PC. Branch targets, and BTB entries, are computed

as the logical address plus the branch offset.

Since all direct jumps are accompanied by a trace, jump and jump and link semantics

are modified to fetch instructions following the jump to the next cache line boundary.

For jump and link, the return address is always the next cache line boundary beyond

the logical address of the jump.

4.7 Control Transfer Chain Reduction

The ability to copy instructions from nested targets into contiguous addresses provides

significant benefits. When instructions from multiple non contiguous targets are

copied into the delay slot, the front end is able to avoid fetching intermediate cache

lines between the first control transfer instruction and the final target.
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Control transfer chain reduction takes place when basic blocks fit entirely within a

delay slot. Dynamic execution of the modified code results in fewer overall cache lines

being fetched versus the original program. Figure 4.3 shows a block of code taken

from 400.perlbench.

CLB


CLB


CLB


bne

j L1

lw

addu

lw

lw

addiu

jr

. . .


L1:       addu
jal L2

j

. . .


L2:       addiu

sw

sw

addu

beq

lui

bne
j L1
- -
- -
- -
- -
- -
- -

lw
addu
lw
lw
addiu
jr
. . .

L1:       addu
jal L2
- -
- -
- -
- -
- -
- -

j
. . . 

L2:       addiu
sw
sw
addu
beq
lui

bne
j L1
addu
jal L2
addiu
sw
sw
addu

lw
addu
lw
lw
addiu
jr
. . .

L1:       addu
jal L2
addiu
sw
sw
addu
beq
lui

j
. . . 

L2:       addiu
sw
sw
addu
beq
lui

Figure 4.3: Trace Construction Across Multiple Basic Blocks

The placement of three non-contiguous basic blocks along a taken path within a single

cache line yields a delay slot which includes instructions across multiple basic blocks

forming a continuous trace. In the figure, the left column shows the original code,
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the center column shows the spacing added for the delay slots and the right column

shows the modified code with populated delay slots. Horizontal lines mark the cache

line boundaries. Basic blocks of interest have been annotated. The modified program

removes the need to fetch the intermediate block and instead directly fetches the

remaining instructions beyond L2 from the third basic block of the control flow chain

in the next cycle.

4.8 PMTC Assembler

No compiler support is needed to insert delay slots and construct PMTC traces.

All code modifications are performed by the assembler. The assembler is ignorant

of any loop information. A simple backwards branch heuristic was implemented to

approximate branches that may be controlling loop iteration. All unconditional direct

jumps trigger delay slot insertion. Backward branches are considered as candidates.

Algorithm 3 shows the function used to determine if a candidate should precede a

delay slot. Branches determined to be prime candidates trigger delay slot insertion

and are marked as a delayed branch by updating their opcode.

The assembler used for PMTC is modified to insert empty delay slots during the
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Algorithm 1: PMTC Assembler Pass 2 Modifications: Delay Slot Insertion

Result: Insert space for a delay slot after select DCTIs
1 DO: pad text segment start to cache line boundary with no-ops;
2 i =text begin;
3 while i != text end do
4 if instruction stack[i] is a direct jump then
5 while i mod cache line size ¿ 0 do
6 insertNo-op(i, instruction stack);
7 i++;

8 else if (instruction stack[i] is a backwards branch) &&
(primeCandidate(i) == true) then

9 setDelayedOpcode(instruction stack[i]);
10 while i mod cache line size ¿ 0 do
11 insertNo-op(i, instruction stack);
12 i++;

13 else
14 i++;

Algorithm 2: PMTC Assembler Pass 3 Modifications: Delay Slot Popula-
tion
Result: Copy instructions from targets into the delay slots

1 i =text begin;
2 while i != text end do
3 if instruction stack[i] is a delayed branch or direct jump then
4 target = instruction stack[i].target;
5 i++;
6 while (i mod CLS) ¿ 0 do
7 instruction stack[i++] = instruction stack[target++];

second pass once backwards branch targets are known. Algorithm 1 shows the modi-

fications to the second assembler pass that inserts the delay slot. The second assem-

bler pass walks over the instruction stack and emits no-ops to push the subsequent

instructions to the following cache line boundary for select DCTIs.

Delay slots are populated on the third pass of the assembler. Algorithm 2 shows the

necessary modifications. Whenever an unconditional jump or a branch that has been
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converted to a delayed branch is encountered, instructions are copied from the target

into the delay slot up to the following cache line boundary.

Algorithm 3: primeCandidate(index i)

Result: Determine if this br should be converted to a delayed br
1 CLS = cache sub block size;
2 j = instruction stack[i].target;
3 if (i - j) ¡ (CLS - ((i + 1) mod CLS )) then
4 return true; //Loop unroll in DS. Double fetch width
5 else if (CLS - (j mod CLS)) ¡= (CLS - ((i + 1) mod CLS )) then
6 return true; //Better cache alignment.
7 else
8 while (j mod CLS) != 0 do
9 if instruction stack[j++] is a control transfer instruction then

10 return true; //DS will contain a CTI

11 return false;

4.9 Effect on Branch Prediction

Replication of control transfer instructions interacts positively with conventional pre-

diction mechanisms. PMTC code may have multiple instances of the same branch at

multiple different addresses throughout the program. We refer to branches that have

been replicated as path separable. Path separability exists when the same branch in-

struction is encountered at a different address along different paths. PMTC exploits

path separability to improve branch prediction accuracy.

