Author: Kim Geiger

Dr. Edmond O. Schweitzer III: An Inventor Who Helps Keep the Lights On—in 164 Countries Around the World

Michigan Technological University, at night.

Michigan Tech welcomes to campus today inventor Edmond O. Schweitzer III, recognized as a pioneer in digital protection. 

“Why shouldn’t we invent, and wake up every day wanting to go to work to find a better way to do something for other people?” says global innovator and inventor Dr. Edmond O Schweitzer, III, Chair, President and CEO of Schweitzer Electronics.

Dr. Schweitzer was recently inducted into the National Inventors Hall of Fame for inventing the first-ever digital protective relay. Digital protective relays detect electrical faults that cause power outages.

The first protective relays relied on coils and were electromagnetic. Schweitzer’s microprocessor-based digital protective relay is multifunctional, protecting power systems, recording data and detecting faults in lines more effectively. “His first revolutionary ‘relays’ came on the market in the 1980s,” said Bruce Mork, electrical engineering professor at Michigan Tech. “The design has led to reduced costs, flexible operation options and increased reliability. The product lines have been enhanced with many patents and with the utilization of today’s smart grid technologies.”

Schweitzer Electronics Laboratories, Inc. (SEL) based in Pullman, Washington is a longtime partner of Michigan Tech—supporting the Power System Protection Lab at Michigan Tech since 1993, and hiring at least 40 Michigan Tech ECE graduates over the years, plus a dozen more students thus far in 2019.

Inventing runs in Schweitzer’s family, and while on campus he will present a lecture on Creativity and Innovation at 4:15 pm in EERC 103. Wednesday’s lecture is open to the public. All are welcome to attend. Schweitzer will also join a roundtable of power companies to discuss Cybersecurity.

Todd Brassard, VP Operations of Calumet Electronics, arranged Dr. Schweitzer’s visit to Michigan Tech. Calumet Electronics Corporation is a key supplier-partner of printed circuit boards (PCBs) to SEL. The company, based in Calumet, Michigan, is an American manufacturer, supplying PCBs for applications demanding zero failures, zero downtime, and requires a lifetime of performance. Celebrating 50 years, Calumet is a critical supplier to mission critical industries including power grid management, , medical device, aerospace, industrial controls, and defense. Calumet is one of the few PCB manufactures who have made a commitment to American manufacturing.

At Michigan Tech, “SEL has supported us for years, incrementally donating lab equipment since 1993 when I started the protection course and lab here on campus,” adds Mork. “I became aware of their new technology and product lines while working as a substation design engineer in Kansas City in the mid-1980s. As a PhD student at North Dakota State University, I facilitated getting it into the labs there, and again at Michigan Tech after I arrived in 1992. I first met Ed when he presented a paper at the American Power Conference in 1993—it’s a paper I still use today when introducing microprocessor-based protection to my students.”

 

Michigan Tech Students Earn First place in ASM International Undergraduate Design Competition

L to R: Advisor Dr. Walt Milligan; student Kyle Hrubecky; William Mahoney, Chief Executive Officer of ASM International; student Erin VanDusen; and advisor Dr. Paul Sanders. Not pictured: students Lucas Itchue and Jacob Thompson.

A team of Michigan Technological University students won first place in ASM International’s 2019 Undergraduate Design Competition. Their capstone senior design project, “Cobalt reduction in Tribaloy T-400,” was sponsored by Winsert, Inc. of Marinette, Wisconsin.

Team members Lucas Itchue, Kyle Hrubecky, Jacob Thompson, and Erin VanDusen—all MSE majors at Michigan Tech—were recognized at a student awards banquet on Monday, September 30 during the Materials Science and Technology (MS&T) Conference in Portland, Oregon.

Winsert currently uses an alloy similar to Tribaloy T-400, a cobalt based alloy, in the production of internal combustion engine valve seats. Cobalt is an expensive element with a rapidly fluctuating price, due to political instability in the primary supplier country, the Democratic Republic of the Congo. Tribaloy T-400 contains approximately 60 wt. percent cobalt, contributing significantly to its price. The student team investigated the replacement of cobalt with other transition elements such as iron, nickel, and aluminum using thermodynamic modeling.

