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Abstract

The multidisciplinary area of geospatial intelligence (GEOINT) is continually chang-

ing and becoming more complex. From efforts to automate portions of GEOINT using

machine learning, which augment the analyst and improve exploitation, to optimizing

the growing number of sources and variables, there is no denying that the strategies

involved in this collection method are rapidly progressing. The unique and inherent

complexities involved in imagery analysis from an overhead perspective–—e.g., target

resolution, imaging band(s), and imaging angle–—test the ability of even the most

developed and novel machine learning techniques. To support advancement in the

application of object detection in overhead imagery, we have developed a spin-set aug-

mentation method that leverages synthetic data generation capabilities to augment

the training data sets. We then test this method with the popular object detec-

tion networks YOLO, SSD, and Faster R-CNN. This thesis analyzes the synthetic

augmentation method in terms of algorithm detection performance, computational

complexity, and generalizability.
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Chapter 1

Introduction

In the efforts to automate geospatial intelligence (GEOINT), computer vision tech-

niques such as object detection are being used at an increasing rate [7]. One significant

challenge when it comes to training object detection models is acquiring enough train-

ing data. Many computer vision models are trained using online, publicly available

(and manually labelled) imagery [8]. While this is sufficient for many purposes, it

becomes irrelevant as the focus becomes more niche. This means that often new data

sets must be created that have considerably fewer trainable images.

To make up for a lack of training data, various studies have been done on using

synthetic imagery for training computer vision models [8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20]. Several methods, of varying complexity, have been proposed to

1



create synthetic data that has the properties of real-world data. One method that is

very computationally expensive is the Monte Carlo ray tracing proposed by Hartwig

and Ropinski [10]. On the other hand, Georgakis et al. [9] used a technique where

object images were extracted from large data sets and superimposed onto backgrounds

of the desired environment. These studies were done in an indoor setting. They are

quite different from the outdoor, overhead imaging environment, particularly Hartwig

and Ropinski’s research which involved reflective objects. However, we would expect

the techniques used to be helpful for an outdoor overhead situation as well; our

technique is similar to that of Georgakis et al. [9]. Mayer et al. [8] also used a very

similar technique where 2D renders of 3D models were superimposed onto assorted

backgrounds.

In this thesis we explore the efficacy of augmenting extremely small overhead imagery

data sets with rapidly-produced synthetic imagery to improve object detection, and

how the number of synthetic images affects model performance. The remainder of

this thesis is organized as follows. Chapter 2 provides a short description of the data

sets used for training. Chapter 3 explores the details of how our synthetic images

are generated. We describe our experiments in Chapter 4. We show our results in

Chapter 5 and finally we summarize in Chapter 6.

2



Chapter 2

Data Sets

In this work we used a data set of 1,091 color (RGB) images and 1,513 infrared

(LWIR) images taken at varying heights and distances to a target vehicle, as seen in

Figures 2.1, 2.2, and A.1 to A.17. The data sets are broken up into eight subsets for

RGB images and nine for LWIR, each representing a different environment or imaging

platform motion. The number of RGB images in a subset can be seen in Table 2.1

and varies from 17 (1.56%) up to 377 (34.56%), while the number of LWIR images

can be seen in Table 2.2 and varies from 123 (8.13%) up to 270 (17.85%). The small

number of real-world training imagery made these data sets useful for this research,

however there are limitations that had to be acknowledged. The first is that there

was only one type of vehicle used. Our object detection networks were trained to

recognize six vehicle types but only one can be accurately tested. Because of this, we

3



(a) Route1 (b) Location4

Figure 2.1: Example images from overhead RGB imagery data set.

(a) Route1 (b) Location4

Figure 2.2: Example images from overhead LWIR imagery data set.

only consider the results of the one vehicle type. The combination of subsets having

a widely varying number of images and the fact that some subsets are visually more

similar to each other than others makes performance difficult to assess when training.

4



Table 2.1
Number of images in each RGB subset.

Subset Images Percentage Notes
Location1 377 34.56% Target is stationary
Location2 117 10.72% Target is stationary
Location3 47 4.31% Target is stationary and often occluded
Location4 81 7.42% Target is stationary and often occluded
Route1 17 1.56% Target is moving
Route2 77 7.06% Target is moving
FlyAway 183 16.77% Target is moving

Wide range of target scales
Constant camera orientation

FlyToward 192 17.60% Target is stationary
Same environment as FlyAway
Constant camera orientation

Table 2.2
Number of images in each LWIR subset.