Figure 4.4 shows how PMTC replicates branches along distinct paths. Branches bra

and brb are delayed and followed by a trace. Both traces contain a replicated instance
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PCx PCy

PCz

bra brb
brc brc

brc

Figure 4.4: Path Separation of Control Transfer Instructions

of brc. Branch brc has a unique address along each path, PCx when following bra

and PCy when following brb. Conventional branch prediction utilizes the instruction

address and a history of branch outcomes. It is possible that along both paths the

history is identical when brc is reached. In this case, there is nothing to distinguish

between which path was executed up to brc. If there exists correlation between the

computation along the separate paths and the outcome of brc, the branch predictor

will be unable to learn the behavior of brc with high confidence. For conditional

branches, path separability explicitly encodes additional path information via the in-

struction address used by the branch predictor. When the branch history is identical,

brc will index separate locations within the branch predictor along the two paths

shown when utilizing the PMTC traces.

Path separability affects the BTB in 2 ways.

1. Indirect jumps may store different targets along different paths. If brc in Figure

4.4 is an indirect jump with different targets assigned along the paths through

bra and brb, the BTB will be better able to learn the path relative targets as
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.
.
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brb
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brb

bra

brb

bra brb

brb

CFG BTB Line

bra
brb

Figure 4.5: BTB Entries

they reside in different locations within the BTB.

2. For a given execution path, branches encountered along the way take-up po-

sitions at the same (interleaved) index. As a result, if a branch on that path

hits in the interleaved BTB, a copied branch will also hit in the BTB with high

probability.

Figure 4.5 shows the phenomenon. The top portion shows the original locations where

the entries for bra and brb reside. The bottom shows the effect when a PMTC trace

containing brb is utilized. Branch brb now resides in the same interleaved index as

bra.

The original entry may also be present in the BTB and such redundancy will vary

over the dynamic execution depending on if the same branches are reached along

multiple paths. Sensitivity to BTB size and the performance impact of additional

pressure from replicated instructions are examined in Chapter 6.
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Chapter 5

Micro-Architecture

5.1 Baseline Architecture

MEMEX
Fetch 1 Fetch 2 Fetch 3

Tage Branch
Predictor BTB

ROB
Branch Queue

LD/ST Queue ST Buffer

Decode Rename Dispatch Central
Window

Instruction Fetch

L1 I-Cache L1 D-Cache

Select
Wakeup EX MEM Write


Back

Retire

Register
Read

Register FileRAS

PMTC

Address


Generation

Unit

PC

Logical 
addresses

Offset

Figure 5.1: Superscalar Processor Pipeline

The baseline architecture used as the basis for PMTC and for comparison is a realistic

11-stage 8 issue superscalar pipeline. A modified version of MIPS without fixed size

delay slots similar to PISA ISA [4] was used as the instruction set. The pipeline
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consists of three stages of fetch, decode, rename, dispatch, select/wake up, register

read, execute, memory access and writeback. The architecture is a central window

and reorder buffer based implementation. Memory instructions use a load/store queue

and a store buffer. Memory prediction is done using store-sets [9] and memory order

violations are detected using an out-of-order store value-matching algorithm [41].

Figure 5.1 shows the general pipeline organization.

5.1.1 Fetch Unit

The fetch unit design was modeled after the Core Fetch Unit proposed in [58] and

extended to a 3-stage pipeline. A dual bank L1 instruction cache is used to provide

up to 8 instructions spanning a single cache line boundary. A fetch cycle begins

by bringing two i-cache lines containing the PC address to the fetch unit. These

cache lines are interchanged as necessary. Eight instructions beginning at the PC

address are shifted and inserted into a fetch buffer. Simultaneously, the PC is used

to access an 8-way interleaved BTB. Once any branches have been identified in the

8 instruction fetch block, the TAGE branch predictor [64] is accessed for up to 2

conditional branches. When a return is detected, the return address stack (RAS)

is popped to obtain the next fetch address. Once the BTB information and branch

predictions are available, fetch buffer entries are masked off as necessary. Any taken

branch will result in masking off all subsequent instructions in the fetch buffer. The
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valid instructions in the fetch buffer are then sent to decode.

5.2 PMTC Fetch unit

PMTC uses the same superscalar processor pipeline as the baseline with a few modi-

fications. As discussed before, static code modifications do not modify branch offsets

when in a trace. Using unmodified branch offsets has a few implications:

1. Logical addresses for each instruction in a trace must be computed.

2. Logical addresses must be used to compute relative branch targets. The BTB

must be updated with the targets relative to a branch’s logical address.

3. In the fetch cycle following a delayed branch the fetch target must be adjusted

dynamically to mask off any instructions that were already fetched from a trace.

