Dynamic Data Structures for Computational Geometry

Yakov Nekrich¹

¹Michigan Technological University

March 17, 2023

• Computational Geometry

algorithms and data structures on geometric objects

- Strings Sequences of Symbols
- Compressed Data Structures Data Compression + Data Structures

(Orthogonal) Range Reporting

The Problem

Data Structure: set of *d*-dimensional points *S*

Query: axis-parallel rectangle Q

Answer: report all points in $Q \cap S$

$$Q = [x_1^L, x_1^R] \times [x_2^L, x_2^R] \times \cdots \times [x_d^L, x_d^R]$$

Data bases

report all employees with salary between 80K and 100K and age between 35 and 50

- String algorithms
- Range reporting is a variant of range searching other: range counting, color queries, maxima queries, etc.

(Orthogonal) Range Emptiness

The Problem

Data Structure: set of *d*-dimensional points *S*

Query: axis-parallel rectangle Q

Answer: is $Q \cap S = \emptyset$?

(Orthogonal) Range Emptiness

The Problem

Data Structure: set of *d*-dimensional points *S*

Query: axis-parallel rectangle Q

Answer: is $Q \cap S = \emptyset$?

O(npolylog(n))-space data structure

- 2-D range reporting: O(log log n + k) query time Alstrup,Brodal,Rauhe; FOCS'00
- 3-D range reporting:
 O(log log n + k) query time
 Chan TALG'13
- Optimal query time for 2-D and 3-D follows from the predecessor lower bound *Pătrașcu, Thorup' 06*
- n number of points in the data structure
- k number of points in the answer

4-D Reporting

 $O(\log n + k)$ query time Chan TALG'13, SODA'11

Lower Bound

$\Omega(\log n / \log \log n)$ query time for any $O(n \operatorname{polylog}(n))$ -space data structure *Pătrașcu, 2011*

4-D Reporting: Optimal Time

 $O(n_{polylog}(n))$ space $O(\log n / \log \log n + k)$ time Nekrich, SODA'21 Optimal time by Pătrașcu, 2011

$d \geq 4$ dimensions

 $O(n \log^{d-2+\varepsilon} n)$ space $O((\log n / \log \log n)^{d-3} + k)$ query time Nekrich, SODA'21

n - number of points in the data structure k - number of points in the answer any constant $arepsilon > \mathbf{0}$

Pointer Machine Model (PM) *Tarjan '79*

- no random acess to memory cells each memory cell can be accessed through a series of pointers only
- Informally: model of computation in which the use of arrays is not allowed

Example: Binary search trees, but no van Emde Boas

PM Model

- 2-D: O(log n + k) time Bentley IPL'79
- 3-D: O(log n + k) time Chazelle, Edelsbrunner Discrete & Comp. Geometry '87

PM Model, 4-D

- $O(\log^2 n + k)$ time using range trees *Bentley IPL'79*
- O((log n/ log log n)² + k) time Afshani, Arge, Larsen FOCS'09
- O(log^{3/2} n + k) time Afshani, Arge, Larsen SoCG'12
- Open question: $O(\log n)$ time?

PM Model, 4-D Range Reporting

Nekrich, Rahul SODA'23

• $O(\log n \log \log n + k)$ query time

• space

- $O(n \log^4 n)$ space for general 4-D queries
- **O**(*n* log *n*) space when the query range is bounded on 4 sides (dominance queries) or 5 sides (5-sided queries)

Dominance queries:

report all **p**. s.t., $p.x \leq a$, $p.y \leq b$, $p.z \leq c$, $p.z' \leq d$ General Queries:

report all p. s.t., $a_1 \leq p.x \leq a_2$, $b_1 \leq p.y \leq b_2$, $c_1 \leq p.z \leq c_2$, $d_1 \leq p.z' \leq d_2$

PM Model, d-dimensional range reporting

 PM Model: O(log^{d-3} n log log n + k) time O(n log^d n) space Nekrich, Rahul SODA'23
 Data structure for queries bounded on 4 sides (dominance queries)