The Michigan Tech undergraduate team’s micrograph of Tribaloy T-400. “Using compositions from literature, we cast this alloy at Michigan Tech. We then examined the microstructure to see if it matched that in literature. That way we knew our casting process was valid and acceptable,” said student Erin VanDusen. “All the casting and imaging was done at Michigan Tech.”

“Michigan Tech was allowed one entry in the competition,” says Michigan Tech MSE Department Chair Stephen Kampe. “The ‘LoCo’ team project was selected by MSE’s External Advisory Board following final student presentations last April. All of our senior design projects use advanced simulation and modeling tools, experimental calibration, and statistical-based analyses of the results,” he explains. “This project utilized CALPHAD (Pandat) with machine learning (Bayesian Optimization) to identify new and promising alloy substitutions. These are very advanced techniques that are rarely introduced at the undergraduate level in most other MSE programs.”

MSE Professor Walt Milligan, Interim Chair of the Department of Manufacturing and Mechanical Engineering Technology, and Paul Sanders, Patrick Horvath Endowed Professor of Materials Science and Engineering, served as team co-advisors.

This isn’t the first time, we’ve won!
According to Kampe, an MSE student team from Michigan Tech team won first place in the ASM International Undergraduate Design Competition last year, too, for their aluminum brake rotor project. Phil Staublin, Josh Dorn, Mark Ilenich, and Aaron Cook developed a new, castable, lightweight high temperature aluminum alloy for project sponsor Ford. “Developmental aluminum rotors have passed every test at Ford Motor Company—all except the extreme ‘Auto Motor and Sport’ test, which subjects the rotors to temperatures above 500 degrees Celsius,” said advisor Paul Sanders. “The team introduced thermally-stable intermetallic phases with high volume fractions that enabled the alloy to provide modest strength for short times at extreme temperatures.” Dr. Tom Wood, Michigan Tech MSE research engineer, also advised the team.

“Michigan Tech’s entry has placed in the top three all but once over the past 8 years at the ASM International Undergraduate Design Competition,” adds Kampe.

“We’re very proud of the world-class senior design projects our students experience,”said Janet Callahan, Dean of the College of Engineering at Michigan Tech. “Where else do teams win first place two years in a row, for alloy design, in an era where it isn’t about randomly mixing elements, but rather, about predictive modeling based on known materials parameters? These projects⁠—they’re centered on fundamentally interesting questions, coupled with faculty and industry expertise. No wonder we’re still the go-to place for materials engineers!”

William Predebon Inducted into the Pan American Academy of Engineering

William Predebon is the JS Endowed Chair of the Department of Mechanical Engineering-Engineering Mechanics at Michigan Technological University. “I am honored to be inducted into the Pan American Academy of Engineering and humbled to be included with other leaders from the Americas and Mexico,” he says.

William Predebon, chair of the Department of Mechanical Engineering-Engineering Mechanics at Michigan Technological University, traveled to Washington, D.C. last week to be inducted into the Pan American Academy of Engineering.

The Pan American Academy of Engineering was started in 2000 in Panama City, the first of its kind. It brings together engineers from across the continent of North America, South America and Mexico—a total of 18 countries. The Pan American Federation of Engineering Societies and the National Federations North America, South America, Mexico established the Academy to publicly honor the exceptional engineers, who, prestige of their profession, have contributed decisively to the progress of their country and continent.

He earned a bachelor’s degree from the University of Notre Dame in 1965 and his master’s and doctorate from Iowa State University in 1968 and 1970, respectively. He joined Michigan Tech’s ME-EM department in 1975. He was associate chair from 1993-1997. He has been chair of the department since 1997, and has transformed the program.

Under his watch, the ME-EM department has made great strides in conducting interdisciplinary research, growing the doctoral program, expanding research funding, and updating the curriculum and laboratories.

