Dynamic Data Structures for Computational **Geometry**

Yakov Nekrich¹

¹Michigan Technological University

March 17, 2023

Computational Geometry

algorithms and data structures on geometric objects

- **o** Strings Sequences of Symbols
- Compressed Data Structures Data Compression $+$ Data Structures

(Orthogonal) Range Reporting

The Problem

Data Structure: set of d-dimensional points S

Query: axis-parallel rectangle Q

Answer: report all points in $Q \cap S$

$$
Q = [x_1^L, x_1^R] \times [x_2^L, x_2^R] \times \cdots \times [x_d^L, x_d^R]
$$

• Data bases

report all employees with salary between 80K and 100K and age between 35 and 50

- String algorithms
- Range reporting is a variant of range searching other: range counting, color queries, maxima queries, etc.

(Orthogonal) Range Emptiness

The Problem

Data Structure: set of d-dimensional points S

Query: axis-parallel rectangle Q

Answer: is $Q \cap S = \emptyset$?

 200

(Orthogonal) Range Emptiness

The Problem

Data Structure: set of d-dimensional points S

Query: axis-parallel rectangle Q

Answer: is $Q \cap S = \emptyset$?

 200

$O(npolylog(n))$ -space data structure

- 2-D range reporting: $O(\log \log n + k)$ query time Alstrup,Brodal,Rauhe; FOCS'00
- 3-D range reporting: $O(\log \log n + k)$ query time Chan TALG'13
- Optimal query time for 2-D and 3-D follows from the predecessor lower bound Pătrașcu, Thorup' 06
- n number of points in the data structure
- k number of points in the answer

つひひ

Multi-Dimensional Range Reporting

4-D Reporting

 $O(\log n + k)$ query time Chan TALG'13, SODA'11

Lower Bound

$\Omega(\log n / \log \log n)$ query time for any $O(npolylog(n))$ -space data structure Pǎtrașcu, 2011

 200

Multi-Dimensional Range Reporting

4-D Reporting: Optimal Time

 $O(npolylog(n))$ space $O(\log n / \log \log n + k)$ time Nekrich, SODA'21 Optimal time by Pătrașcu, 2011

Multi-Dimensional Range Reporting

$d > 4$ dimensions

 $O(n \log^{d-2+\epsilon} n)$ space $O((\log n/\log\log n)^{d-3}+k)$ query time Nekrich, SODA'21

 n - number of points in the data structure k - number of points in the answer any constant $\varepsilon > 0$

Pointer Machine Model (PM) Tarjan '79

- no random acess to memory cells each memory cell can be accessed through a series of pointers only
- Informally: model of computation in which the use of arrays is not allowed

Example: Binary search trees, but no van Emde Boas

PM Model

- 2-D: $O(\log n + k)$ time Bentley IPL'79
- \circ 3-D: $O(\log n + k)$ time Chazelle, Edelsbrunner Discrete & Comp. Geometry '87

 200

PM Model, 4-D

- \bullet $O(\log^2 n + k)$ time using range trees Bentley IPL'79
- $O((\log n/\log\log n)^2 + k)$ time Afshani, Arge, Larsen FOCS'09
- \bullet $O(\log^{3/2} n + k)$ time Afshani, Arge, Larsen SoCG'12
- \circ Open question: $O(\log n)$ time?

つひひ

PM Model, 4-D Range Reporting

Nekrich, Rahul SODA'23

 \bullet $O(\log n \log \log n + k)$ query time

o space

- \bullet $O(n \log^4 n)$ space for general 4-D queries
- \bullet $O(n \log n)$ space when the query range is bounded on 4 sides (dominance queries) or 5 sides (5-sided queries)

Dominance queries:

report all \bm{p} . s.t., $\bm{p}.\bm{x} \leq \bm{a}$, $\bm{p}.\bm{y} \leq \bm{b}$, $\bm{p}.\bm{z} \leq \bm{c}$, $\bm{p}.\bm{z}' \leq \bm{d}$ General Queries:

report all p . s.t., $a_1 < p.x < a_2$, $b_1 < p.y < b_2$, $c_1 < p.z < c_2$, $d_1 \leq p.z' \leq d_2$

 200

PM Model, d-dimensional range reporting

PM Model: $O(\log^{d-3} n \log \log n + k)$ time $O(n \log^d n)$ space Nekrich, Rahul SODA'23

つへへ

Data structure for queries bounded on 4 sides (dominance queries)

- 3-D Dominance Reporting Queries (query range bounded on 3 sides: $p.x \le a$, $p.y \le b$, $p.z \le c$)
- Range Trees extends to 4-D

 200

Shallow Cuttings

2-D shallow cuttings

- Each point below the staircase dominates $\leq 2t$ points from S
- **•** Each point that dominates $\leq t$ points from S is below the "staircase"
- A point \bm{q} dominates \bm{q}' iff $q.x \geq q'.x$ and $q.y \geq q'.y$

