Category: Features

When you mark something as “Features” you are forcing it to the top of the news page on news and events.

Joshua Pearce: 3D Printing Waste into Profit

Joshua Pearce shares his knowledge on Husky Bites, a free, interactive webinar this Monday, September 14 at 6 pm EST. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Dr. Joshua Pearce is the Richard Witte Endowed Professor of Materials Science and Engineering and Professor, Electrical and Computer Engineering

Want to know how you can save money, even make money, by turning your household waste into valuable products? Well, you’ve come to the right place. Professor Joshua Pearce and alumna Megan Kreiger, will cover the exploding areas of distributed recycling and distributed manufacturing. They’ll also explain just how using an open-source approach enables the 3-D printing of products for less than the cost of sales taxes on commercial equivalents.

3-D printing need not be limited to household items. In other words, don’t be afraid to think big—like the whole house! Kreiger’s team was the first to 3-D print a building in the Americas and last year they 3-D printed a 32-foot-long reinforced concrete footbridge.

Yes, you can 3-D print concrete, in addition to plastic and metal.

Kreiger was Pearce’s very first Michigan Tech graduate student. She earned her BS in Math in 2009, and her MS in Materials Science and Engineering in 2012, both at Michigan Tech. She is now Program Manager of Additive Construction at the US Army Engineer Research and Development Center.

Kreiger says she first became aware of 3-D printing at Michigan Tech, while working in Pearce’s 3-D printing lab. She worked with Pearce to show that distributed recycling and distributed manufacturing were better for the environment than traditional centralized processes.

“As the Program Manager for Additive Construction for ERDC, I lead a team of amazing researchers composed of engineers, scientists, technicians, and students,” says Michigan Tech Alumna Megan Kreiger. They created the first 3D printed footbridge in the Americas. “We were the first to look at continuous print operations and printing on unprepared surfaces.”

Pearce and his team of researchers in the MOST Lab (Michigan Tech Open Sustainability Technology) continue to focus on open and applied sustainability. As the Richard Witte Endowed Professor of Materials Science and Engineering, with a joint appointment in the Electrical and Computer Engineering, Pearce conducts research on photovoltaics ⁠— the materials behind solar energy⁠ — as a means to generate power in regions of the world where electricity is unavailable or prohibitively expensive. His research is also internationally renowned for its work in open source 3-D printing in order to enable both individuals as well as underserved regions to gain manufacturing capabilities.

Michigan Tech’s Open Source Hardware Enterprise developed the Granulator, a machine used to grind up plastic waste into usable feedstock that can be used in a filament extruder. Be sure to check out their site to learn more.

The MOST Lab, a cornerstone of Michigan Tech’s open source initiative, fosters strong collaboration between graduate and undergraduate researchers on campus—and with vast open source international networks, visiting scholars and industrial partners. Currently, most 3-D printing is done with virgin polymer feedstock, but research conducted by Michigan Tech’s MOST lab has shown that using recycled 3-D printing feedstock is not only technically viable, but costs much less, and is better for the environment.

Pearce is the advisor of the multidisciplinary, student-run Open Source Hardware Enterprise, part of Michigan Tech’s award-winning Enterprise Program. Dedicated to the development and availability of open source hardware, the Enterprise team’s main activities: Design and prototype, make and publish—and collaborate with community.

Professor Pearce, when did you first get into engineering? What sparked your interest?

Pearce’s latest book project: Create, Share, and Save Money Using Open-Source Projects (October 2020), soon be published by McGraw Hill.

It happened just as I began to choose what type of graduate school to pursue. I was a physics and chemistry double major at the time. One of my close friends, a physics and math double major, claimed he never wanted to work on science with an application. As for me, I was painfully aware of the enormous challenges facing the world, challenges I believed could at least partially be solved with applications of science. That day my career trajectory took a definite tack towards engineering.

Family and Hobbies?

I live with my wife and children, all consummate makers, in the Copper Country. Old hobby: when flying, picking out how many products I could make for almost no money from the SkyMall catalog. New hobby: sharing how to do it with other people.

Megan, when did you first get into engineering? What sparked your interest?

Throughout high school I had a profound love of mathematics. I took every math class I could, and graduated a semester early. This love of mathematics drove me to engineering. I started my undergraduate degree in 2004, but switched over to Mathematics after an injury and a bad-taste-in-my-mouth experience during a summer engineering job. I graduated during the recession of 2009 and after one year off, decided to return to Michigan Tech for my graduate degree. I had an interest in recycling and earned an MS in Materials Science and Engineering while obtaining a graduate certificate in Sustainability. That’s when I fell in love with 3D printing. My passion has evolved into the union of materials science and additive manufacturing. I push the bounds and perceptions of large-scale additive manufacturing / construction.

Michigan Tech alumna Megan Kreiger is Program Manager for Additive Construction for US Army Corps of Engineers. She is also project manager and technical lead on Additive Manufacturing & Robotics projects.

Hometown, Family and Hobbies?

I grew up in rural Montana with my brother, raised by eco-friendly parents. At Michigan Tech while pursuing my degree, I spent her time hiking, snowboarding Mont Ripley, and backpacking the 44 miles of the Pictured Rocks National Lakeshore with my husband. We now live in Champaign, Illinois, with our two children and our three at-home 3D printers. We spend our time raising chickens, wrangling pets (and kids), and working to modernize the construction industry for the US Military through the integration of concrete 3D printers.

Megan Kreiger and her team completed the first full-sized 3D printed concrete building in the United States, printed entirely in a field environment.

Read more:

MTU Engineering Team Joins Open-source Ventilator Movement

Q&A with the MTU Masterminds of 3D-printed PPE

Just Press Print: 3-D Printing At Home Saves Cash

Power by the People: Renewable Energy Reduces the Highest Electric Rates in the Nation

Husky Bites Returns for the Fall, Starts Monday

What are you doing for supper each Monday night this fall? Join College of Engineering Dean Janet Callahan and special guests at 6 p.m. (EDT) each Monday, for a 20-minute interactive Zoom webinar, followed by a Q&A session.

Launched last June during the pandemic and back by popular demand, the fall season of Husky Bites starts Monday (Sept. 14). Each “bite” is a free, suppertime mini-lecture, presented by a different Michigan Tech faculty member. They’ll weave in a bit of their own personal journey, and bring a co-host, too — an alumnus or current student who knows a thing or two about the topic at hand.

Important note: Even if you registered for Husky Bites last summer, you will need to register again — a second time — for fall at mtu.edu/huskybites.