“The world is changing, and we need to respond to its challenges and opportunities,” says Predebon. “Most recently, we have witnessed the rise of big data as the fourth industrial revolution gets underway, leading to the digital mechanical engineering space. To produce leaders during this change, our Department is rapidly evolving our educational methods and our methods of research. We are leading the effort to infuse into our undergraduate and graduate curriculum the knowledge and critical skills to use big data, machine learning and artificial intelligence in the solution of engineering design problems.”

Predebon has been involved with the Pan American Academy of Engineering for just about two years—attending meetings, giving talks, and advising on mechanical engineering education and research—and will continue to do so in the future. “I am honored to be inducted into the Pan American Academy of Engineering and humbled to be included with other leaders from the Americas and Mexico,” he says.

 

Mechanical Engineering Among the Best in the Nation

Undergraduate students at work near the Wave Tank in Michigan Tech’s Department of Mechanical Engineering-Engineering Mechanics

The Mechanical Engineering program at Michigan Tech has once again been ranked among the finest in the country. Michigan Tech’s ME program is 34th in the 2020 U.S. News and World Report rankings of the “Best Undergraduate Mechanical Engineering Programs Among All Doctoral Granting Universities.”

William Predebon, chair of the Department of Mechanical Engineering-Engineering Mechanics (ME-EM) called the rankings a “major milestone” for the undergraduate ME program and a testament to the quality of the faculty and staff in ME-EM. “This ranking puts the Michigan Tech ME undergraduate program among the top doctoral granting ME programs in the nation. This ranking is recognition by our peers of the efforts of the faculty and staff to continually update our ME curriculum to reflect the future needs of our students. It is a team effort of faculty, staff and the support of the administration.”

U.S. News and World Report annually publishes rankings of the major undergraduate engineering degree programs in doctoral granting universities. The methodology used by U. S. News to make the list of top

programs, is that a department must receive seven or more top 15 nominations in a particular discipline. The nominations are from the department chairs of the respective engineering disciplines who are asked for nominations of up to 15 of the best engineering programs in their respective disciplines.

The U.S. News rankings are available here.

Dean Kamen Visit Featured in Daily Mining Gazette

During his day-long visit to Michigan Tech last week to recruit engineering and computing students, inventor and innovator Dean Kamen also met younger students on FIRST Robotics teams from 18 middle and high schools across Michigan’s Upper Peninsula. Photo by Matt Monte, monte.net.

HOUGHTON — Dean Kamen is looking for his next engineers. Having already hired Michigan Technological University students, he knew where to look.

“I love their kids,” he said. “They’re smart, they’re focused, they’re mature, they’re earnest. And we want more.”

Kamen, president of DEKA Research and Development, visited Tech Thursday. He spoke to engineering students and met Upper Peninsula students participating in the FIRST Robotics program, which he co-founded.

“They’ve been great to us at FIRST, they’ve supported FIRST teams for a long time,” said Kamen, whose 440 patents include the Segway. “Now we can return the favor and start hiring some of their graduates and it’ll be a win-win. We want the kids, they want careers.”

Read the full article by reporter Garrett Neese in the Daily Mining Gazette.

Undergraduate Engineering at Michigan Tech Climbs Higher in US News & World Report 2020 Rankings

Dean Janet Callahan stands in front of the summer gardens on campus at Michigan Tech
Janet Callahan, Dean of the College of Engineering, Michigan Technological University

Michigan Technological University has moved up in the latest US News & World Report ranking for Best Undergraduate Engineering Programs. Michigan Tech is now ranked 66th among 206 undergraduate engineering programs at colleges or universities that offer doctoral degrees in engineering. Michigan Tech’s ranking was 75th in the same rankings last year.

Janet Callahan, Dean of the College of Engineering at Michigan Tech, said that while she is pleased to see the rankings increase during her first year as dean, she is not surprised. “The faculty at Michigan Tech are incredible. The rise reflects the growing reputation of Michigan Technological University’s strong engineering programs,” she says. “We’re different from most other universities because of our central focus on engineering and technology. What this means for students is that if they love solving high-tech problems—they belong here!”