Subset Images Percentage Notes
Location1 270 17.85% Target is stationary
Location2 132 8.72% Target is stationary
Location3 140 9.25% Target is stationary and often occluded
Location4 131 8.66% Target is stationary and often occluded
Route1 123 8.13% Target is moving
Route2 178 11.76% Target is moving
FlyAway 166 10.97% Target is moving

Wide range of target scales
Constant camera orientation

FlyToward 191 12.62% Target is stationary
Same environment as FlyAway
Constant camera orientation

Stage4 182 12.03% Target is moving
Same environment as Route2

5





Chapter 3

Spin-Set Data Augmentation

Spin-set training consists of generating synthetic training data by superimposing ren-

dered images of desired target classes onto frames of videos related to expected lo-

cations. In order to generate training data in this way, two resources are needed:

target spin-sets and background videos. We first rendered 3D models of target vehi-

cles (both RGB and LWIR) from 72 pitch angles encompassing a 360 degree rotation

each with nine different yaw angles (between 45 and 90 degrees) for a total of 648

rendered images per vehicle. The angles were chosen to be representative of targets

seen from an overhead perspective. These images were created with transparent back-

grounds so that they could easily be added to images, as shown in Figures 3.1 and

3.2. Individual frames from YouTube videos were automatically extracted to be used

as backgrounds for the generated imagery, with the backgrounds being converted to

7



(a) Generated image (b) Generated image

Figure 3.1: Examples of generated RGB images.

grayscale for LWIR images. These videos were automatically chosen based on user-

provided keywords describing the expected environments, which we describe next.

This form of augmentation certainly does not generate the most realistic synthetic

imagery; however, it does benefit from being both significantly easier to set up and

very efficient to produce compared to other forms of synthetic data such as rendering

full 3D scenes. Our technique is also easily generalizable, as one would only have to

replace the target images and change what environments of which the backgrounds

should consist.

8



(a) Generated image (b) Generated image

Figure 3.2: Examples of generated LWIR images.

3.1 Automated Background Selection

Ideally, object detection should be effective regardless of the environment. We de-

signed a tool that automatically uses screenshots from YouTube videos as backgrounds

for synthetic training data as a form of domain randomization [11]. The user must

enter lists of keywords that they would use to search to find videos of relevant envi-

ronments. For example, “overhead footage nature,” “overhead footage wilderness,”

and “overhead footage forest” could be useful search terms in the case of overhead

object detection in forested regions. The tool collects the first ten (by default) video

links for each search term list. When generating an image, a random N ×N crop of

a random frame from a randomly chosen video is extracted for the background.

9



(a) Relevant background (b) Relevant background

Figure 3.3: Examples of relevant backgrounds extracted.

This background selection method is an easy and quick way to generate a large amount

and variety of different backgrounds. This made generating training data very quick

and cheap, and is much less tedious than other methods, such as creating 3D scenes of

environments by scratch. Furthermore, this usually provides acceptable backgrounds

such as those shown in Figure 3.3. By increasing the number of videos searched for,

we can greatly increase the variety of backgrounds, though as this number increases

the relevance of videos used can decrease.

This method is not without drawbacks, however. If search terms are not chosen

carefully, the tool could easily use highly irrelevant videos, such as those shown in

Figure 3.4. These screenshots are from videos found when we used keyword searches

such as “drone nature aerial forest,” “drone nature overhead trees,” “drone footage

overhead wilderness,” and similar terms. This issue could be mitigated by skimming
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(a) Irrelevant background (b) Irrelevant background

Figure 3.4: Examples of irrelevant backgrounds created. Search terms
should be carefully chosen to reduce the incidence of unsuitable backgrounds.

through videos before they are used in image generation, however this does reduce the

level of automation that the method offers. Additionally, even highly relevant videos

may have sections that are not useful for image generation. An example of this would

be a nature documentary: there are many video sections that could be very useful

for simulating outdoor environments; however, there may be scenes of people talking

indoors that would not be suitable.
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3.2 Synthetic Data Generation

When generating training images, many effects are applied to further augment the

data and perform domain randomization [11]: discoloration, graininess, blurring, scal-

ing, occlusion, brightness, and contrast. These effects are meant to simulate how a

target may be seen from a camera in various conditions. For each effect e, we define

a minimum strength emin and maximum strength emax, as well as a power parameter

epow. Using these parameters, we can define the strength se of e for a single generated

image as

se = xepow · (emax − emin) + emin, (3.1)

where x is a uniform random real value between 0 and 1. This enables easy adjustment

of each effect, increasing or decreasing the range of augmentation from an effect. This

is particularly useful for effects such as blurring, where we would like to be able to

detect targets from a blurry image but most images are expected to be fairly crisp.