- 3-D Dominance Reporting Queries (query range bounded on 3 sides: *p.x* ≤ *a*, *p.y* ≤ *b*, *p.z* ≤ *c*)
- Range Trees extends to 4-D

Shallow Cuttings

2-D shallow cuttings

- Each point below the staircase dominates ≤ 2t points from S
- Each point that dominates
 ≤ t points from S is below
 the "staircase"
- A point *q* dominates *q'* iff
 q.x ≥ *q'.x* and *q.y* ≥ *q'.y*

2-D shallow cuttings

- A *t*-shallow cutting for a set *S* consists of $O(\frac{n}{t})$ cells each cell contains $\leq 2t$ points from *S*
- every planar point that dominates ≤ t points is contained in some cell C

shallow cuttings approach:

• set
$$t = \log n$$

keep a separate data structure for each cell

Queries:

Find the *cell* C that contains the query point q

Using the data structure for \boldsymbol{C} , report

points dominated by \boldsymbol{q} in

 $O(\log t + k) = O(\log \log n + k)$ time

- A *t*-shallow cutting for a set S consists of $O(\frac{n}{t})$ cells (3-D boxes) each cell contains $\leq 2t$ points from S
- every 3-D point that dominates ≤ t points is contained in some cell C

Afshani'08

- A *t*-shallow cutting for a set S consists of $O(\frac{n}{t})$ cells (3-D boxes) each cell contains $\leq 2t$ points from S
- every 3-D point that dominates ≤ t points is contained in some cell C

Afshani'08

shallow cuttings approach: Bottleneck:

- Find the cell *C* that contains the query point *q*
- O(log n) time in the PM model

shallow cuttings approach:

- set t = log n keep a separate data structure for each cell
- Queries:

Find the *cell* C that contains the query point q Using the data structure for C, report points dominated by q in $O(\log t + k) = O(\log \log n + k)$ time

Range Tree

 Fractional cascading? *Chazelle, Guibas '86 O*(1) time per node in one dimension

-

Range Tree

Range Tree

- 2-D fractional cascading: orthogonal point location in each node on a path
 - lower bound for general graphs *Chazelle, Liu STOC'01*
 - can be circumvented in the case of a tree *Afshani, Cheng FOCS'12*

$$O(\log^{3/2} n + k)$$
 query

time

for this problem

• this bound is tight! Afshani, Cheng FOCS'12

Property of shallow cuttings:

Lemma

Let \mathcal{A} be an t-shallow cutting for a set S and let \mathcal{B} be an (2t)-shallow cutting for a set $S' \subseteq S$. Every cell A_i of \mathcal{A} is contained in some cell B_j of \mathcal{B} .

Property of shallow cuttings:

Lemma

Let \mathcal{A} be an t-shallow cutting for a set S and let \mathcal{B} be an (2t)-shallow cutting for a set $S' \subseteq S$. Every cell A_i of \mathcal{A} is contained in some cell B_j of \mathcal{B} .

Property of shallow cuttings:

Lemma

Let \mathcal{A} be an t-shallow cutting for a set S and let \mathcal{B} be an (2t)-shallow cutting for a set $S' \subseteq S$. Every cell A_i of \mathcal{A} is contained in some cell B_j of \mathcal{B} .

- Hierarchy of Range Trees
- Each internal node in T_i has $n^{(1/3)^i}$ children
- Height (number of levels) of *T_i* is 3ⁱ: trees *T*₁, *T*₂, ... have height 3, 9, 27, ...
- log₃ log n trees
 last tree T_h has a constant node degree

- Create a shallow cutting for each group of sibling nodes in *T_i*
- Iteration *i*: locate a 3-D point *q* in 3ⁱ shallow cuttings for *i* = 1, 2, 3, ...
- use relationship between shallow cuttings and spend O(log n) time for each T_i
- Total query time
 O(log n log log n + k)

Example: group of siblings u_1, \ldots, u_r with parent v in T_i is represented by three groups of siblings with parents v_1, v_2, v_3 in T_{i+1}