Know others who might be interested? Feel free to invite a friend. All are welcome. “We’ve had attendees from nine countries, and a great mix of students, alumni, our Michigan Tech community and friends,” says Dean Callahan, who mails out prizes for (near) perfect attendance, too. (Last summer there were Husky Bites t-shirts, and Michigan Tech face masks, sewn right here in Houghton).

The series kicks off Monday (Sept. 14) with a session from Joshua Pearce (ECE/MSE), with co-host Megan Kreiger, Pearce’s first Michigan Tech grad student. Want to know how you can make money turning your household waste into valuable products? Well, you’ve come to the right place. Professor Joshua Pearce and his co-host, alumna Megan Krieger, will cover the exploding areas of distributed recycling and distributed manufacturing. They’ll also explain just how using an open-source approach enables the 3-D printing of products for less than the cost of sales taxes on commercial equivalents.

Get the full scoop and register (or re-register) at mtu.edu/huskybites.


Here’s a quick rundown of our Fall 2020 lineup, below:

Monday, 9/14
Joshua Pearce — “3D Printing Waste into Profit,” with co-host Megan Kreiger, Program Manager, Additive Construction, US Army Engineer Research and Development Center (ERDC) and Michigan Tech (Math ‘09, MSE‘12) alumna.

Monday, 9/21
Bill Sproule (professor emeritus CEE) — “Michigan Tech, and the Stanley Cup,” with co-host John Scott, NHL All-Star MVP and Michigan Tech alumnus (ME ‘10).

Monday, 9/28
Sarah Ye Sun (ME-EM) — “Nice Shirt! Embroidered Electronics and Motion-Powered Devices,” with co-host George Ochieze, a current Michigan Tech student.”

Monday, 10/5
Orhan Soykan (BioMed) — “Prolific Inventing,” with co-host Dr. Tim Kolesar, MD, development quality engineer, Abbott Labs, and a Michigan Tech alumnus (BME ‘19).

Monday, 10/12
Erik Herbert (MSE) — “Holy Grail! Energy Storage on the Nanoscale,” co-host TBD.

Monday, 10/19
Tim Havens (CC) — “Warm and Fuzzy Machine Learning,” with co-host Hanieh Deilamsalehy, a machine learning researcher at Adobe and Michigan Tech alumnus (ECE ‘17).

Monday, 10/26
Paul Bergstrom (ECE) — “Quantum Dot Devices and Single Electron Transistors,” co-host TBD.

Monday, 11/2
Mary Raber (PHC) — “Solving Wicked Problems,” co-host TBD.

Monday, 11/9
David Shonnard (ChE) —” Waste Plastics are Taking Over the World and The Solution is Circular,” co-host TBD.

Monday, 11/16
TBD

Monday, 11/23
Bill Predebon, (Chair ME-EM) — “Say Yes to the Quest,” with co-host Marty Lagina, CEO, Heritage Sustainable Energy, winemaker, Michigan Tech alumnus (ME ‘77), and reality TV show star (Curse of Oak Island): “Say Yes to the Quest,” with co-host Bill Predebon, (Chair ME-EM)

Monday, 11/30
Pengfei Xue (CEE) — “What Superior (the Supercomputer) Tells Us About Superior (the Lake),” co-host TBD.

Monday, 12/7
Raymond Shaw (Physics) — “Lake Superior in My Driveway: Lake Effect Snow in the Keweenaw,” with co-host Will Cantrell, dean of the Graduate School.

Gordon Parker: Control Systems—Math in Motion

Three meters wide x 10 meters long. Eight paddles One-sided glass panel for easy visibility. Can you guess what this is?

Gordon Parker generously shared his knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

What do machines that move all have in common? Control systems that coordinate the machines. 

Can you recognize a control system when you see one? How about a controlled dynamic system? Well, after 20 minutes with Professor Gordon Parker, John & Cathi Drake Endowed Chair in Mechanical Engineering, you will. And then some…

“My most important and satisfying professional objective is sharing my passion for dynamics and controls with students,” says Dr. Gordon Parker.

“I’ve been working on control system theory and design for (gulp) 32 years with applications such as rockets, spacecraft, ships, cranes, ground vehicles, microgrids, wave energy converters, and more,” says Gordon. “I love working with students and colleagues to field control systems—the bigger, the better.”

Last April, our own Gordon Parker became one of just four instructors at Michigan Tech to receive the inaugural Provost’s Award for Sustained Teaching Excellence. The award brings special recognition to instructors who have been nominated as finalists for the Distinguished Teaching Award four or more times.

Mike Agostini knows firsthand Parker’s effective teaching and mentoring. Nowadays, Agostini is a senior manager of application engineering at The MathWorks in Boston. Back in 2001, he was a graduate student working with Parker to design control strategies for large boom cranes mounted on ships at sea.

“The goal was to minimize vibration from inputs,” explained Agostini. “Inputs could come from operator commands or from ship motion. We injected crane commands on top of the ship-induced motion to minimize vibration of the payloads. The payloads could be 30-plus tons, in containers 40 feet on a side. The chance for uncontrolled swing to damage property or lives was significant. It is for this reason that ship cranes traditionally have been limited to operating in very calm seas,” he says.

Example of a crane operation on a ship.

“The most enjoyable aspect was the tool building,” adds Agostini. “We had both a ship crane (on the ship) as well as a scale model crane at Sandia National Labs. But the utility of using them for day-to-day research was limited. They were simply too expensive and difficult to access regularly. So we built high-fidelity models, and took the algorithms we built and tested in software to the hardware.

“It was and incredible feeling to be on a crane ship rolling back and forth 14 degrees and see a huge 35 meter boom crane automatically actuating to compensate. So much steel and hardware under command of software and algorithms you helped design,” says Agostini. “But better than that was working with Dr. Gordon Parker. He really helped me mature as an engineer. His mentoring has helped make me the person I am today.”

Nowadays, Parker still specializes in control system design, and a key area of his research is the optimal control of microgrids. A microgrid is a local energy grid with control capability, which means it can disconnect from the traditional grid and operate autonomously, or independently.

Underwater robots and autonomous vehicles rely on battery power. When working in the middle of the ocean or other large body of water, charging sources aren’t readily available. Parker is developing a solution for this problem, tapping into the energy that comes from ocean waves.

Parker and his research team work on providing an energy source through a floating microgrid system, or a marine energy grid. “We’re developing control strategies that bridge the gap between the theoretical models and the realistic conditions you find on the ocean,” Parker explains.