The US News rankings of undergraduate engineering programs accredited by ABET, the Accreditation Board for Engineering and Technology, are based solely on the judgments of deans and senior faculty at peer institutions. Additional details on the methodology may be found herewhich states:

US News surveyed engineering school deans and faculty members in spring 2019 and asked them to rate each program they were familiar with on a scale from 1 (marginal) to 5 (distinguished) for these rankings. Two peer assessment surveys were sent to each ABET-accredited engineering program.

US News has separate rankings for 206 undergraduate engineering programs at colleges or universities that offer doctoral degrees in engineering and for 210 engineering programs at colleges where the terminal degree in engineering is a bachelor’s or master’s. Two separate surveys and respondent groups were used, which means that deans and senior faculty only rated engineering programs within their institution’s ranking category.

Research at the graduate level often influences the undergraduate curriculum, and engineering schools with doctoral programs in engineering tend to have the widest possible range of undergraduate engineering courses and program offerings. 

In spring and early summer 2019, of those surveyed in the group where the terminal degree in engineering is a bachelor’s or master’s, 51.7% returned ratings; 71.6% did so for the doctoral group. This compares to a response rate of 33% in the engineering bachelor’s or master’s survey in 2018 and 58% for the doctoral survey in 2018.

US News used the two most recent years’ responses to calculate weighted average scores of programs in both categories. For example, a program that received 55% of its total ratings in 2019 and the remaining 45% in 2018 would have 55% of its overall score determined by its 2019 survey results and 45% by its 2018 survey results.

Learn more at mtu.edu/engineering.

Mining Engineering Returns to Michigan Tech

A class of 14 Michigan Tech field geology students stand at the entrance of the Caledonia Mine, Ontonagon County, Michigan. Photo courtesy of Steve Chittick.
Michigan Tech field geology students stand at the entrance of the Caledonia Mine, Ontonagon County, Michigan. Photo courtesy of Steve Chittick.

Starting this summer, Michigan Technological University offers a new, multidisciplinary Mining Engineering degree program for graduate and undergraduate students.

Administered through the Department of Geological and Mining Engineering and Sciences, the multidisciplinary program includes core mining and geological engineering courses as well as classes from almost all of the departments in the College of Engineering.

“At Michigan Tech, it’s a part of our heritage, and it’s part of the future, too,” says Leonard Bohmann, associate dean of engineering. “There’s a definite need for mining engineers, now and into the future. We can help fill that need, which extends far beyond renewed local mining concerns,” he adds. “There’s a global need for mining engineers.”

Paige in the mine

“Complex endeavors require skilled people with the technical understanding and innovative mindset to design systems to safely address multifaceted challenges,” says John Gierke, GMES department chair. “To develop mineral resources in a socially and environmentally responsible manner, we need mining engineering professionals who are adept at solving complex problems.”

Back to the Future

Although the Michigan Mining School was created to train mining engineers in 1885, dwindling enrollments led to shelving the program 15 years ago. “Thanks to strong engagement from our alumni, coupled with the advancing digital revolution that is changing how the industry moves into the next generation, the foundation for reintroducing the mining engineering program at Michigan Tech allowed for its reinstatement,” says Gierke. “Sometimes, one does not fully appreciate what they have until it’s gone.”

Today, 134 years since its founding, students can pursue a degree in mining engineering at Michigan Tech to gain an understanding of the technical aspects of the mining industry and an appreciation for mining as a business; and an awareness of social-environmental issues and how these issues affect their roles as future professional engineers working for the general benefit of society.

Matt Portfleet shows safe rock drilling practices to geology major Elana Barth in the Adventure Mine. Photo courtesy of Matt Portfleet.
Matt Portfleet shows safe rock drilling practices to Michigan Tech geology major Elana Barth in the Adventure Mine in Greenland, Michigan. Photo courtesy of Matt Portfleet.