Computing logical addresses in the front end significantly reduces the complexity

of executing instructions within a trace and supporting precise exceptions. To the

remainder of the pipeline, instructions from a trace appear as if they were fetched

from their original location. The rest of the pipeline and the mechanisms implemented

that rely on an instruction’s address do not need to be modified to support execution

of instructions coming from a PMTC trace.
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Actual Address

0x18FF0000
. . . 
0x18FF0100
. . .
0x18FF0200
0x18FF0204
0x18FF0208
0x18FF020C
0x18FF0210

0x18FF0214

0x18FF0218

0x18FF021C


Logical Address

0x18FF0000
. . . 
0x18FF0100
. . .
0x18FF0200
0x18FF0204
0x18FF0208
0x18FF020C
0x18FF0210

0x18FF0214

0x18FF0100

0x18FF0000


L3:       i6

. . .

L2:       i5 (j L3)

. . . 
x
x

L1:       i1

i2

i3
i4 (br/j L2)
i5 (j L3)
i6

Figure 5.2: Addressing for Instructions Within a Trace

Figure 5.2 conceptually shows the logical addresses which need to be computed for

instructions within a PMTC trace. L1 is the initial fetch target. The horizontal line

above L1 marks the cache line boundary. Instruction i4 is a delayed branch or jump

and i5 and i6 make up the trace contained within i4 ’s delay slot. Instruction i5 is

copied from L2 and i6 is copied from L3. The next cache line boundary follows the

end of the trace. Observe that the instructions outside of a trace do not have a logical

address, or rather their logical address is identical to their actual address. The logical

address for an instruction in the trace is the actual address of the instruction that

was replicated. We now elaborate on the actual fetching mechanism.
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5.2.1 Updating the BTB and Branch Queue

As branches exit the fetch unit they are placed into a branch queue. The branch

queue stores all relevant information that will be needed in the future, including the

instruction address. PMTC extends the branch queue to contain the logical address

of every branch in the branch queue and an additional bit to mark delayed DCTIs.

Branch targets are computed relative to the logical address in the execution pipeline

stage. The BTB target is updated with the logical address relative target. Although

the logical address is used for the target, the actual address of the branch is used to

index the BTB and branch predictor for updates. Actual address indexing is used

because the BTB and branch predictor are accessed in the front end, before logical

addresses for instructions are computed. Updating the BTB with logical addresses

also ensures that no control transfer target will land within a trace. Updating the

BTB with logical addresses also decouples fetch target generation from logical address

generation. The fetch unit can then use BTB targets to direct instruction fetch and

adjust the fetch buffer contents as needed in the subsequent fetch cycle to properly

handle instruction fetch from PMTC traces. Proper trace handling involves adjusting

fetch targets to avoid duplicate fetching of instructions from PMTC traces.
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5.2.2 Adjusting the Next Fetch Address

When there are no taken branches in a fetch block, the next fetch target generation

is identical to the baseline. The continuation address in the next cache line will be

used as the fetch target. When a taken branch or jump is detected, the next fetch

address used is also the same as the baseline. The address is provided by the BTB.

However since BTB targets do not account for instructions fetched from traces, if

PMTC began fetching instructions from the target in the next cycle, any instruction

already fetched from a trace in the prior fetch cycle would be fetched twice. Therefore,

for each instruction fetched, the PMTC Address Generation Unit shown in Figure 5.1

computes an offset defined to be the distance between the instruction and the prior

branch target. These offsets are used in the next fetch cycle to prevent duplicate

fetching of instructions already fetched from a trace by applying them to the fetch

target when filling the fetch buffer. Instructions already fetched from a trace are

masked off.

The offset needed is determined by the offset computed for the last valid instruction

fetched in the last fetch cycle plus 1. Applying the offset shifts the fetch target to

the address of the last instruction fetched from the prior trace. An increment of 1 is

applied to adjust the fetch target to the next instruction beyond the last instruction

fetched, which should be the first instruction fetched in the current fetch cycle. The
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offset is only applied when a delayed DCTI has been encountered which is known

by the BTB bit corresponding to delayed control transfer. If the last instruction

fetched was the delayed DCTI itself, then the offset is not applied in the next fetch

cycle as no instructions have been fetched from the trace and the next instruction

that must be fetched is located at the target with no offset. Since PMTC can have

instructions spanning multiple branch targets in a single cache line, offsets will be

reset to 0 following a delayed branch or jump.

x
x

L1:       i1

i2

i3

i4 (j L2)
i7

i8
i5
i6

. . .

x
x
x

L2:       i7

i8

i9

i10
i11

i12
i13
i14
i15
i16
. . .

x x i1 i2 i3 i4 i7 i8 i5 i6 x x x x x x

i1 i2 i3 i4 i7 i8 i5 i6

Cache line 1 Cache line 2
Fetch Target


offset[i1]=0
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i9 i10 i11 i12 i13 i14 i15 i16

Cache line 1 Cache line 2
Fetch Target


Fetch Buffer

Fe
tc

h 
C

yc
le

 2

Shift by last 

valid offset + 1

Figure 5.3: Fetch Address Adjustment

The offset can be at most 8 instructions, or one cache line away from the BTB target

used as the fetch target. Fetching two cache lines every cycle ensures that there will

still be 8 instructions that can be considered for fetching after adjustment. Figure 5.3

shows an example where an offset is applied in the second fetch cycle. L1 is the fetch
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target in the first fetch cycle. Instruction i4 is a taken delayed branch or jump and

the instructions from i4 to the cache line boundary are part of the trace. In Fetch

cycle 1 instructions i7 and i8 are fetched from the trace. The offset computed for

i8 is 1. The address L2, the branch target of i4, is used as the fetch target for the

second fetch cycle. In the second fetch cycle the fetch buffer contents are adjusted

by 2 instructions, the offset of i8 plus 1, to avoid fetching trace instructions a second

time.