Using the wave tank on the Michigan Tech campus, Parker pairs machine learning with model predictive control to help engineers measure key parameters accurately and predict wave energy converter (WEC) behavior. (Hey, and Yes, there is a wave tank in the basement of the R.L. Smith Building, with state-of-the-art instrumentation for WEC studies. Wave tanks create reproducible wave fields to aid the understanding of the motion of submerged and partially submerged bodies, such as underwater vehicles, ships, and WECs.

Michigan Tech’s Wave Tank research facility is located in the Department of Mechanical Engineering-Engineering Mechanics. Among its key uses: developing control systems for wave power, capturing the energy of waves in the ocean, or other large bodies of water.

“There’s a spectrum of wave energy converter systems in development right now. And there’s an opportunity in controlling these systems in interesting and sophisticated ways,” says Parker.

How? “In a control scheme, we look up a device, harmonize with the wave field, and resonate. With reinforcement learning, we can look at what is happening in the wave field and other wave energy converters in the array and try different controls. Our system is penalized if it doesn’t perform well and rewarded if it does,” says Parker.

Wave Energy Converters (WECS) are devices with moving elements directly activated by the cyclic oscillation of waves to harvest energy from ocean waves. Power is extracted by converting the kinetic energy of these displacing parts into electric current.

“We are analyzing the potential of exploiting the interactions between converters in compact arrays. After small scale tank testing we could potentially look at testing in the Great Lakes,” says Parker. 

Michigan Tech students are heavily involved in the research through senior design projects—developing a wave tank testing model of a wireless WEC. And a research team in Parker’s research lab, the Intelligent Systems and Control Laboratory, is creating a WEC array that extracts maximum power.

Another look at the Michigan Tech Wave Tank. Want to see and hear it? Check out the video link at the end of this post.

“These control schemes and marine energy grids have applications beyond refueling unoccupied underwater vehicles,” says Parker. “They can be applied to environmental sensing, too.” That includes monitoring meteorological conditions, sea-water chemical/physical properties, tsunamis and storm surges, fish and other marine life, coastal and sea-floor conditions.

There are microgrids on land, too, of course, and space. Parker is an expert on microgrids of all kinds. At Michigan Tech, he co-founded the Agile and Interconnected Microgrid (AIM) Center to bring together faculty from across campus—Computer Science, Mathematics, Cognitive Sciences and Learning, Electrical and Computer Engineering and Mechanical Engineering—to form an interdisciplinary team. AIM now has 18 researchers spanning seven academic units whose customers include NSF, ONR, NAVSEA, ARL, TARDEC, AFRL, DOE, and Sandia National Laboratories.

When he’s not teaching undergraduates, advising senior design teams, or mentoring graduate students, Parker is creating content for his popular, 64 segment, open source, video series on control system analysis and design. The series is used internationally by students on YouTube.

Before coming to Michigan Tech, Parker was a research fellow at Sandia National Laboratories in Albuquerque, New Mexico, where he developed systems for large angle spacecraft reorientation and fault-tolerant robots. He also worked as an aerospace engineer for General Dynamics Space Systems in San Diego, California, designing trajectories for new launch vehicle systems.

Parker earned a PhD in Mechanical Engineering at SUNY Buffalo, an MS in Aerospace Engineering at the University of Michigan, and a BS in Systems Engineering at Oakland University.

Dr. Parker, when did you first get into engineering? What sparked your interest?

My passion for control systems first occurred in a single, identifiable moment. I was in the third year of my undergrad studies in a class similar to a course at Michigan Tech, Dynamic Systems (MEEM 3750). This is where we learned about differential equation modeling of mixed physics systems—motors, masses, and springs. I was looking out the window at the tree branches swaying in the breeze. (Okay, perhaps I should have been paying attention to the Prof., but the truth is what it is.) That’s when it clicked. The motion of the branches, vibration, was similar to what we were learning—and it could be modeled with math and then controlled.

At that point I was hooked on the notion of using math to predict how things respond to being poked—including machines, the stock market, etc.—and then devising control systems to make them do what you want. By the way, in theory, this should work with people, but I’ve not cracked that nut.

Hometown, Hobbies, Family?

My most important and satisfying professional objective is sharing my passion for dynamics and controls with students—from application-focused undergraduate courses to theory-laced graduate-level material. Hopefully some of that sticks, and is multiplied through their achievements, both professionally and personally.

I’ve been at Michigan Tech for 24 years now, while raising two wonderful kids with my wife, Karen. We now live in the woods outside of town enjoying the wildlife (not the wild life), fitness (usually followed by physical therapy), baking bread, and exploring the esoteric features of MATLAB/Simulink.

Learn More

Play Michigan Technological University Compact 3D Wave Flume video
Preview image for Michigan Technological University Compact 3D Wave Flume video

Michigan Technological University Compact 3D Wave Flume


Audra Morse: Two Triangles Don’t Make a Right

Dr. Audra Morse is focused on water, especially the fate of microplastics in water. When she’s not busy leading the Department of Civil and Environmental Engineering at Michigan Technological University, that is.

Are you heading to college soon to study engineering, or thinking about it? Please join us tonight, Tuesday, July 28 at 6 pm EST for Tips and Tricks from Three Chairs and a Dean, our free interactive Zoom short course. We’d like to show you all the tips and tricks we wish someone had shown us, back when we were all starting out. 

This week the focus is on triangles. Dr. Audra Morse, chair of the Department of Civil & Environmental Engineering at Michigan Tech will be talking triangles. “High school geometry topics you never knew you needed will be put into context to solve engineering problems,” she says. “I’ll provide more engineering survival tips along the way.”

Join us at FB Live on the College of Engineering FB page, or go to the Zoom session (so you can participate in the Q&A).

Grab some supper, or just flop down on your couch. Know someone who might be interested? Feel free to bring or refer a friend. Everyone’s welcome! Get the full scoop and Zoom link at mtu.edu/huskybites.

The Morse Family! They once lived in Texas. Now Dr. Audra Morse (Civil and Environmental Engineering) and Dr. Steve Morse (Department of Mechanical Engineering) make their home at Michigan Tech.

Dr. Morse, when did you first get into engineering? What sparked your interest?

I chose to pursue engineering because I like science. I knew I did not want to be a doctor or a nurse. I did not think a biology or chemistry degree was for me. Engineering allowed me to combine my love of science with math, and make a difference in the world we live in.

Hometown, Family, Hobbies?

I grew up in Spring, Texas, which is just north of Houston. I attended Texas Tech and worked there before moving to Houghton. I have two boys and a wonderful husband. In my spare time I like to paint and walk my loving vizsla and a rowdy german short hair. My hero is Mary Poppins. 