Mining engineering students learn about health and safety best practices from practitioners. They are involved in multidisciplinary, hands-on, and field-based courses; learning and research opportunities in exploration and resource development; complementary coursework in mineral processing and business; advanced technologies for mapping, exploration, and education; and advanced computing and data science for optimizing mine design and operations.

Across the entire country, now, only 14 mining engineering degree programs exist in the US. Michigan Tech offers students several important advantages. “Students will learn about mining engineering in a collaborative academic department that is home to non only mining engineering, but also geological engineering, geology, geophysics, and volcanology,” says Gierke. “Our expert faculty work together in applying and developing new technologies to better understand geologic processes—and better understand how to safely develop and manage Earth resources from discovery to closure.”

Aeromagnetic survey, courtesy of Michigan Tech alumnus Benjamin Drenth, '03. An aeromagnetic survey is a common type of geophysical survey carried out using a magnetometer aboard or towed behind an aircraft. The principle is similar to a magnetic survey carried out with a hand-held magnetometer, but allows much larger areas of the Earth's surface to be covered quickly.
Aeromagnetic survey, courtesy of Michigan Tech geological engineering alumnus Benjamin Drenth, ’03. A magnetometer is aboard or towed behind an aircraft. It is similar to a magnetic survey carried out with a hand-held magnetometer, but allows much larger areas of the Earth’s surface to be covered quickly.

“Another great advantage for our students is Michigan Tech’s location in Michigan’s historical Keweenawan native-copper district,” notes Gierke. “Our students will have an abundance of hands-on, learning opportunities in working mines,” he says.

“The new way of mining is more data intensive. For instance, drone mapping makes it easy and possible to map a pit every day, versus mapping a pit once or twice a year via surveying,” adds Gierke. “Our students will become adept and experienced with new technologies. We’ll be educating mining engineers of the future.”

Want more info on mining engineering at Michigan Tech? Learn more online.

 

You’re invited: Write a Guest Blog for the Michigan Tech College of Engineering News

Photo of white old fashioned typewriter on an old wooden desk or tabletop.
Remember these? We sure do! Photo by Bernard Hermant.

Michigan Tech electrical engineering alumnus Charles L. Hand ’62 recently authored a guest blog, Circumnavigating Lake Superior, featured on the College of Engineering news website. Now that Chuck has paved the way with his wonderful article, we hope more alumni will want to do the same!

If you are a Michigan Tech engineering alumni, and you’d like to share a story on our news blog, please email your idea and/or article to Kimberly Geiger, outreach coordinator in the College of Engineering, kmgeiger@mtu.edu. We look forward to hearing from you!

 

Michigan Tech Alum Sirak Seyoum Attempts Mount Everest

Sirak Seyoum stands in front of what seems to be a massive crevasse on his climb up Mount Everest
Sirak Seyoum admires the dynamic Khumbu Glacier on Mount Everest

This past spring Michigan Tech ECE alumnus Sirak Seyoum, an electrical engineer living in San Francisco, took time off his professional position at Cargill to climb Mount Everest. His goal: to become the first Ethiopian to conquer Everest, the highest mountain in the world.

As a young boy, Sirak Seyoum grew up in Gondar, Ethiopia, idolizing sports legends like soccer superstar Pelé and Olympic marathon champion Abebe Bikila. After discovering his own passion 11 years ago, Seyoum has been climbing mountains pretty much nonstop ever since, some more than once, about 21 in all. (Scroll down to the end of this post to see the full list.)

Seyoum and members of his rope team started their trek from Lukla to Everett Base Camp on April 5th. Their bid for the summit took place 41 days later. Starting at Camp 4 at 9pm on May 15th, the team climbed throughout the night. By 9:54 AM the next morning, Seyoum was just 200-300 meters from the summit of Everest, at 28,210 feet. “I could literally feel the summit and how beautiful it was, but obeyed the order from my Sherpa, telling me to go back down.”

Check out Seyoum’s Everest Power BI chart, to see the live data gathered from his Gen3 satellite device throughout his climb.