Revisiting the example shown in Figure 5.2 where L1 is the fetch target, the offsets

computed for i1, i2, i3 and i4 are 0, 1, 2 and 3 respectively. Once i4 is recognized as

a delayed DCTI the offset of the next instruction is reset thus the offset of i5 is zero.

Instruction i5 is also detected to be a delayed DCTI thus the offset of i6 is reset to

zero as well. When the cache lines corresponding to the next fetch target arrive in

the next fetch cycle, the offset of the last valid instruction will be used to adjust the

fetch buffer starting address such that i6 is not fetched again.

5.2.3 Logical Address Generation

The Address Generation Unit implemented in the pipeline front-end is responsible for

computing an instruction’s logical address. Shown in Figure 5.4, this unit is concep-

tually split into two components, the first to generate an instruction’s offset beyond
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the last target and the second to generate the logical address for each instruction.
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Figure 5.4: Address Generation Unit

Generating the offset is off the critical path. Offsets are used in the next fetch cycle

to drive shift and masking logic. PC addresses are determined by BTB targets or

the line continuation. Figure 5.4a shows the organization of the offset generation

component. A series of 3 bit adders and 2 input multiplexers are used. Each adder

computes the offset of an instruction relative to the prior target. When a taken

branch or jump is detected given the BTB information and branch predictions, the

offset beginning at the next instruction following the taken branch is reset to 0. The

offset is reset because it is relative to the prior target and the current instruction is

the first instruction from the current target. Each offset computed is passed to the
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next adder in series as input.

The organization of the second component responsible for generating the 32 bit logical

instruction addresses is shown in Figure 5.4b. Each instruction’s logical address is

the instruction word size added to the previous instruction’s logical address. The left

shift converts the 3 bit instruction offset to a byte offset. The left shift is conceptual

and used for display purposes only as the value used by the multiplexor will be

the instruction word size. If the prior instruction is a taken branch or jump, the

logical address is replaced by the branch target provided by the BTB. Logical address

generation is off the critical path. The next fetch target is provided by either the BTB

or the line continuation. Logical addresses are used when computing branch targets

in EX and updating the BTB. Considering the example shown in Figure 5.2 where

L1 is the fetch target, computing logical addresses for instructions i1, i2, i3 and i4

results in logical addresses identical to the actual address for those instructions. Since

i5 and i6 are delayed DCTIs, the mux control signal is taken is digital 1. The mux

for i5 replaces the continuation of the prior address with the BTB target for i4. The

mux for i6 replaces the continuation of the prior address with the BTB target for i5.

Thus the logical addresses for i5 and i6 are the actual addresses of the instructions

that were copied when the trace was constructed.
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5.2.4 Masking the Delay Slot

PMTC offers the unique ability to fetch from the taken or not taken path when a

trace is present within the first cache line fetched. When a delayed branch present

in the first cache line is predicted not taken, the not taken instructions begin at the

next cache line boundary. Since the fetch unit reads 2 cache lines every fetch cycle

some of these instructions are available in the current cycle. The instructions from

the trace can be simply masked off. A more sophisticated approach would shift the

not taken instructions over to reclaim any fetch slots wasted by instructions from the

trace. The simple masking approach was implemented to avoid adding unnecessary

complexity to the fetch unit. Traces are only inserted after branches with a statically

assumed highly taken bias so the effects of rescuing a few fetch slots in this case are

insignificant.

x x i1 i2 i3 i4 i7 i8 i5 i6 x x x x x x

i1 i2 i3 i4 i7 i8 i5 i6

Fetch Target


Fetch Buffer

PMTC Trace

PMTC Trace marked invalid

Not taken instructions
marked valid 

NT br

Figure 5.5: Trace Masking for Not Taken Branches

Figure 5.5 revisits the example in Figure 5.3 but assumes i4 is predicted not taken.
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When i4 is not taken, every instruction following i4 to the cache line boundary is

marked invalid, and every instruction following the cache line boundary is marked

valid.

5.3 Exception Handling

Detecting a branch misprediction for a delayed branch is similar to a regular branch

except that if there is a BTB miss and the branch was predicted not taken, that

branch has been mispredicted. The instructions from the delay slot were fetched

instead of being masked off. When delay slot instructions are fetched erroneously,

recovery is triggered at the fall through address at the next cache line boundary.