March 17,2023 27 / 50

Our Result, RAM

 $O(\log n / \log \log n + k)$ query time O(n polylog(n)) space Nekrich, SODA'21

Our Result, PM Model

 $O(\log n \log \log n + k)$ query time O(npolylog(n)) space Nekrich, Rahul SODA'23

	RAM	PM
2-D & 3-D	$O(\log \log n + k)$	$O(\log n + k)$
4-D	$O(\log n / \log \log n + k)$	$O(\log n \log \log n + k)$

March 17,2023 29 / 50

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

- Closing the gap between 3-D and 4-D in the PM model:
 O(log n + k) query time for 4-D range reporting?
- Query times in d > 4 dimensions, RAM and PM? Is
 ~ O(log n) for each further dimension d > 4 necessary?

Segments can be deleted, new segments can be inserted

Segments can be deleted, new segments can be inserted

- Natural generalization of one-dimensional predecessor search
- Ω(log n) query time
 Ω(log n) update time
- Static point location: *O*(log *n*) query time *Sarnak, Tarjan '86*
- Dynamic point location? more challenging

¥

Open Problem

Dynamic Point Location data structure with $O(\log n)$ query time and $O(\log n)$ update time using O(n) space? open question since 90s asked in e.g., *Chazelle, 1991; Chazelle 1994; Chiang, Tamassia 1992; Snoeyink 2004*

Reference	Space	Query Time	Insertion Time	Deletion Time	
Bentley, 1977	n log n	log ² n	log ² n	log ² n	
Cheng–Janardan, 1992	n	log ² n	log n	log n	
Baumgarten et al., 1994	n	log n log log n	log n log log n	log ² n	†
Arge et al., 2006	n	log n	$\log^{1+\varepsilon} n$	$\log^{2+\varepsilon} n$	†
Arge et al., 2006	n	log n	$\log n (\log \log n)^{1+\varepsilon}$	$\log^2 n / \log \log n$	†‡
Chan and Nekrich, 2015	n	$\log n(\log \log n)^2$	log n log log n	log n log log n	
Chan and Nekrich, 2015	n	log n	$\log^{1+\varepsilon} n$	$\log^{1+\varepsilon} n$	
Chan and Nekrich, 2015	n	log n	$\log^{1+\varepsilon} n$	$\log n (\log \log n)^{1+\varepsilon}$	
Chan and Nekrich, 2015	n	$\log^{1+\varepsilon} n$	log n	log n	
Chan and Nekrich, 2015	n	log n log log n	log <i>n</i> log log <i>n</i>	log <i>n</i> log log <i>n</i>	‡
Nekrich, 2021	n	log n	log n	log n	

[†] - amortization, [‡] - randomization (Las-Vegas)

not included: special cases of dynamic point location (*Fries'90*, *Preparata*, *Tamassia '89*; *Chiang*, *Tamassia '92*; *Chiang*, *Preparata*, *Tamassia '96*; *Goodrich*, *Tamassia '98*; *Gioyra*, *Kaplan '09*; *Nekrich'10*; *Chan*, *Tsakalidis '18*)

Vertical Ray Shooting

Given: a set of n non-intersecting segments Query: for any point q find the segment immediately below q(first segment hit by a downward vertical ray from q)

• Base structure: segment tree

- Associate a vertical slab with every node Keep list of segments spanning the vertical slab in each node
- Segments in a node must be ordered

- Base structure: segment tree
- Associate a vertical slab with every node Keep list of segments spanning the vertical slab in each node
- Segments in a node must be ordered

- Base structure: segment tree
- Associate a vertical slab with every node Keep list of segments spanning the vertical slab in each node
- Segments in a node must be ordered

Challenge: Order of Segments

No dynamic ordering of segments with respect to ray shooting queries (any vertical ray must hit a larger segment before a smaller segment)

Example: Deleting s and inserting s' changes the order of all segments

Challenge: no global order of segments!

- Each segment is stored in ~ log n nodes
- We must visit ~ O(log n) nodes to answer a vertical ray shooting query
- O(log² n) update time

 O(log² n) query time
 (~ log n independent binary searches)

Challenge: no global order of segments!