Now back home in the Bay Area, Seyoum is already preparing for next year. He’s planning to climb Everest once again, but this time via the north side in Tibet, China—a more challenging and difficult route.

A head and shoulders photo of Sirak with yellow tent behind him, at Everest Base Camp for the first time, sitting in the dining room.
At Everest Base Camp for the first time, sitting in the dining room.

Q: When did you first start to climb mountains?
I began climbing in 2008 while living in Las Vegas, Nevada. It started out with a small hike up a 5,000 ft. mountain after declining a coworker’s repeated invites and then finally accepting. I was hooked right away and spent every weekend hiking and climbing.

Q: Does being an engineer help you as a mountain climber? And how does being a mountain climber help you as an engineer?
Interesting question. Being an engineer helps support part of my mountain climbing with the necessary funds needed to train for such climbs. Being a mountain climber helps me purge thoughts, and sometimes great ideas come to life during my climbs.

Q: This year especially, there were many news reports about overcrowding on Mount Everest. What was your experience, and how might the problem best be solved?
Overcrowding has always been an issue over the years but what makes this year stand out most is the amount of inexperienced climbers and Sherpas. The combination of both together is deadly. This year there were only a few days to plan the summit bid, due to bad weather. Our team went for the summit during the coldest period of the 2019 season which didn’t attract most climbers hence traffic was minimal. The temps were at -40 degrees. The winds were estimated at 35-45 km/hr.

Q: Is descending the mountain harder than climbing up? Is there a greater risk of falling?
Very true. Descending is more challenging because of muscle loss and fatigue due to not having enough calories during the entire climb.

Q: During your bid for the summit, while climbing at night at such a high elevation, how did it feel?
The stars are way closer and the sky seems to be running out of room for them. What’s also incredible is that at Everett Base Camp, during the day when the sun is out, we could hear the melting of the glaciers all around us, sounding like a tropical island with a nearby stream or waterfall. In the evening, melting stops and sounds of avalanche cascade one after another throughout the night. It was incredible.

Q: What was the biggest lesson you learned by attempting Mount Everest?
Never ever stop supplementing your body with electrolytes, water, and energy bars (Ollybars) during and after climbing, especially on the summit bid day.

Q: What was the best part?
The views from Lhotse Face. Reaching Camp 4 with ease and feeling the summit.

Q: What was the biggest challenge?
Lhotse Face. Standing just below Hillary Step, feeling the peak and deciding to turn back around.

Q: You plan to climb next year, via the North side. How will you prepare⁠—mentally, emotionally, physically⁠—for this more difficult route?
Though every step of climbing via the south side was challenging in every way, I have learned a lot about my abilities, and most of all nutrition. My tolerance for high altitude was much higher than I expected, which provides me with a huge boost of mental confidence. The rest will come in line because the hardest part of training is the mental confidence.

Q: Anything more to add?
I would like to recognize and thank my sponsors, Walia and Ollybars. I’d also like to thank Brenda Rudiger, Assistant Vice President for Alumni Engagement at Michigan Tech, for mailing my MTU neck gator and MTU stickers. I have one showing on my mountaineering suit, top left side.

Seyoum’s conquest of some of the most challenging mountains around the world is testament to his level of fitness. Visit Sirak Seyoum’s Facebook page to read posts and watch videos from his climb of Mt. Everest, and learn more about his second attempt.

Last, but not least: While a little anxious, Seyoum’s mother, Dr. Fantaye Mekbeb is his number one fan. Seyoum’s father, Dr. Seyoum Taticheff, passed away in 2011 but was always proud and supportive of his son’s mountain climbing ambitions.

Crossing the Geneva Spu with oxygen mask onr, on exposed rocky sections. Around the bend is Camp 4.
Crossing the Geneva Spur, on exposed rocky sections. Around the bend is Camp 4.