When recovering from a misspeculation the fetch unit assumes the fetch target is not

within a trace. Therefore care must be taken to ensure that recovery never restarts

at an address within a trace. Load and store instructions entered into the LD/ST

queue keep their logical address rather than their actual addresses. Storing logical

addresses instead of actual addresses ensures that any restart triggered by a load

misspeculation will not begin in a trace. Preventing restart at an address within a

trace is also easily accomplished for predicted not taken branches as branch targets

are never within a trace. The branch target is used as the recovery address. When

recovering from a predicted taken branch, the logical address stored in the branch
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queue is read and adjusted to determine the address of cache line boundary beyond

the mispredicted branch. Recovery begins at the address of the next cache line.
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Chapter 6

Evaluation

Cycle accurate simulators were developed using Architecture Description Language

[40]. Spec 2006 integer and floating point benchmarks [19] with ref inputs were

evaluated using Simpoint methodology [65]. Table 6.1 shows the datasets used and

the baseline IPC for each. 1

Processor configuration used is shown in Table 6.2. Simpoints were generated for

baseline and PMTC using the same starting locations in terms of retired instructions

during dynamic execution of the benchmarks. Each simpoint was executed using

100M instruction intervals from a cold start.

1IPC improves 40%-100 % when a fixed 100 cycle memory subsystem is used.
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Benchmark Dataset IPC
perlbench checkspam .584
bzip2 00-input.source .669
gcc 00-166.in .522
bwaves bwaves .564
mcf 00-inp.in .260
milc su3imp .683
leslie3d leslie3d .816
gobmk 13x13 .650
sjeng ref .854
libquantum ref .590
h264ref foreman ref encoder baseline 1.404
lbm lbm.in .388
astar rivers .644
sphinx3 default .571

Table 6.1
Datasets & Baseline IPC

6.1 Ideal Fetch Unit

PMTC and the baseline share the same pipeline except for the address generation

unit and instruction semantic changes described in Chapter 5.

For comparison to prior art, notably the Trace Cache [58], we chose to implement an

ideal fetch unit. The configuration Baseline Ideal uses the same pipeline but allows

the fetch unit to fetch instructions from non contiguous blocks across taken control

transfer instructions. In other words, the instruction fetch for the ideal configuration

is not limited to the dual i-cache sub block fetch mechanism used in PMTC and the

baseline. As long as the target of a control transfer instruction is resident in the
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Branch
Predictor

TAGE
2 predictions
8KB
7 tagged tables
1 bimodal

BTB
8 way interleved
2048 entry

Branch
Queue

32 entry Fetch 2 sub blocks

Issue
Width

8 instructions
Retire
Width

16 instructions

Register
File

180 registers
18 read ports

Scheduler
Central Window
97 instructions

Reorder
Buffer

224 instructions
Execution
Units

8 integer
4 float
2 address

LD/ST
Queue

128 entry
Store
Buffer

56 entry

Memory
Speculation

OOOVM Store Set
ssit bits 12
lfst bits 12

Recovery
flush and restart
br penalty 19cy
ld penalty 15cy

L1 I Cache

32KB
sets 128
assoc 4 way
block 64B
sub block 32B
LRU
hit latency 3 cy
dual bank

L1 D Cache

32KB
sets 128
assoc 4 way
block 64B
LRU
hit latency 4 cy
MSHRs 16x8
load ports 2
store ports 2

L2 Unified
Cache

2MB
sets 4096
assoc 8 way
block 64B
LRU
hit latency 27 cy

DRAM DRAMSim 2 [57]

Table 6.2
Processor Configuration

i-cache, instructions from that target are fetched in the same cycle limited only by

the branch predictor throughput and the number of branch queue entries. Hence,

it provides an upper bound of performance for techniques that improve only the
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fetch bandwidth, which includes the Trace Cache. Using an ideal fetch unit also

allows us to eliminate a potential issue with the branch prediction. Trace Cache

and trace processor implementations typically utilize a multiple branch predictor or

path predictor, and these predictors are not compatible with PMTC. Using different

branch prediction mechanisms for each configuration would prevent any meaningful

comparison.

6.2 Static Text Composition

Table 6.3 shows the fraction of instructions converted to delayed control transfer in the

original text segment for each benchmark. Roughly 10 percent of original instructions

are converted to delayed CTI. The delayed CTI include every unconditional direct

jump and select integer branches in the original text.

Figure 6.1 shows instruction mix contained within traces added to the text segment.

The fraction reported is in terms of the unmodified text size. The height of each

bar shows the overall text segment size increase. PMTC increases text segment size

by roughly 38 percent. Trace contents are primarily regular instructions. The code

growth is a direct result of the trace insertion heuristic used. More conservative

or compiler implemented heuristics may be used to curb code growth but were not

attempted in this work.

72



Benchmark %
perlbench 12.2
bzip2 9.6
gcc 14.6
bwaves 8.8
mcf 9.8
milc 9.7
leslie3d 8.5
gobmk 9.6
sjeng 9.9
libquantum 9.9
h264ref 7.6
lbm 9.6
astar 11.6
sphinx3 10.3

Table 6.3
Delayed Instruction Conversion
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Figure 6.1: PMTC Trace Composition
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6.3 Dynamic Trace Utilization

On average 24 percent of all control transfer instructions executed were delayed con-

trol transfer instructions. Table 6.4 shows the dynamic utilization of PMTC traces.

Dynamic utilization reported shows the percent of all instructions retired that were

fetched from a trace. Although the static program image size increases substantially,

not all of the replicated instructions can be utilized. Trace instructions are used to

rescue fetch slots. When fetch slots are not available, no instructions will be fetched

from the trace. Fetching branches from a trace requires branch predictor throughput

to be available.