- Each segment is stored in ~ log n nodes
- We must visit ~ O(log n) nodes to answer a vertical ray shooting query
- O(log² n) update time

 O(log² n) query time
 (~ log n independent binary searches)

Reference	Space	Query Time	Insertion Time	Deletion Time	
Bentley, 1977	n log n	log ² n	log ² n	log ² n	
Cheng–Janardan, 1992	n	log ² n	log n	log n	
Baumgarten et al., 1994	n	log n log log n	log n log log n	log ² n	t
Arge et al., 2006	n	log n	$\log^{1+\varepsilon} n$	$\log^{2+\varepsilon} n$	†
Arge et al., 2006	n	log n	$\log n (\log \log n)^{1+\varepsilon}$	$\log^2 n / \log \log n$	†‡
Chan and Nekrich, 2015	n	$\log n(\log \log n)^2$	log n log log n	log n log log n	
Chan and Nekrich, 2015	n	log n	$\log^{1+\varepsilon} n$	$\log^{1+\varepsilon} n$	
Chan and Nekrich, 2015	n	log n	$\log^{1+\varepsilon} n$	$\log n(\log \log n)^{1+\varepsilon}$	
Chan and Nekrich, 2015	n	$\log^{1+\varepsilon} n$	log n	log n	
Chan and Nekrich, 2015	n	log n log log n	log n log log n	log <i>n</i> log log <i>n</i>	‡

Fractional cascading can be used to improve the query time *Baumgarten et al. '94; Arge et al. '06*

- segments are assigned different colors (categories)
- segments of the same color are ordered, even if stored in different nodes
- segments in the same node can be assigned different colors:

- segments in the same node can be assigned different colors
- trade-offs between update and query time (number of colors per node vs number of colors assigned to a segment)

- segments in the same node can be assigned different colors
- trade-offs between update and query time (number of colors per node vs number of colors assigned to a segment)

- segments in the same node can be assigned different colors
- trade-offs between update and query time (number of colors per node vs number of colors assigned to a segment)

- segments in the same node can be assigned different colors
- trade-offs between update and query time (number of colors per node vs number of colors assigned to a segment)

Previous best result

O(log n log log n) query time (randomized) $O(\log n \log \log n)$ update time OR $O(\log^{1+\varepsilon} n)$ query time O(log n) update time OR O(log n) query time $O(\log^{1+\epsilon} n)$ update time Chan. Nekrich. FOCS'15 all trade-offs use O(n) space

can't obtain $O(\log n)$ time for updates and queries with this approach

Optimal Result

O(log n) query time O(log n) update time O(n) space Nekrich, STOC'21

- Some segments can be inserted quickly into a slab ("good" segments)
- "bad" segments cannot be inserted quickly
- "bad" segments are stored in selected nodes only even in selected nodes, we don't know the total order of all bad segments

- Some segments can be inserted quickly into a slab ("good" segments)
- "bad" segments cannot be inserted quickly
- "bad" segments are stored in selected nodes only even in selected nodes, we don't know the total order of all bad segments

- Some segments can be inserted quickly into a slab ("good" segments)
- "bad" segments cannot be inserted quickly
- "bad" segments are stored in selected nodes only even in selected nodes, we don't know the total order of all bad segments

- When a query is answered in a node u, "bad" segment can be missed
- "Missed" segments are processed when the selected ancestor node is visited

- When a query is answered in a node u, "bad" segment can be missed
- "Missed" segments are processed when the selected ancestor node is visited

- Point Location in 3-D:
 O(n) space and O(log n) query time?
- Currently best result: O(n log n) space and O(log² n) time Goodrich, Tamassia; 1998

- 3-D Point Location
- Dynamic Nearest Neighbor in 2-D

Further Research

External-Memory Model

- Limited-size main memory and potentially unlimited disk
- All operations in the main memory are *for free*
- Time complexity: number of I/Os between disk and main memory Each I/O reads/writes one block of size B

- External-Memory Data Structures: Sorting Strings in External Memory
- Orthogonal Range Reporting, Point Location
- String Algorithms and CG

Thank You!

æ