つひひ

2-D shallow cuttings

- \bullet A *t*-shallow cutting for a set **S** consists of $O(\frac{n}{t})$ $\frac{n}{t}$) cells each cell contains $< 2t$ points from S
- o every planar point that dominates $\lt t$ points is contained in some cell C

つひひ

shallow cuttings approach:

$$
\bullet \text{ set } t = \log n
$$

keep a separate data structure for each cell

o Queries:

Find the cell C that contains the query point q Using the data structure for C , report

points dominated by q in

 $O(\log t + k) = O(\log \log n + k)$ time

- \bullet A *t*-shallow cutting for a set **S** consists of $O(\frac{n}{t})$ $\frac{n}{t}$) cells (3-D boxes) each cell contains $\leq 2t$ points from S
- \bullet every 3-D point that dominates $\lt t$ points is contained in some cell C

Afshani'08

 200

- \bullet A *t*-shallow cutting for a set **S** consists of $O(\frac{n}{t})$ $\frac{n}{t}$) cells (3-D boxes) each cell contains $\leq 2t$ points from S
- \bullet every 3-D point that dominates $\lt t$ points is contained in some cell C

Afshani'08

 200

shallow cuttings approach: Bottleneck:

- \bullet Find the cell C that contains the query point q
- \bullet $O(\log n)$ time in the PM model

shallow cuttings approach:

- set $t = \log n$ keep a separate data structure for each cell
- Queries:

Find the $cell C$ that contains the query point q Using the data structure for C , report points dominated by q in $O(\log t + k) =$ $O(\log \log n + k)$ time

Range Tree

Fractional cascading? Chazelle, Guibas '86 $O(1)$ time per node in one dimension

4 **D F**

Range Tree

Range Tree

- 2-D fractional cascading: orthogonal point location in each node on a path
	- lower bound for general graphs Chazelle, Liu STOC'01
	- **•** can be circumvented in the case of a tree Afshani, Cheng FOCS'12

$$
O(\log^{3/2} n + k)
$$
 query

time

for this problem

• this bound is tight! Afshani, Cheng FOCS'12

Property of shallow cuttings:

Lemma

Let A be an t-shallow cutting for a set S and let B be an $(2t)$ -shallow cutting for a set $S' \subseteq S$. Every cell A_i of A is contained in some cell B_i of B .

つひひ

Property of shallow cuttings:

Lemma

Let A be an t-shallow cutting for a set S and let B be an $(2t)$ -shallow cutting for a set $S' \subseteq S$. Every cell A_i of A is contained in some cell B_i of B .

つひひ

Property of shallow cuttings:

Lemma

Let A be an t-shallow cutting for a set S and let B be an $(2t)$ -shallow cutting for a set $S' \subseteq S$. Every cell A_i of A is contained in some cell B_i of B .

- Hierarchy of Range Trees
- Each internal node in T_i has $n^{(1/3)^i}$ children
- Height (number of levels) of $\bm{\mathcal{T}}_i$ is $\bm{3}^i$: trees $\bm{\mathcal{T}}_1,~\bm{\mathcal{T}}_2,~\dots$ have height 3, 9, 27, ...
- log₃ log *n* trees last tree T_b has a constant node degree

つひひ

- Create a shallow cutting for each group of sibling nodes in $\tau_{\scriptscriptstyle i}$
- \bullet Iteration *i*: locate a 3-D point \bm{q} in $\bm{3}^i$ shallow cuttings for $i = 1, 2, 3, \ldots$

• Total query time $O(\log n \log \log n + k)$

Example: group of siblings u_1, \ldots, u_r with parent \boldsymbol{v} in \boldsymbol{T}_i is represented by three groups of siblings with parents v_1 , v_2 , v_3 in T_{i+1}

Our Result, RAM

 $O(\log n / \log \log n + k)$ query time $O(n \log(n))$ space Nekrich, SODA'21

Our Result, PM Model

 $O(\log n \log \log n + k)$ query time $O(npolylog(n))$ space Nekrich, Rahul SODA'23

つへへ

Ε

 2990

イロト イ部 トイモ トイモト

- Closing the gap between 3-D and 4-D in the PM model: $O(\log n + k)$ query time for 4-D range reporting?
- Query times in $d > 4$ dimensions, RAM and PM? Is \sim O(log n) for each further dimension $d > 4$ necessary?