By setting epow to a high value, greater than one, most training images will have

blurring closer to the minimum strength. Additionally, we define a probability eprob

that an effect will be applied. The parameters for each effect we used in this study

are listed in Table 3.1.
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Table 3.1
Parameters used for image generation.

Effect Probability Min Max Power
Graininess 0.8 0.00 0.12 2.00
Blur 0.5 0.00 1.00 2.00
Discoloration 0.8 0.00 0.12 2.00
Brightness 1.0 -0.30 0.30 1.0
Contrast 1.0 -0.30 0.30 1.0
#Occlusions 0.7 1 10 1.0
Occlusion N/A 0.10 0.50 0.5

3.2.1 Graininess

For each RGB pixel in the generated image, denoted p ∈ [0, 1]3, we adjust the pixel

to p′, which is determined by linearly interpolating between p and a randomly chosen

pixel value using sgraininess. We use this effect to model noise that could appear in

images taken with a camera. We decided to implement this version of noise because

it was quick to develop, provided fast image generation, and had visually acceptable

results. It is entirely possible that other forms of noise such as salt and pepper noise

or perhaps Poisson-Gaussian noise used by Carlson [21] would be more effective and

further tests should be done to determine this.

13



3.2.2 Blur

A Gaussian filter is applied over the entire image. The standard deviation of this

filter is set to sblur, used for the blur strength. The filter is applied to account for

two phenomena. The first is to simulate an unfocused lens. The second is to simulate

motion blur. There is motion blur in a select few of our real-world images and

it is likely to occur in similar applications. Though this model is not an accurate

representation of directional motion blur, it is an easy way to augment the training

data.

3.2.3 Discoloration

This effect is applied to target images before being added to the background image.

A random vector is chosen in [−1, 1]3, normalized, and then scaled such that the

magnitude is equal to sdiscoloration. This vector is then added to every pixel in the

target image and then the pixels are clamped between 0 and 1. This effect was

added to account for changes in lighting, as our object detection models should be

performant regardless of color temperature.
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3.2.4 Brightness and Contrast

Our real-world images contain a wide variety of brightness levels, and this is likely

to be the case for similar outdoor applications. There are a few reasons for this such

as camera quality, exposure time, and sky brightness. Every pixel in the generated

image p is altered such that p′ = p · (2scontrast + 1)− scontrast + sbrightness. Alterations

were added to these properties to account for differences in environmental lighting as

well as camera exposure.

3.2.5 Occlusion

Occlusions are common, particularly in a natural environment where trees or other

objects could block parts of an object. To counter this, we implemented rudimentary

occlusions in the form of blocked out regions of the target. This has the additional

benefit of discouraging models from focusing on a specific part of a vehicle to rec-

ognize it. Occlusions were added to generated images by erasing randomly shaped

rectangular sections of target images before adding them to the background. We first

determine the number of occlusions to apply, which is equal to ⌊snumOcclusion⌋. The

width and height of the rectangular region are determined with socclusion1 ·width and

socclusion2 ·height, respectively. Finally, the center of the region is chosen in a uniform
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random fashion, within the target bounding box.

3.2.6 Bounding Box Generation

Automatically determining a bounding box for a target using this technique is quite

easy. After all effects have been applied to a target image, we determine the top-,

bottom-, left-, and right-most pixels that are not fully transparent. When adding the

image to the video frame background, we keep track of where those four pixels end

up on the final image. These pixels end up determining the top-left and bottom-right

corner. From there it is easy enough to transform this information into whatever

format is needed for training (such as YOLO format).
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Chapter 4

Experiments

Experimentation involved combining our real imagery with varying numbers of spin-

set images into one training data set. For each subset of measured images, spin-set

images were added. The spin-set images were added in quantities of 0, 500, 1,000, and

5,000 for RGB images. Our original publication involved only RGB images. Later

when LWIR images were considered this was changed to percentages relative to the

total number of measured images in each subset ranging from 5% to 300%.