Benchmark %
perlbench 11.17
bzip2 11.48
gcc 18.83
bwaves 3.96
mcf 10.76
milc 3.67
leslie3d 3.63
gobmk 8.13
sjeng 11.79
libquantum 2.57
h264ref 5.23
lbm 0.01
astar 12.7
sphinx3 5.18

Table 6.4
Dynamic Trace Utilization - % of Retired Instructions

The difference between static text composition and dynamic instruction execution
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suggests traces could be better utilized and more conservatively inserted. A more

sophisticated algorithm could align targets that contain traces to cache line bound-

aries such that the trace would be within range of the available fetch slots. Target

alignment was not explored in this work and ideal alignment is an open research

problem.

6.4 Performance Evaluation

The benefits of PMTC included increased average instruction fetch width, increased

branch prediction accuracy using explicit path separability and reduction of dynamic

fetch cycles and i-cache fetch traffic. Metrics used to evaluate the processor config-

urations are speedup, reduction in branch mispredictions per thousand instructions

(MPKI) and dynamic fetch cycle count.

Figure 6.2 shows the reduction in branch mispredictions for PMTC vs the baseline

divided by miss category. In the graph, the first bar in each pair of bars corresponds to

the baseline and the second to PMTC. The ideal baseline had comparable prediction

accuracy to the baseline and is not displayed. As it can be seen, PMTC’s reduction

of branch mispredictions is it’s greatest strength which is due to due to its ability to

exploit path separability of branches.
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Figure 6.2: Branch Mispredictions per 1K Instructions

PMTC does not negatively effect branch history distributions which has been shown

to be problematic in related work like Software Trace Cache that alters branch di-

rections [52]. Added BTB pressure from replicated instructions does not lead to

increased BTB misses in perlbench and gcc. Added BTB pressure does however in-

crease the BTB miss rate for gobmk and sjeng, although the increase in BTB misses

is not enough to overcome the positive effect on branch direction. Sensitivity to BTB

size is discussed in Section 6.5.

Figure 6.3 shows the average fetch width for all configurations. We define average

fetch width to be the number of instructions fetched (includes speculative instruc-

tions) divided by the number of fetch cycles. GMEAN fetch bandwidth for the Base-

line, Ideal Baseline and PMTC is 5.95, 7.73 and 6.28 respectively. The Ideal Baseline

does not reach the maximum fetch width of 8 instructions due to constraints imposed
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Figure 6.3: Average Fetch Width

by branch predictor throughput and cache residency. The results show that, while

increasing prediction accuracy, PMTC also effectively increases fetch width in most

cases. Increased fetch width is due to the ability to fetch beyond select taken DCTIs

in a single cycle. Minimal increase in fetch bandwidth for libquantum and astar is

due to low dynamic trace utilization.

Table 6.5 shows the reduction in dynamic fetch cycles for PMTC compared to the

baseline. Only fetch cycles where the fetch unit was not stalled due to back end

resource constraints or i-cache misses are displayed. Two contiguous sub blocks are

fetched from the i-cache in each active fetch cycle. In some cases, the second sub

block is not resident and instruction fetch is limited to instructions from the first sub

block only. Reducing the number of fetch cycles directly translates to reduced i-cache

traffic. The reduction in fetch cycles is due to PMTC’s ability to fetch across taken
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Benchmark %
perlbench 8.98
bzip2 2.19
gcc 16.45
bwaves 1.67
mcf 5.99
milc 4.1
leslie3d 1.91
gobmk 3.05
sjeng 5.94
libquantum 0.11
h264ref 3.27
lbm 0.001
astar 6.44
sphinx3 7.76

Table 6.5
% Reduction in Dynamic Fetch Cycles

control transfer instructions and eliminate the need to fetch intermediate targets via

control transfer chain reduction. Although one might expect the modified i-cache

access pattern combined with the text segment size increase to cause an increase in

the i-cache miss rate, we observed that the increase in miss rate was negligible for all

benchmarks. Sensitivity to i-cache size is discussed in Section 6.5.

Figure 6.4 shows the overall speedup of PMTC and the ideal fetch unit over the base-

line. PMTC has a GMEAN speedup of 5.037 percent over the baseline. The ideal

fetch unit has a GMEAN speedup of 4.639 percent over the baseline. Although the

fetch width increase in PMTC does not compare to the ideal fetch unit, compara-

ble performance is achieved. In some benchmarks the performance improvements of
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Figure 6.4: Percent Speedup of PMTC and Baseline Ideal

PMTC exceed the ideal fetch unit. The ability to exceed the ideal fetch unit’s per-

formance shows just how important improving branch prediction accuracy is. Small

increases in fetch bandwidth, combined with reduced i-cache traffic and substantial

reduction in branch mispredictions leads to greater average speedup using PMTC.