Steve Kampe: Hey, there’s MSE in Your Golf Bag!

True or false: When it comes to golf, it’s not the swing that matters the most—it’s the materials used to make the club. (Ah, unfortunately, false.)


Steve Kampe generously shared his knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

“The sporting goods industry has a history of using materials as an enticing means to market new products and breakthroughs,” says Steve Kampe, Franklin St. John Professor and Chair of the Department of Materials Science and Engineering at Michigan Tech. “I’m always interested in what materials they uncover, and the marketing strategies they use.”

Kampe likes to use clubs in his golf bag as examples of how materials are designed, and how they work. “There’s fun in finding material science in everyday objects. Everything has to be made out of something,” adds Kampe. “The question is out of what—and how do we make it?”

“Where there are breakthroughs in new products and solutions, chances are an MSE is hard at work, often behind the scenes, at its root source,” says Steve Kampe, professor and chair of the Department of Materials Science and Engineering at Michigan Tech.

These are the questions engineers at Michigan Tech have been asking since the university’s founding in 1885, and the task that graduates from the (MSE) department have excelled at since its inception as one of the two founding departments at the Michigan School of Mines in Michigan’s Upper Peninsula. 

Back then, the department was known as Metallurgy, and its focus was on ways to extract valuable metals, such as copper or iron, from their naturally occurring states within minerals and underground deposits.  

Today, the discipline of materials science and engineering finds ways to use the fundamental physical origins of a material’s behavior in order to optimize its properties. “The invention of a new material could turn out to be a vital part of the solution to many of the challenges we now face,” notes Kampe.

“Since the beginning of recorded history, materials have been used to define our civilizations—and the evolutionary milestones associated with quality of life,” he explains.

“From the stone age to the bronze and iron ages, the materials and the human innovations that addressed the world’s challenges during those time periods, have been inextricably linked. Even today, our ability to address global challenges are heavily reliant on the materials that define our current generation,” he says.

“A lot hinges on the wisdom we possess in implementing in use of materials, and, increasingly, in their re-use.”

Contemporary materials science engineers (MSE’s) not only work with metals and alloys, but also with ceramics and glasses, and with polymers and elastomers. They work with composites, materials for electronic, magnetic and optical applications, and many other emerging materials and processes such as 2-D graphene, nanomaterials and biomaterials. Emerging materials include those for 3D printing (or additive manufacturing), smart materials, specialized sensors, and more.

A ceramic crucible in the Michigan Tech Foundry, containing molten
iron at approx. 1200°C.

“For example, MSEs are prominent in the conception and development of new battery technologies, as well as new lightweight materials that make cars and airplanes more fuel-efficient and reduce their CO2 footprint. MSEs are also involved in the development of new materials for the hydrogen economy, photovoltaics for sustainable solar energy, and materials that can convert kinetic energy into electrical and/or magnetic energy.

“The materials we use in our lives have a huge impact on our long term quality of life—and a huge impact on our ability to someday attain a circular economy and a sustainable world,” adds Kampe.

“Right now, today, we have the tools and data we need to make more intelligent decisions about the materials we use⁠ — to decide which materials, even some not yet invented, that would make the biggest difference. Our goal is to reduce or eliminate our dependence on unsustainable solutions.”

Despite its central importance to all engineering endeavors, MSE as a discipline is relatively small compared to other engineering disciplines such as mechanical, electrical, civil, and chemical engineering. 

Polished surface of ductile cast iron. Micrograph by MSE graduate Dan Frieberg.

“It’s one of the best aspects of being an MSE,” says Kampe. “Class sizes are small, so students are able to build strong networks with classmates, faculty, staff—and with like-minded colleagues from other universities and companies from around the world. Our small size also enables collaborative environments with lots of personal interaction and one-on-one mentoring.”

Not only is Kampe a member of the Michigan Tech faculty, he is also an alumnus, earning a Bachelor’s, Master’s and a PhD in Metallurgical Engineering, all from Michigan Tech. He joined academia after working in the corporate research laboratory for a major aerospace company where scientists and engineers developed new products and technologies for the company’s future. He spent 17 years as an MSE professor at Virginia Tech, before coming full circle back to Michigan Tech.

Microstructure of demagnetized neodymium iron boron (Nd2Fe14B) alloy showing magnetic domain contrast within individual grains; an optical micrograph using polarized illumination. Micrograph by MSE graduate Matt Tianen.


At Michigan Tech, the MSE department manages the university’s suite of scanning electron and transmission electron microscopes, including a unique, high resolution scanning transmission FEI Titan Themis, which all students use, even as undergraduates.

Can you guess what this is? Hint: it’s not a snowflake. A dendrite in an as-cast Zn-Ag alloy. Micrograph by Ehsan Mostaed, post-doctoral research associate.


Have you ever put one of your own golf clubs under a high-powered microscope? Would you ever allow a student, a Michigan Tech alum, or even a community member to do something like that?

Sure. Bring one in. We’ll chop it up and take a good look at it.

When did you first get into engineering? What sparked your interest?

I grew up in Williamston, outside of East Lansing, downstate Michigan. My dad had degrees in agricultural and mechanical engineering, so life on Trailmark Farm was pretty much a hands-on engineering operation. For as long as I can remember, getting an engineering degree was pretty much a given for me—I just didn’t know where it would be from. My two older brothers went to Michigan Tech for engineering and really liked it, so Tech became the obvious destination for me, too. My individuality was manifested by my choice to pursue metallurgical engineering, which has close ties to chemistry and the sciences, my favorite subjects in high school. Perhaps I was also influenced by all the fracture surfaces I created during my time growing up on the farm.

Family and Hobbies?

All four siblings in my family (two brothers, a sister, and me) went to Tech. From those original four, there have been eight additional Huskies from the Kampe clan—three spouses including Associate Provost Jean Kampe; our son, Frank (BS Marketing); a niece and nephew, and two first cousins.

I enjoy spending time outdoors hiking, biking, snowshoeing, and especially tending to the chores on the small farm up near Quincy Mine in Hancock where Jean and I live— growing flowers and harvesting the fruit. In winter, I follow the Huskies, both hockey and basketball. I also skate twice a week in (faculty-rich) hockey gatherings.

And yes, I enjoy golfing but have been denied this passion for the past few years due to a prolonged shoulder injury.