Seyoum at Camp 2 holding up a big blue flag that says Walia prior to heading up to Camp 3, and higher. Walia beer, a product of Heineken primarily sold in Ethiopia, was one of Seyoum's climbing sponsors.
Seyoum at Camp 2 prior to heading up to Camp 3, and higher. Walia beer, a product of Heineken primarily sold in Ethiopia, was one of Seyoum’s climbing sponsors.

April 2019: Sirak Seyoum at High Camp Lobuche, Nepal

Sirak stands with backpack at Gorakshep, a small Himalayan Village at an elevation of about 16,942 ft. Note the iconic sign, "Way to Everest Base Camp".
At Gorakshep, a small Himalayan Village at an elevation of about 16,942 ft. Note the iconic sign, “Way to Everest Base Camp”.

Sirak with heavy backpack n the trail, shortly after leaving Hotel Everest View at about 13,000 ft.
On the trail, shortly after leaving Hotel Everest View at about 13,000 ft.

On the way back down, at one of the many suspension bridges, Seyoum takes a final selfie
On the way back down, at one of the many suspension bridges, a final selfie

Sirak Seyoum with fellow climbers Keval Kakka and Avtandil Tsintsadze in Lobuche, Nepal.

A previous climb: Sirak in the lead on Mt. Chopicalqui, Peru (2015)

Sirak Seyoum waves the Ethiopian flag atop Mt Chopicalqui, Peru (2015)
Atop Mt. Chopicalqui, Peru (2015)

All the mountains (excluding Everest at 8,848 meters) Seyoum has climbed to date:

UNITED STATES
Mt. Rainier, WA, 4392 meters
Mt. Whitney, CA, 4421 meters
Mt. Shasta, CA, 4321 meters
Mt. Wilson, NV, 2056 meters
Mt. Charleston, NV, 2289 meters
Griffith Peak, NV, 3371 meters
Black Mountain, NV 5092 meters
Bridge Mountain, NV, 6955 meters
Mummy Mountain, NV 2264 meters
Rainbow Wall, Red Rock Canyon, NV

MEXICO
Nevada de Toluca, 4680 meters

NEPAL
Mt. Kalapathar, 5644 meters
Island Peak, 6189 meters
Lobuche East, 6119 meters

PERU
Mt. Chopicalqui, 6345 meters
Mt. Pisco5752 meters
Mt. Urus, 5423 meters
Mt. Ishinca, 5530 meters

ECUADOR
Mt. Cotopaxi, 5897 meters
Mt. Chimborazo, 6263 meters
Mt. Antisana, 5704 meters

 

Expanded Online Engineering Programs, Certificates, and Course Offerings

Using computer simulation to design new materials and guide new processing methods, a student sits at a computer with code on one screen and microimages of metallurgical materials on a big screen above.
Using computer simulation to design new materials and guide new processing methods.

Michigan Tech’s College of Engineering is expanding undergraduate and graduate online course offerings. This will enhance learning opportunities for undergraduate students who are off-campus for an internship or coop experience, and also significantly increase graduate level opportunities for learning new skills.

Lifelong learning and professional development are desired by many employers. Get a leg up on your career advancement or take courses to fulfill continuing education requirements. Learn more about what online programs are currently available and to apply for regular admissions or non-degree seeking graduate student status.

Available online course offerings exist in civil and environmental engineering, electrical and computer engineering, engineering, materials science and engineering, and mechanical engineering-engineering mechanics. A sample of courses offered this Fall 2019 include MEEM5650 Advanced Quality Engineering, MEEM5655 Lean Manufacturing, CEE5212 Prestressed Concrete Design, EE5455 Cybersecurity Industrial Control Systems, and MSE5760 Vehicle Battery Cells and Systems.

A series of new graduate certificate offerings are under development, to be launched in 2020, including topics in Manufacturing, Industrial Applications and Practices, and more. These graduate certificates will typically have 9 or 10 credits, and can be “stacked” with each other over time, leading to a master’s degree from Michigan Tech.

Learn more about what online programs are currently available and to apply for regular admissions or non-degree seeking graduate student status.

Questions? Please contact College of Engineering Associate Dean for Academic Affairs, Dr. Leonard Bohmann.