These augmented data sets were then used to train our various models. The model

performances were compared to that of training with real-world images only. We

used two methods of training: single subset and all-but-one subset, although only

the single subset method was used for RGB images. In the single subset method,
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object detection models are trained on one subset (and synthetic augmentations),

validated with another subset, and tested on the remaining seven subsets. This was

done seven times for RGB images and eight times for LWIR images for each training

set such that every remaining subset was used for validation once. One benefit to

this method was that we could train one model for each subset and then retroactively

decide when to stop training and what the best detection threshold was based on

each validation set, allowing us to save significant amounts of time in exchange for

frequently saving network weights to storage to be accessed later. The all-but-one

subset method involved training on 90% of eight subsets (as only LWIR images were

used), validating the network on the remaining 10% of those subsets, and testing on

the one subset left out. This was then repeated such that every subset had a turn as

the testing set. This allowed us to repeat the experiment up to 10 times, although

due to time constraints only 5 folds were used.
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Chapter 5

Results

Our original publication included results for RGB images using YOLO (specifically

YOLOv4) with the single subset method. Later work added results for LWIR images

using YOLO, SSD, and Faster R-CNN with both the single subset method as well as

the all-but-one method.

5.1 RGB Imagery

We trained YOLO [22, 23] models using one subset of our data set for training, one for

validation, and the remaining subsets for testing. We then repeated this experiment

for each subset as the training data. All models were trained for up to 40,000 batches
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of 16 images each. It should be noted that in addition to our data generation, the

minimal built-in data augmentation of Darknet [1] was used when training YOLO

[22, 23] models. F1 scores for the respective testing subsets are shown in Tables 5.1,

5.2, 5.3, and 5.4. Additionally, we trained models with synthetic data only, whose

results are included in the “None” column of each table.

Our experiments indicated that including a small number of spin-set images provided

a benefit, but increasing the number of spin-set images too much decreased detection

performance. Our conjecture is that generated data were dissimilar enough from the

measured data that models would overfit on synthetic imagery when a large enough

proportion of the training set was synthetic. We can see in Figure 5.1 that including

500 synthetic images consistently improves performance regardless of which subset

is used for training. However, the amount of increase varies noticeably depending

on the training subset, and the trend is not consistent once 1,000 images are used,

and including 5,000 synthetic images tends to be detrimental to performance. Spin-

set augmentation most notably improved results when training on Location4, Route1,

Route2, and FlyToward; whereas Location1, Location2, Location3, and FlyAway had

minimal improvement. Our experiments also showed that synthetic imagery alone was

not sufficient to obtain reasonable performance.

It is difficult to know for sure why certain subsets were improved by the augmentation

more than others, though there are some subsets where we can reasonably speculate
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the reason. Our most surprising result was how little augmentation improved Fly-

Away, when the images were so similar to those of FlyToward. Both subsets were

from the same environment and the camera’s orientation was relatively constant in

both as it moved backwards or forwards, respectively. There was, however, one key

difference: the target moved in circles in FlyAway whereas the target was stationary

in FlyToward. This meant that FlyAway had images of the target from many more

angles compared to FlyToward. We suspect that because of this, augmentation was

much more helpful when training on FlyToward since it provided angles that would

not have otherwise been trained on. This cannot be the only reason, however, since

the target was visible from many angles in the other subsets and yet some improved

significantly while others did not. This is the only noticeable difference between the

two subsets, though, so it is likely to be a factor in determining performance increase.

Overall, these results can be summarized by the statement that including a relatively

small number of synthetic spin-set images in the training set improves detection

performance. Care should be taken that the algorithm does not overtrain on the

synthetic imagery, which could be accomplished by ensuring that the proportion of

real-world and synthetic imagery is kept roughly equal.
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(b) Trained on Location2
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(c) Trained on Location3
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(d) Trained on Location4
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(e) Trained on Route1
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(f) Trained on Route2

Figure 5.1: Testing set F1 scores for each RGB subset. Orange bar indi-
cates the median and the green triangle indicates the mean; box and whiskers
indicate quartiles and max/min, respectively. More figures are shown later.

22



Table 5.1
F1 score for training set and validation set with 0 synthetic generated

images.