Benchmarks libquantum and lbm have very low branch misprediction rates to begin

with and exhibit very low trace utilization. Thus they do not show any significant

gain in branch prediction accuracy, increase in fetch width or reduction in fetch

cycles. Without observing any of the typical benefits of PMTC, the speedup over the

baseline is negligible. Branch accuracy is already very high for bwaves and milc and

prediction improvements in bwaves and milc are minimal. Benchmark milc shows

modest improvement in fetch width and reduction in fetch cycles, providing the small
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speedup over the baseline. Benchmark bwaves sees a small increase in fetch width

and slight reduction in fetch cycles. Although dynamic trace utilization is low in

bwaves, 50% of all branches executed are delayed branches. This suggests that the

reduction in branch mispredictions is the most significant benefit of PMTC in regards

to speedup. The significant increase in prediction accuracy paired with minor fetch

width increase and fetch cycle reduction in perlbench yielding the highest speedup

supports this claim. Considering all of the results shown we claim that benefits to

branch prediction accuracy via path separability have the most significant impact on

overall speedup of all the metrics presented.

6.5 Sensitivity Analysis

Figure 6.5 shows the geometric mean speedup across Spec suite for configurations

with varying i-cache hit latency, i-cache size and BTB size. I-cache size was varied in

an attempt to observe the effect of added i-cache pressure as Spec 2006 has a relatively

small i-cache footprint. BTB size was varied to observe the effect of added pressure

from PMTC’s replicated instructions. With a BTB size of 256 entries the PMTC

algorithm presented still provides positive results. The trend shown in Section 6.4

is observed albeit with lower gains as the BTB size decreases. The outlier is astar,

which reduces performance by 5% when the BTB is 256 entry. With BTB sizes above

256, astar shows positive results of up to 4%. We varied other pipeline parameters
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not shown, but the primary sensitivity in regards to PMTC was to BTB size.
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Figure 6.5: Average Speedup Compared to Baseline

We also experimented with 4 - 32 instruction L1 cache line sizes and 2-8 way asso-

ciativity. PMTC specifically did not appear particularly sensitive. PMTC and the

baseline did show similar variation in hit rates. Instead the sensitivity in this regard

is to the PMTC trace size. PMTC trace size can be configured as any power of 2

subset within the cache line size. Trace sizes of 4, 8 and 16 were tried. Using 4 in-

struction traces provided some benefit but we found that 8 instruction traces proved

more effective. Traces with 16 instructions proved too large as many branches were

copied into the trace but not enough branch predictor throughput was available to

consider the entire trace. Thus part of those longer traces are never issued and the

space is wasted.
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6.6 Power Evaluation

Power evaluation for the pipeline and memory system was conducted using McPAT

[32] assuming 22 nm process technology and a clock rate of 2.5 GHz. Energy for

the Address Generation Unit for PMTC was estimated using the results presented in

[68] for 4 bit and 32 bit adders assuming 22 nm process technology. Approximated

energy per access of the Address Generation Unit is .0236 pJ and considered to

be negligible with respect to CPU energy as the Address Generation Unit is only

accessed once per fetch cycle. The most significant energy computed for the Address

Generation Unit was 741 nJ which accounted for significantly less than 1 percent of

the total CPU energy. Although a trace cache was not directly implemented in the

Baseline and compared, we expect that the relative energy difference would be even

more significant. Thus we consider PMTC to be an energy efficient trace utilization

technique.

Table 6.6 shows percent energy reduction and percent reduction in energy-delay2

product (EDDP) for PMTC compared to the Baseline. On average, PMTC leads

to 5.1 percent reduction in Energy and 10.7 percent reduction in EDDP. Energy

reduction observed is primarily due to 2 effects of using PMTC:

1. The dynamic fetch cycle count has decreased compared to the baseline resulting
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Benchmark
% Energy
Reduction

% EDDP
Reduction

perlbench 19 44.66
bzip2 5.43 13.97
gcc 13.25 7.73
bwaves 1.86 4.39
mcf 4.22 9.77
milc 0.57 1.15
leslie3d 2.36 6.14
gobmk 5.46 14.66
sjeng 4.79 13.17
libquantum 0.02 0.01
h264ref 6.13 16.94
lbm 0 0
astar 4.79 7.15
sphinx3 4.25 10.85

Table 6.6
Energy Reduction

in reduced i-cache traffic.

2. Branch prediction accuracy has increased compared to the baseline reducing

the amount of wasted work.

Fewer wrong path speculative instructions proceed through the pipeline thus reducing

the accesses to the most power hungry components.
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Chapter 7

Related Work and Conclusion

Increasing effective instruction fetch bandwidth has been a major research topic span-

ning several decades. Most work to date focus on increasing the fetch bandwidth and

attempt to reduce the branch mispredictions by targeting the predictor itself. We

believe PMTC is the first work to show that it is possible to improve the fetch band-

width while improving the predictor accuracy in a consistent manner, using the same

basic mechanism.

The sheer number of related publications alone makes it extremely difficult to cover

the prior art in a comprehensive manner. Therefore, we give an overview of the design

space using a taxonomy shown in Figure 7.1. While the taxonomy itself is a gross

over-simplification, it allows us to discuss some of the most relevant work.
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Fetch Bandwidth
Mechanisms

Static Dynamic

Block/instruction
Replication (PMTC)

Code Layout
modification

Software TC

CFG Reorganization

Decoupled AG

Multiple Block
Predictors

Dynamic Trace
Generation

Address Gener-
ation Hierarchy

Figure 7.1: Targeting Fetch Bandwidth

Conventional delayed branching permits executing an instruction which follows a

branch unconditionally. Such delay slots have been used in older reduced instruction

set (RISC) architectures to avoid a control hazards. Although delay slots can be

effective in simple single-issue pipelines, they create difficulties for processors which

fetch multiple instructions. Such delay slots also cannot contain control transfer

instructions as doing so would render the delay-slot semantics invalid, unless exception

behavior is tracked properly [31, 70]. In contrast, PMTC delay slots are variable

in length and may contain other control transfer instructions. To the best of our

knowledge, PMTC is the first technique to utilize the concept of delay slots in this

manner.