つひひ

Segments can be deleted, new segments can be inserted

Segments can be deleted, new segments can be inserted

- Natural generalization of one-dimensional predecessor search
- $\Omega(\log n)$ query time $\Omega(\log n)$ update time
- Static point location: $O(\log n)$ query time Sarnak, Tarjan '86
- Dynamic point location? more challenging

 \overline{q}

Open Problem

Dynamic Point Location data structure with $O(\log n)$ query time and $O(\log n)$ update time using $O(n)$ space? open question since 90s asked in e.g., Chazelle, 1991; Chazelle 1994; Chiang, Tamassia 1992; Snoeyink 2004

† - amortization, ‡ - randomization (Las-Vegas)

not included: special cases of dynamic point location (Fries'90, Preparata, Tamassia '89; Chiang, Tamassia '92; Chiang, Preparata, Tamassia '96; Goodrich, Tamassia '98; Gioyra, Kaplan '09; Nekrich'10; Chan, Tsakalidis '18)

つひひ

Vertical Ray Shooting

Given: a set of n non-intersecting segments Query: for any point q find the segment immediately below q (first segment hit by a downward vertical ray from q)

• Base structure: segment tree

- Keep list of segments
- Segments in a node must be

- Base structure: segment tree
- **•** Associate a vertical slab with every node Keep list of segments spanning the vertical slab in each node
- Segments in a node must be

- Base structure: segment tree
- **•** Associate a vertical slab with every node Keep list of segments spanning the vertical slab in each node
- Segments in a node must be ordered

Challenge: Order of Segments

No dynamic ordering of segments with respect to ray shooting queries (any vertical ray must hit a larger segment before a smaller segment)

Example: Deleting s and inserting s' changes the order of all segments

Challenge: no global order of segments!

- Each segment is stored in \sim log *n* nodes
- We must visit $\sim O(\log n)$ nodes to answer a vertical ray shooting query
- \bullet $O(\log^2 n)$ update time $\sim O(\log^2 n)$ query time $($ \sim log *n* independent binary searches)

つひひ

Challenge: no global order of segments!

- Each segment is stored in \sim log *n* nodes
- We must visit $\sim O(\log n)$ nodes to answer a vertical ray shooting query
- \bullet $O(\log^2 n)$ update time $\sim O(\log^2 n)$ query time $($ \sim log *n* independent binary searches)

つひひ

Fractional cascading can be used to improve the query time Baumgarten et al. '94; Arge et al. '06

Segment Categorization: Chan, Nekrich FOCS'15

- segments are assigned different colors (categories)
- segments of the same color are ordered, even if stored in different nodes
- **•** segments in the same node can be assigned different colors:

Segment Categorization: Chan, Nekrich FOCS'15

- **•** segments in the same node can be assigned different colors
- trade-offs between update and query time (number of colors per node vs number of colors assigned to a segment)

Segment Categorization: Chan, Nekrich FOCS'15

- **•** segments in the same node can be assigned different colors
- trade-offs between update and query time (number of colors per node vs number of colors assigned to a segment)

つひひ

Segment Categorization: Chan, Nekrich FOCS'15

- **•** segments in the same node can be assigned different colors
- trade-offs between update and query time (number of colors per node vs number of colors assigned to a segment)

Segment Categorization: Chan, Nekrich FOCS'15

- **•** segments in the same node can be assigned different colors
- trade-offs between update and query time (number of colors per node vs number of colors assigned to a segment)

Previous best result

 $O(\log n \log \log n)$ query time (randomized) $O(\log n \log \log n)$ update time OR $O(\log^{1+\epsilon} n)$ query time $O(\log n)$ update time OR $O(\log n)$ query time $O(\log^{1+\epsilon} n)$ update time Chan, Nekrich, FOCS'15 all trade-offs use $O(n)$ space

can't obtain $O(\log n)$ time for updates and queries with this approach

つへへ

Optimal Result

 $O(\log n)$ query time $O(\log n)$ update time $O(n)$ space Nekrich, STOC'21

 200

Main ideas:

- Some segments can be inserted quickly into a slab ("good" segments)
- "bad" segments cannot be
- "bad" segments are stored in don't know the total order of

Main ideas:

- Some segments can be inserted quickly into a slab ("good" segments)
- "bad" segments cannot be inserted quickly
- "bad" segments are stored in don't know the total order of

Main ideas:

- Some segments can be inserted quickly into a slab ("good" segments)
- "bad" segments cannot be inserted quickly
- "bad" segments are stored in selected nodes only even in selected nodes, we don't know the total order of all bad segments

つひい

Main ideas:

- When a query is answered in a node u , "bad" segment can be missed
- "Missed" segments are processed when the selected ancestor node is visited

Main ideas:

- When a query is answered in a node u , "bad" segment can be missed
- "Missed" segments are processed when the selected ancestor node is visited

- **e** Point Location in 3-D: $O(n)$ space and $O(\log n)$ query time?
- **•** Currently best result: $O(n \log n)$ space and $O(\log^2 n)$ time Goodrich, Tamassia; 1998

- 3-D Point Location
- Dynamic Nearest Neighbor in 2-D

4 0 8

 299

Further Research

External-Memory Model

- **•** Limited-size main memory and potentially unlimited disk
- All operations in the main memory are for free
- Time complexity: number of I/Os between disk and main memory Each I/O reads/writes one block of size B

- External-Memory Data Structures: Sorting Strings in External Memory
- Orthogonal Range Reporting, Point Location
- **String Algorithms and CG**

Thank You!

∍

重

K ロ ▶ K 母 ▶ K

 299