Valid. Training Set
Loc1 Loc2 Loc3 Loc4 Route1 Route2 Toward Away None

Loc1 - 0.292 0.415 0.297 0.496 0.460 0.483 0.657 -
Loc2 0.184 - 0.466 0.525 0.467 0.361 0.638 0.524 -
Loc3 0.481 0.603 - 0.486 0.610 0.628 0.676 0.702 -
Loc4 0.477 0.550 0.491 - 0.623 0.379 0.731 0.632 -
Route1 0.534 0.619 0.555 0.465 - 0.486 0.518 0.629 -
Route2 0.510 0.540 0.569 0.517 0.547 - 0.762 0.692 -
Toward 0.627 0.602 0.738 0.610 0.669 0.689 - 0.661 -
Away 0.637 0.662 0.641 0.396 0.577 0.639 0.762 - -
Mean 0.493 0.553 0.554 0.471 0.570 0.520 0.653 0.643 -
StdDev 0.140 0.113 0.102 0.093 0.066 0.122 0.105 0.055 -

Table 5.2
F1 score for training set and validation set with 500 synthetic generated

images.

Valid. Training Set
Loc1 Loc2 Loc3 Loc4 Route1 Route2 Toward Away None

Loc1 - 0.425 0.460 0.490 0.651 0.561 0.705 0.632 0.361
Loc2 0.399 - 0.617 0.651 0.693 0.645 0.792 0.675 0.171
Loc3 0.532 0.698 - 0.616 0.758 0.705 0.854 0.686 0.411
Loc4 0.530 0.674 0.650 - 0.776 0.730 0.880 0.656 0.444
Route1 0.496 0.671 0.615 0.686 - 0.649 0.547 0.703 0.400
Route2 0.532 0.693 0.570 0.658 0.696 - 0.868 0.686 0.165
Toward 0.587 0.604 0.670 0.683 0.565 0.733 - 0.568 0.428
Away 0.615 0.557 0.533 0.709 0.757 0.691 0.794 - 0.432
Mean 0.527 0.617 0.588 0.642 0.699 0.673 0.777 0.658 0.352
StdDev 0.064 0.092 0.067 0.068 0.069 0.056 0.109 0.043 0.108
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Table 5.3
F1 score for training set and validation set with 1000 synthetic generated

images.

Valid. Training Set
Loc1 Loc2 Loc3 Loc4 Route1 Route2 Toward Away None

Loc1 - 0.413 0.452 0.409 0.644 0.539 0.764 0.612 0.298
Loc2 0.376 - 0.633 0.612 0.665 0.671 0.830 0.615 0.193
Loc3 0.497 0.688 - 0.631 0.771 0.714 0.854 0.542 0.348
Loc4 0.530 0.706 0.661 - 0.772 0.618 0.877 0.542 0.338
Route1 0.502 0.629 0.513 0.462 - 0.676 0.667 0.549 0.332
Route2 0.565 0.632 0.544 0.640 0.769 - 0.624 0.657 0.324
Toward 0.609 0.679 0.662 0.582 0.473 0.678 - 0.638 0.284
Away 0.591 0.612 0.464 0.486 0.676 0.678 0.828 - 0.301
Mean 0.524 0.622 0.562 0.546 0.682 0.653 0.778 0.594 0.302
StdDev 0.072 0.091 0.084 0.085 0.099 0.054 0.090 0.045 0.046

Table 5.4
F1 score for training set and validation set with 5000 synthetic generated

images.

Valid. Training Set
Loc1 Loc2 Loc3 Loc4 Route1 Route2 Toward Away None

Loc1 - 0.316 0.397 0.395 0.355 0.662 0.686 0.434 0.377
Loc2 0.369 - 0.566 0.441 0.467 0.686 0.718 0.098 0.144
Loc3 0.535 0.589 - 0.547 0.541 0.716 0.759 0.364 0.340
Loc4 0.589 0.587 0.601 - 0.555 0.747 0.766 0.464 0.347
Route1 0.497 0.408 0.590 0.461 - 0.637 0.678 0.326 0.310
Route2 0.502 0.521 0.606 0.568 0.530 - 0.725 0.372 0.251
Toward 0.640 0.591 0.587 0.555 0.069 0.774 - 0.430 0.465
Away 0.653 0.637 0.597 0.567 0.512 0.770 0.483 - 0.454
Mean 0.541 0.521 0.563 0.505 0.433 0.713 0.688 0.356 0.336
StdDev 0.091 0.109 0.069 0.066 0.161 0.050 0.089 0.114 0.098
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(b) Trained on FlyAway