Read more

Universities the World Needs: Michigan Tech MSE
Keys to a Unique Nameplate
Advanced Metalworks Enterprise
MakerMSE

Joe Foster: Through the Looking Glass! Geospatial Wizardry

Joe Foster shares his knowledge on Husky Bites, a free, interactive webinar this Monday, July 13 at 6 pm EST. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

What if you had a high-tech job, but spent your work day outside, enjoying nature and fresh air each day? If you like computing, and the great outdoors, you need to learn more about what it takes to become a geospatial engineer.

Joe Foster is a professor of practice in the Department of Civil and Environmental Engineering at Michigan Tech. He teaches courses in the elements of land surveying. He has served as a Principal for successful Land Surveying companies in both Minnesota and Michigan, directing and overseeing a wide range of projects. “I’m also an old Michigan Tech alum, with a Bachelor’s degree in Forestry, and a second Bachelor’s degree in Surveying, both from Michigan Tech,” he notes.

Joe Foster is a professor of practice in the Department of Civil and Environmental Engineering at Michigan Tech.

Studying geospatial engineering is both an adventure and a learning experience, says Foster. A lot of learning⁠—and geospatial wizardry⁠—takes place outdoors, in the field.

“Surveyors are experts at measuring,” Foster explains. “A myriad of equipment have been used over the years to accomplish the task, tools of the trade, so to speak. Over time, Surveying has evolved to become more, known now as Geospatial Engineering.”

Surveyors, now known as Geospatial Engineers, measure the physical features of the Earth with great precision and accuracy, calculating the position, elevation, and property lines of parcels of land. They verify and establish land boundaries and are key players in the design and layout of infrastructure, including roads, bridges, cell phone towers, pipelines, and wind farms.

And they are in demand. “There is an ongoing need for Surveyors,” says Foster. “Jobs are open and can’t be filled fast enough. We have a great need for those with an interest and aptitude for the profession.”

All land-based engineering projects begin with surveying to locate structures on the ground,” says Foster. Numerous industries rely on the geospatial data and products that geospatial engineers provide. With advances in technology, the need is increasing, too⁠—from architectural firms, engineering firms, government agencies, real estate agencies, mining companies and others.

Geospatial engineering students at Michigan Tech use satellite technology GPS and GIS to determine locations and boundaries.

Out in the field, Geospatial Engineers peer “through the looking glass” using numerous tools. “Robotic total stations, GPS receivers, scanners, LiDAR, and UAVs only scratch the surface of what is available in the toolbox,” says Foster.

Three theodolites on campus at Michigan Tech

Advances in GPS technology have led to the use of Geographic Information Systems (GIS) for mapping, as well as geospatial data capture and visualization technologies. Geospatial engineers also use virtual reality integration, Structure from Motion (a technique which utilizes a series of 2-dimensional images to reconstruct the 3-dimensional structure of a scene or object, similar to LiDAR), and unmanned aerial vehicle systems (drones). At Michigan Tech, students learn to use these tools, too.

Geospatial engineering students choose from two concentrations, says Foster. “Professional Surveying prepares students to become state-licensed professional surveyors. Students learn to locate accurate real property boundaries, conduct data capture of the natural/man-made objects on the Earth’s surface⁠—and conduct digital mapping for use in design or planning.” 

Geospatial engineers use drones, too.

The second concentration is Geoinformatics. “Students learn to manage large volumes of digital geo-information that can be stored, manipulated, visualized, analyzed, and shared,” he adds. “Students use more Geographic Information Science (GIS) tools, remote sensing, big data acquisition, and cloud computing.”

Do you love math + computing+ the great outdoors? Geospatial engineering combines all those things.

Once you’re working as a geospatial engineer, you could end up using both concentrations. “Land surveying and geographic information systems (GIS) are complementary tools,” he says.

Foster is excited about the growth of opportunities in the profession. During his own career, Foster worked as a principal for successful land surveying companies in both Minnesota and Michigan, directing and overseeing a wide range of projects, including boundary, county remonumentation, and cadastral (USDA-FS) retracement surveys; topographic, site planning, and flood plain surveys; mine surveys (surface and underground); plats and subdivisions; and both conventional and GPS control surveys. He’s managed contracts with the USDA-Forest Service, mining companies in Northern Minnesota, the State of Michigan, and more. 

Foster is also a member of the Michigan Society of Professional Surveyors (MSPS). At Michigan Tech, he’s advisor to the Douglass Houghton Student Chapter of the National Society of Professional Surveyors (DHSC). Last year the group continued their tradition with the annual General Land Office (GLO) Workshop. Sponsored by DHSC and conducted by Pat Leemon, PS, retired U.S. Forest Surveyor from the Ottawa National Forest, it is a search/perpetuation of an original GLO corner. “That’s a once in a lifetime experience for a Surveyor,” says Foster.

Brockway Mountain, Copper Harbor, Keweenaw County. Getting there will take you on the highest above sea-level drive between the Rockies and the Alleghenies. The peak is the highest point in Michigan.

When did you first get into surveying? What sparked your interest?

I first got interested in Surveying while studying forestry at Michigan Tech.  Surveying was one of the courses in the program. That’s where I learned there could be an entire profession centered on surveying alone.  I was hooked.  It incorporated everything I had come to enjoy about forestry; working outside, using sophisticated equipment, drafting, and actually putting all the math I had learned to practical use. After earning my first bachelor’s degree in Forestry, I decided to get a second bachelor’s degree in Surveying and to pursue that as my career.  

Tell us about your growing up. What do you do for fun?

I was born and raised in Michigan and have worked in the forest product industry and surveying profession for over 25 years. Work has taken me to just about every corner of Northern Minnesota and Michigan’s Copper Country. I came to know my wife, Kate at Fall Camp at Alberta, at Michigan Tech’s Ford Forestry Center. We made our home in the Keweenaw, where we both have strong family ties.

Lake Superior is our first love, and one that we share. Here’s a little known fact….Keweenaw County has the highest proportion of water area to total area in the entire United States, with 541 square miles of land and 5,425 square miles of water. Nearly 90 percent of Keweenaw County is under the surface of Lake Superior!

Jeremy Bos: What’s next after FIRST?

“This could be you,” says Michigan Tech ECE assistant professor Jeremy Bos. “Our AutoDrive team brought home the second most trophies at competition last year.”

Jeremy Bos shares his knowledge on Husky Bites, a free, interactive webinar this Monday, July 6 at 6 pm EST. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

FIRST®. You might know it as First Robotics—an international organization dedicated to motivating the next generation to understand, use and enjoy science and technology. Founder and inventor Dean Kamen describes FIRST as “using robots to build kids. “It’s not about the robots,” he said. “FIRST is transforming the way kids see the world.”