Our taxonomy classifies existing techniques for improving fetch bandwidth broadly

into static and dynamic techniques. Most work to date fall under the dynamic cate-

gory. Generally speaking, these techniques either attempt to generate multiple fetch
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addresses and then, in an out-of-order manner fetch the required instructions, or

cache a dynamic instruction stream, as in various trace cache mechanisms. Notably,

an earlier mechanism, branch target instruction cache (BTIC) caches instructions

from branch targets and can supply additional instruction(s) given a taken branch

PC [8]. A much more elaborate mechanism, Trace Cache actually caches the dynamic

instruction traces as they are encountered.

It is possible to view PMTC as a technique which stores traces into the instruction

cache by using the concept of delayed branching and instruction replication. Nev-

ertheless, PMTC is a static technique as traces are formed at assembly time. In

this respect, it is possible to call PMTC a Software Trace Cache (STC). An earlier

work[52] with this title however does not insert traces into existing code, but rather

rearranges the control-flow graph to make the program more amenable to the natural

sequential fetching of the fetch unit. STC causes negative interaction with branch

prediction as branch history distribution reduces as branches directions become more

biased towards not taken. PMTC does not alter the program CFG, instead, it em-

beds traces in the existing program structure. Interestingly, storing dynamic traces

at the expense of significant storage is most useful when the sequential nature of the

instruction stream is disrupted by a taken branch. As well, this is also precisely when

a PMTC trace is utilized. In this respect, we believe PMTC is unique in showing the

dynamic construction and caching of traces may not be worth the cost.
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Statically, a given program can be modified in one of two ways. Either the basic

block contents can be modified, or the basic block organization can be modified. The

Block/Instruction replication category is for techniques like PMTC that statically add

instructions into a block. It must be noted that PMTC requires micro-architectural

modifications to handle delayed branches but these modifications do not involve dy-

namic analysis of the fetch frontier. Therefore, under this view we still consider PMTC

to be static. Techniques have been proposed to organize CFGs in a tree like structure

to identify block chains [12]. Alternatively software traces can be constructed within

the CFG using advanced placement algorithms [52]. In this case, the traces are built

from chains of blocks rather than employing a more complicated structure. Most ex-

isting static techniques utilize code layout modification through CFG reorganization

or a grouping mechanism [47] [49] [51] [14] [17] [59]. Some static code reorganization

is done based on profiling [46]. Static branch alignment has also been implemented in

static code to improve performance [5] as well as reorganization to alter branch direc-

tions [50]. [44] increased branch-less regions by replicating branches with assertions

into frames, similar in some respect to PMTC although atomic in nature. Compiler

optimization and reordering techniques have been developed to target specific fetch

architectures like the collapsing buffer [11] and trace cache [43] as well as instruction

cache performance [20] [29] [7] [15] [2]. Block based ISA has also been explored to

increase fetch rate [16].
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During execution the processor can use multiple branch and block prediction to pre-

dict targets corresponding to non-contiguous basic blocks [73] [63] [69] [12] [53]. Al-

ternatively a dynamic instruction trace can be generated and cached [58] [25] [3] [67]

[27] and predicted [23]. This trace can be reused when encountered again. Other

techniques seek to reduce the latency associated with multiple branch prediction via

decoupling or early issue of address generation [55] [56]. Alternatively, a hierarchy

of address generators can be used [62]. A fast generator gives a prediction immedi-

ately and a slower but more accurate generator corrects when the fast generator does

not agree. Superscalar machine design has been combined with VLIW techniques to

increase issue rates [13] as well as multiple fetch streams [38] [39]. Duplicate issue

within loops has been explored to reduce i-cache accesses [48] as well as loop caching

[54]. Most dynamic techniques require substantial hardware changes. [6] uses an

additional target cache to separate paths for indirect jumps.

One of the significant results of the PMTC approach is the improvement in branch

prediction accuracy. This improvement is due to a branch instruction having multiple

home locations via the use of actual addresses while accessing predictors.These results

strongly indicate that any technique which attempts to increase front end fetch band-

width should not be ignorant of branch prediction or how the technique will interact

with the prediction algorithms.

PMTC is also extremely versatile for deployment in future processors. Although
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we assumed that any unconditional direct branch can be given a delay slot, intro-

ducing delayed versions of unconditional direct branches will permit a PMTC micro-

architecture to execute non PMTC-enhanced code without a problem. In this respect,

PMTC can be deployed in existing processors without breaking backwards code com-

patibility. Better yet, our algorithm that is implemented in the assembler can easily

be transported into a binary rewriting system. Hence, legacy code can be optimized

for execution on a PMTC architecture as well.
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