500 1000 5000
Number of Synthetic Images

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 o
ve

r T
es

tin
g 

Se
t

(c) Trained on synthetic only

Figure 5.1: Testing set F1 scores for each RGB subset. Orange bar indi-
cates the median and the green triangle indicates the mean; box and whiskers
indicate quartiles and max/min, respectively. Final figures are shown here.
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5.2 LWIR Imagery

We trained Faster R-CNN, SSD, and YOLO with the single subset method. For Faster

R-CNN and SSD (available through TensorFlow 2 Detection Model Zoo), weights pre-

trained on the COCO 2017 data set and built-in data augmentation of TensorFlow’s

object detection API were used in addition to our synthetic augmentations [24, 25].

It should be noted that these weights were trained using RGB images and were not

originally intended for LWIR use. For YOLO, the built-in data augmentations of

Darknet were used and the models were trained from scratch. Due to time con-

straints, only Faster R-CNN and SSD were used when training with the all-but-one

method, which used the same pretrained weights and data augmentation as in the

single subset method. Figures for the results for the single subset method trained with

Faster R-CNN are shown, and the remaining figures are available in the appendix.

Our experiments indicated that similarly to RGB spin-set augmentation, LWIR spin-

sets were beneficial to data sets with a small number of images. We found that

while the most effective number of spin-set images to include varies depending on the

architecture and base training set images, it was beneficial for all architectures over

all subsets in the single subset tests. Including spin-set images for Faster R-CNN in

the range of 10% to 50% of the training set size was the most beneficial; including

any more than that began to reduce the effectiveness in the majority of subsets. Still,
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Figure 5.3: Performance increase of single subset method trained with
Faster R-CNN relative to results without LWIR spin-set augmentation.

even including as little as 5% provided dramatic boosts to F1 scores. The results

for SSD and YOLO, however, differ quite dramatically from Faster R-CNN. Both

architectures perform much worse without spin-sets, even SSD with its pretrained

weights. We see a more gradual increase in performance with SSD and YOLO as

more spin-set images are used for training. The models continued to improve with

as much as 300% spin-sets, where the experiments were cut off and it is likely that

including more than 300% spin-sets may produce even better results. This shows that

spin-set images used for augmentation are beneficial for small data sets, but precisely

how many images are necessary for optimal performance is highly dependent on the
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model architecture.

For LWIR imagery, we also performed the all-but-one method, which involved training

with eight out of nine subsets and testing on the single remaining subset. For each test,

we used Faster R-CNN and SSD each to train two models: one with no augmentation

and one with a large but fixed number (500) of spin-set images. We found that spin-set

augmentation had much more inconclusive results for these experiments. There were

subsets where spin-set augmentation significantly improved performance, significantly

decreased performance, and some where it remained consistent (see Figures A.22 and

A.23). It should be noted that the charts generated for the all-but-one method cannot

be directly compared to those created from the single-subset method results as the F1

scores are calculated from different sets of images; the single-subset models were tested

on eight subsets (all subsets other than the one they were trained and validated on)

while the all-but-one models were tested on one subset. Nevertheless, the detection

rates are certainly nowhere near as dramatic overall.

To gather a greater understanding of how spin-set augmentation affected various

object detection networks, we further compared the detection rate of differing target

sizes. For each architecture in the single subset method, we compared the base model

to the model trained with the highest performing number of spin-sets (10% for Faster

R-CNN, 200% for SSD, and 300% for YOLO) over all images not in the training

subset. We found that over all subsets nearly every target size sees an improved
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detection rate, with a few exceptions such as mid-size targets when Faster R-CNN

is trained on Location 2 and small targets when YOLO is trained with Route 1

and 2 (Figures 5.4, A.24, and A.25). This shows that, in general, synthetic spin-set

augmentation is largely beneficial over all scales for object detection when data sets

are extremely limited and improve the efficacy when testing over a range of different

testing environments.