FIRST now has more than 67,000 teams around the world, and has given over $80 million in college scholarships. At Michigan Tech, at last count, there are close to fifty FIRST scholarship recipients.

Jeremy Bos: “When I have time I bike, ski, hike, kayak, and stargaze. I spend time with my dog, Rigel, on the Tech Trails nearly every day.”

So, for high school seniors now embarking on their college careers, what’s next after FIRST? How do you enter the field of robotics?

What’s more, how do you know if robotics could be the right career for you?

“Many first year students considering engineering, science, and technology are introduced to these fields from FIRST robotics and similar high school competitions,” says Jeremy Bos, an assistant professor of electrical engineering at Michigan Tech. “In fact, one of the most common questions I hear from new students is ‘What is there at Michigan Tech that’s like FIRST?’ and ‘What major should I choose to have a career in robotics?’”.

Bos is a Michigan Tech alum, having earned his BS in Electrical Engineering at Michigan Tech in 2000 and his PhD in Electrical Engineering and Optics in 2012. He worked at GM on short range wireless product development, and spent several years at the Air Force Research Laboratory on Maui before coming back to Tech as an assistant professor.

Like most things in life there is no one answer that applies to everyone, says Bos. He helps students take their FIRST-inspired passion for robotics and find a place for it Michigan Tech. “What are your affinities? Knowing those, I can help point you in the right direction,” he says.

“One thing I can do is to share an overview of careers in robotics.” says Bos. Hint: it involves the “M’s” the “E’s” and the “C’s”. (Listen to the overview during his live session on Husky Bites to learn more, or catch the Zoom video later.)

Bos is advisor and manager of several robot platforms on campus, including the Robotic Systems Enterprise team, part of Michigan Tech’s award-winning Enterprise program. “It’s one of the best places on campus to learn robotics,” says Bos.

The team’s many projects come in many shapes and sizes, from designing a vision system for work with a robotic arm, to an automatic power management system for weather buoys. Clients include Ford Motor Company and Michigan Tech’s Great Lakes Research Center.

In 2010, as an electrical engineering PhD student at Michigan Tech, Bos organized the investigation of the Paulding Light mystery, working with students in the University’s student chapter of SPIE, the international society of optics and photonics. “We were looking for a project that would be both fun and educational. I thought, ‘What about the Paulding Light?’”

“We use more than just the skills and talents of computer science, electrical engineering, and mechanical engineering majors,” adds Bos “All majors are welcome in the enterprise.”

The team’s main focus is the SAE AutoDrive Challenge, where college teams compete to develop and demonstrate a fully autonomous driving passenger vehicle. Michigan Tech is one of eight universities selected to participate in the 3-year AutoDrive Challenge, sponsored and hosted by GM and SAE International.

Bos mentors the AutoDrive team of 40 undergraduate and graduate students along with Darrell Robinette, an assistant professor of mechanical engineering-engineering mechanics.

The team out started with a Chevy Bolt, named it Prometheus Borealis, and then turned it into a competition vehicle outfitted it with sensors, control systems and computer processors so that it could navigate an urban driving course in automated driving mode.

The team took Prometheus Borealis on a trip to GM’s Desert Proving Ground in Yuma, Arizona in 2018 for an on-site evaluation in the SAE AutoDrive Challenge.
A closer look at some of the LiDAR hardware atop Prometheus Borealis. LiDAR = Light Imaging Detecting and Radar
Snow tires + winter weather = data for the Michigan Tech SAE AutoDrive Challenge team. “Roughly, this is an overhead perspective shot of the what the LiDAR mounted on Prometheus Borealis ‘sees’. The car is not visible but is at the center of the image heading north on US-41 from the Houghton Memorial Airport towards the town of Calumet,” Bos explains. “The clutter visible on the left of the image near the center/car is caused by snow. The ‘V’ notch in the center/top of the image is a dead zone caused by ice build up on the front on the LiDAR unit, a problem we’ve been working to solve.”


Bos accompanies students to the SAE AutoDrive Challenge competitions. The next one is coming up this October in East Liberty, Ohio. Teams are judged in a variety of areas—Object Detection, Localization, MathWorks, and Simulation, to name a few. His expertise in autonomous vehicles and vehicular networks, as well as industrial automation and controls makes Bos an ideal mentor for the students.

My own contribution to this effort is called ‘Autonomy at the End of the Earth.’ My research focuses on the operation of autonomous vehicles in hazardous weather. Specifically, the ice and snow we encounter on a daily basis between November and April.

Jeremy Bos


Bos says he is excited about the brand new Robotics Engineering degree program at Michigan Tech. It will be offered for the first time this fall in the Department of Electrical and Computer Engineering. “Robotics Engineering will cover all the skills you need for developing autonomous vehicles. It’s a unique set of skills now in heavy demand, with a little bit of everything—all the letters (M’s, E’s and C’s) and a little bit more—with a focus on learning the cutting edge.”

When did you first get into engineering? What sparked your interest?

My Dad ran a turn-key industrial automation and robotics business throughout most of my childhood. In fact, I got my first job at age 12 when I was sequestered at home with strep throat. I felt fine, but couldn’t go to school. My Dad put me to work writing programs for what I know now are Programmable Logic Controllers (PLCs); the ‘brains’ of most industrial automation systems.

Later, I was involved with Odyssey of the Mind and Science Olympiad. I also really liked these new things called ‘personal computers’ and spent quite a bit of time programming them. By the time I was in high school I was teaching classes at the local library on computer building, repair, and this other new thing called ‘The Internet’. A career in STEM was a certainty. I ended up in engineering because I like to build things (even if only on a computer) and I like to solve problems (generally with computers and math).

Tell us about your growing up. What do you do for fun?

I was born in Santa Clara, California just as Silicon Valley was starting to be a thing. I grew up in Grand Haven, Michigan where I graduated from high school and then went to Michigan Tech for my undergraduate degree. I liked it so much I came back twice. I now live in Houghton with my wife, and fellow alumna, Jessica (STC ’00). We have a boisterous dog, Rigel, named after a star in the constellation Orion, who bikes or skis with me on the Tech trails nearly every day.

When I have time I also like to kayak, and stargaze. I’ve even tried my hand at astrophotography at Michigan Tech’s AMJOCH Observatory. It’s a telescope, but hopefully, soon it will be a robot, too.

Learn more:

Play @MTUAutonomy winter driving data set test 1 video
Preview image for @MTUAutonomy winter driving data set test 1 video

@MTUAutonomy winter driving data set test 1

Look Ma, No Driver

Huskies Hit the Road

Creativity and Cool Gizmos: Dean Kamen at Michigan Tech

Just in time for Halloween, Michigan Tech Students Solve the Mystery of the Paulding Light

It’s Out There, Return of the Paulding Light

Daisuke Minakata: Scrubbing Water

Daisuke Minakata generously shared his knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

Do you trust your tap water? It’s regulated, but exactly how is tap water treated? And what about wastewater? Is it treated to protect the environment? 

Daisuke Minakata, an associate professor of Civil and Environmental Engineering at Michigan Technological University, studies the trace organic chemicals in our water. He’s also developing a tool municipalities can use to remove them.

Dr. Daisuke Minakata: “In high school I learned that environmental engineers can be leaders who help solve the Earth’s most difficult sustainability and environmental problems. That’s when I decided to become an engineer.”

“Anthropogenic chemicals—the ones resulting from the influence of human beings—are present in water everywhere,” he says. And not just a few. Hundreds, even thousands of different ones. Of particular concern are Per- and polyfluorinated alkyl substances (PFAS), an emerging groups of contaminants.

Most water treatment facilities around the country were not designed to remove synthetic organic chemicals like those found in opioids, dioxins, pesticides, flame retardants, plastics, and other pharmaceutical and personal care products, says Minakata.

This affects natural environmental waters like the Great Lakes, and rivers and streams. These pollutants have the potential to harm fish and wildlife—and us, too.

To solve this problem, Minakata investigates the effectiveness of two of the most widely used removal methods: reverse osmosis (RO), and advanced oxidation process (AOP).

PFAS foam is toxic and sticky. If you happen see it, do not touch it, or if you do come in contact, be sure to wash it off. Keep pets away from it, too.

“RO is a membrane-based technology. It separates dissolved contaminants from water,” Minakata explains. “AOPs are oxidation technologies that destroy trace organic chemicals.” Both RO and AOP are highly advanced water and wastewater treatment processes. They are promising, he says, but not yet practical. 

“The very idea of using an RO and AOPs for each trace organic chemical is incredibly daunting. It would be extremely time consuming and expensive,” he says. 

Instead, Minakata and his research team at Michigan Tech, along with collaborators at the University of New Mexico, have developed a model for predicting the rejection mechanisms of hundreds of organic chemicals through different membrane products at different operational conditions. Their project was funded by the WateReuse Research Foundation

“The rejection mechanisms of organic chemicals by RO are extremely complicated—but the use of computational chemistry tools helped us understand the mechanisms,” says Minakata. “Our ultimate goal is to develop a tool that can predict the fate of chemicals through RO at full-scale, so that water utilities can design and operate an RO system whenever a newly identified chemical becomes regulated.”

Reverse osmosis (RO) at a water treatment demonstration plant in California. Credit Daisuke Minakata
Advanced oxidation processes (AOPs) at the same California water treatment demonstration plant, above. Credit: Daisuke Minakata.

To understand and predict how trace organic chemicals degrade when destroyed in AOPs, Minakata works with a second collaborator, Michigan Tech social scientist Mark Rouleau. They use computational chemistry, experiments, and sophisticated modeling.

Water reuse, aka reclaimed water, is the use of treated municipal wastewater for beneficial purposes including irrigation, industrial uses, and even drinking water.

“Solving this problem is especially critical for the benefit of communities in dry, arid regions of the world, because of the urgent need for water reuse in those places,” says Minakata. Water reuse, aka reclaimed water, is the use of treated municipal wastewater for beneficial purposes including irrigation, industrial uses, and even drinking water. It’s also the way astronauts at the International Space Station get their water. (Note: Minakata will explain how it works during his session of Husky Bites.)

Dr. Daisuke Minakata does a lot of work in one of the nation’s top undergraduate teaching labs, the Environmental Process Simulation Center, right here on campus at Michigan Tech.

Over the past few years Minakata’s research team has included nine undergraduate research assistants, all supported either through their own research fellowships or Minakata’s research grants.

In his classes, Minakata invites students to come see him if they are interested in undergraduate research within “the first two minutes of my talk.” For many, those first few minutes have become life changing and in the words of one student who longed to make a difference, “a dream come true.”

By encouraging and enabling undergraduate students to pursue research, Dr. Minakata is helping to develop a vibrant intellectual community among the students in the College of Engineering.

Dean Janet Callahan, College of Engineering, Michigan Tech

Minakata is a member of Michigan Tech’s Sustainable Futures Institute and the Great Lakes Research Center. In addition to being a faculty member in the Department of Civil and Environmental Engineering, he is also an affiliated associate professor in both the Department of Chemistry and Department of Physics. Be sure to check out Dr. Minakata’s website, too.

“I never get tired of looking at this image,” says Daisuke Minakata, an associate professor of environmental engineering at Michigan Tech.

When did you first get into engineering? What sparked your interest?

I loved watching a beautiful image of planet Earth, one with a very clear sky and blue water, during my high school days. However, as I began to learn how life on Earth suffers many difficult environmental problems, including air pollution and water contamination, I also learned that environmental engineers can be leaders who help solve the Earth’s most difficult sustainability problems. That is when I decided to become an engineer.

In my undergraduate curriculum, the water quality and treatment classes I took were the toughest subjects to get an A. I had to work the hardest to understand the content. So, naturally, I decided to enter this discipline as I got to know about water engineering more. And then, there’s our blue planet, the image. Water makes the Earth look blue from space.

Tell us about your growing up. What do you do for fun?

I was born and raised in Japan. I came to the U.S. for the first time as a high school exchange student, just for one month. I lived in Virginia, in a place called Silverplate, a suburb of D.C. I went to Thomas Jefferson Science and Technology High School, which was the sister school of my Japanese high school, and one of the nation’s top scientific high schools. And I did like it. This triggered my study abroad dream. I was impressed by the US high school education system in the US. It’s one that never just looks for the systematic solution, but values process/logic and discussion-based classes.

So, while in college, during my graduate studies, I took a one year leave from Kyoto University in Japan and studied at U Penn (University of Pennsylvania) as a visiting graduate student for one year. Finally, I moved to Atlanta, Georgia in order to get a PhD at Georgia Institute of Technology. I accepted my position at Michigan Tech in 2013.

I’m now a father of two kids. Both are Yoopers, born here in the UP of Michigan. My wife and I really enjoy skiing (downhill and cross country) with the kids each winter. 