Interestingly, all-but-one subset target size results diverge from these previous re-

sults. Both Faster R-CNN and SSD have similar trends. In two testing environments

(Location 1 and 3) spin-set augmentation improves detection rate while one environ-

ment (Location 4) has a significant decline, with smaller changes in the other subsets

(Figures A.26 and A.27).
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Figure 5.4: Object recall over different target sizes for Faster R-CNN
trained with single subset method. Compares base performance to including
+10% spin-sets. Blue shows improvement due to augmentation and light
brown shows reduced performance. Continued on next page.
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Figure 5.4: Object recall over different target sizes for Faster R-CNN
trained with single subset method. Compares base performance to including
+10% spin-sets. Blue shows improvement due to augmentation and light
brown shows reduced performance. Continued from previous page.
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Chapter 6

Conclusion

Simulating everything in real-world environments is very difficult. Spin-set augmen-

tation is easy to implement and quick to generate. However, it can be difficult to

create imagery that is close enough to true photos. We performed experiments with

the YOLO [23], SSD [26], and Faster R-CNN [27] object detection algorithms for

overhead detection of a target in varied environments and situations. We introduced

spin-set data augmentation, which creates images by choosing relevant background

images and superimposing rendered targets onto the image. This has the benefit of

being extremely computationally cheap to produce. The results indicate that there

is a performance boost from including spin-set augmentation imagery in training.

However, the proportion between the number of real-world training images and the

synthetic images must be taken into account.
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There are many paths toward future work. The one most in need of attention would

be determining the relative utility each of the image augmentation effects. It was

beyond the scope of this thesis to test each effect individually. It is possible that

certain combinations are more useful than using all effects, and some effects may

even be harmful.
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Appendix A

Additional Figures
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Figure A.1: Example RGB images from Location1.
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Figure A.2: Example RGB images from Location2.
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Figure A.3: Example RGB images from Location3.
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Figure A.4: Example RGB images from Location4.
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Figure A.5: Example RGB images from Route1.
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Figure A.6: Example RGB images from Route2.
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Figure A.7: Example RGB images from FlyToward.
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Figure A.8: Example RGB images from FlyAway.

47



Figure A.9: Example LWIR images from Location1.
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Figure A.10: Example LWIR images from Location2.
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Figure A.11: Example LWIR images from Location3.
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Figure A.12: Example LWIR images from Location4.
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Figure A.13: Example LWIR images from Route1.
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Figure A.14: Example LWIR images from Route2.
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Figure A.15: Example LWIR images from FlyToward.
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Figure A.16: Example LWIR images from FlyAway.
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Figure A.17: Example LWIR images from Stage4.
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Figure A.20: Performance increase of single subset method trained with
SSD relative to results without LWIR spin-set augmentation.
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Figure A.21: Performance increase of single subset method trained with
YOLO relative to results without LWIR spin-set augmentation.
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Figure A.24: Object recall over different target sizes for SSD trained with
single subset method. Compares base performance to including +10% spin-
sets. Blue shows improvement due to augmentation and light brown shows
reduced performance. Continued on next page.
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Figure A.24: Object recall over different target sizes for SSD trained with
single subset method. Compares base performance to including +10% spin-
sets. Blue shows improvement due to augmentation and light brown shows
reduced performance. Continued from previous page.
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Figure A.25: Object recall over different target sizes for YOLO trained
with single subset method. Compares base performance to including +10%
spin-sets. Blue shows improvement due to augmentation and light brown
shows reduced performance. Continued on next page.
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Figure A.25: Object recall over different target sizes for YOLO trained
with single subset method. Compares base performance to including +10%
spin-sets. Blue shows improvement due to augmentation and light brown
shows reduced performance. Continued from previous page.
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Figure A.26: Object recall over different target sizes for Faster R-CNN
trained with all-but-one method. Compares base performance to including
+500 spin-sets. Blue shows improvement due to augmentation and light
brown shows reduced performance. Continued on next page.
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Figure A.26: Object recall over different target sizes for Faster R-CNN
trained with all-but-one method. Compares base performance to including
+500 spin-sets. Blue shows improvement due to augmentation and light
brown shows reduced performance. Continued from previous page.
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Figure A.27: Object recall over different target sizes for SSD trained with
all-but-one method. Compares base performance to including +500 spin-
sets. Blue shows improvement due to augmentation and light brown shows
reduced performance. Continued on next page.
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(a) Tested on FlyToward
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(b) Tested on FlyAway
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(c) Tested on Stage4

Figure A.27: Object recall over different target sizes for SSD trained with
all-but-one method. Compares base performance to including +500 spin-
sets. Blue shows improvement due to augmentation and light brown shows
reduced performance. Continued from previous page.
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