Summing it all up, so far I’ve lived in Virginia (1 month), Philly in Pennsylvania while going to U Penn (1 year), Phoenix in Arizona to start my PhD (3.5 years), and Atlanta in Georgia to complete my PhD and work as a research engineer (5 years). Then finally in Houghton, Michigan (7 years). I do like all the cities I have lived in. The place I am currently living is our two kids’ birthplace, and our real home. Of course it’s our favorite place, after our Japanese hometown.


Dr. Minakata: in Husky Bites, Dean Callahan will ask you to tell us about your dog!

Learn More:

Engineers Capture Sun in a Box

Break It Down: Understanding the Formation of Chemical Byproducts During Water Treatment

The Princess and the Water Treatment Problem

Darian Reed: From Volunteer to New Career

Michigan Tech civil engineering student Darian Reed is Logistics Section Chief for Houghton and Keweenaw Counties, supplying PPE to hospitals, nursing homes and local organizations.

COVID-19 has changed the lives of so many. For one Michigan Tech civil engineering undergraduate student, COVID-19 shaped his life in a way never imagined. 

Originally from Monroe, Michigan, Darian Reed came to the UP to pursue a degree in civil engineering at Michigan Tech and a career in the construction industry. Feeling a strong connection to the local community, this year Reed began volunteering his time and talents near campus, with Superior Search and Rescue. His contributions gained the recognition of Chris VanArsdale, a civil engineering alumnus and current doctoral student, who serves as the emergency management coordinator for both Houghton and Keweenaw counties. 

Needing to staff emergency response activities for both counties, VanArsdale asked Reed to serve as Logistics Section Chief—and Reed jumped at the chance. In this new role he receives resource need requests from local organizations, including hospitals and nursing homes. He submits their resource requests to the State, who will approve or deny the requests for masks, thermometers and other essential resources in the fight against COVID-19. 

Day in, day out, Darian Reed says he feels highly motivated. “This work provides me with the fuel I need to keep going amid the uncertainty of this pandemic.”

Reed also handles regional donations, including the 3D printed face shields printed at Michigan Tech. “I get to be the Santa Claus of the area, distributing the resources to all the requesting organizations,” says Reed. “I am happy to share that the State of Michigan has been able to fulfill requests for many resources to date, with gowns and no-touch thermometers as some of the few exceptions. This is great news for our community.”

Reed is now on the last leg of a long (and sometimes slow) process of requesting supplies. A local health care provider or non-profit first requests resources from the emergency manager, the supplies they cannot find or obtain themselves. These requests are entered into the State of Michigan’s online portal called MICIMS (Michigan Critical Incident Management System). As resources become available, they are shipped to Marquette, which is the central receiving hub in the UP. From there, resources are sorted by county and shipped to a regional hub (Greenland in the case of five counties in the Western UP Health Department’s area of responsibility). The National Guard breaks down these shipments and transports them to each county. At that point, it becomes the county’s responsibility to distribute the requested resources. That’s where Reed comes in.

Best of all for Reed, the experience has illuminated an entirely new career path. Because of his experiences this summer, his career goals have changed—from construction to emergency management. He still plans to complete his degree in Civil Engineering.

“The civil engineering skills I learned from my classes at Tech and my co-op experience with Kiewit last fall served me well. Managing construction crews and working with a variety of government agencies both have helped me to develop an important skill set.”

Reed is already on his way, completing several FEMA emergency management courses in his spare time, and taking classes for his Professional Emergency Manager certification. “I’ve been doing the training real-time, by learning online and then implementing what I have learned almost immediately,” he says.

“Through this experience I value the connection I am making with my adopted home more than ever before,” he says. “I also value this opportunity for personal growth.” When asked how others could follow in his footprints, he suggests volunteering for any local community event or with your local first responders. “Volunteers are needed and the more you show up, the more you can do. Great opportunities will come your way!”

Tony Pinar: How Do Machines Learn?

Tony Pinar generously shared his knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

Can machines learn, for real? Just how intelligent are they? Will machines and robots someday take over the world?

“Machine learning has become a popular tool in the digital world,” says Tony Pinar. “For people outside the field it seems almost magical that a machine could learn.”

Machine-learning algorithms do indeed “learn”, though it probably is not as glamorous as many people think. And not only that, says Pinar, they can be fooled.

ECE faculty member Dr. Tony Pinar earned his BS, MS and PhD in electrical engineering, all at Michigan Tech.

A lecturer and researcher in the Department of Electrical and Computer Engineering at Michigan Tech, Pinar demystifies machine learning for students, and shows them how it’s done.

Pinar has even taught his own laptop a thing or two.

“Machine learning is actually a subfield of AI, or artificial intelligence,” says Pinar. “That’s a buzz word for simulating intelligence with a machine.”

Machine learning, he explains, is a collection of algorithms, biologically-inspired neural networks, that allow a computer to learn properties from observations, often with the goal of prediction.

“One pretty common misconception is that AI and machine learning are new. While the field has made leaps in the last few decades, some aspects of machine learning were developed in the 1800s, probably by Gauss,” says Pinar. Carl Friedrich Gauss, the German mathematician, is considered to be one of the greatest mathematicians of all time.

Pinar’s own research interests are in applied machine learning and data fusion. “It is exciting to me to watch the cutting edge move forward, see what sticks and what doesn’t, and observe how the directions of the field evolve,” he says. “It’s also rewarding to work on open-ended and novel problems that are in their infancy and at the cutting edge of today’s technology.”

Pinar is a member of the Institute of Computing and Cybersystems (ICC) at Michigan Tech. ICC provides a platform for innovative research and supports collaboration. The ICC’s 50 members represent 15 academic units at Michigan Tech.

It is exciting to me to watch the cutting edge move forward, see what sticks and what doesn’t, and observe how the directions of the field evolve.

Dr. Tony Pinar

“Often, the strongest solutions to be found are multidisciplinary, where people from many different fields work on the same problem,” notes Pinar.

As senior design coordinator for Michigan Tech’s ECE department, Pinar mentors students working on the final big design project of their senior year. Michigan Tech’s senior design program is more like a first job than a last class, and many projects are sponsored by industry.

What does working on senior design look like? It looks like testing, iterating, compiling, and teaming. This group of ME, EE, and CpE students is working on the SICK LiDAR challenge. They they ended up winning an Honorable Mention in the nationwide competition.

One senior design team that Pinar advised this past spring⁠—a multidisciplinary team comprised of students majoring in electrical engineering, mechanical engineering, and computer engineering⁠—competed in the TiM$10K Challenge, a national innovation and design competition. Student teams were invited to participate from 20 different universities by Sick USA. Sick AG, based in Waldkirch, Germany, is a global manufacturer of sensors and sensor solutions.

For the competition, teams were supplied with a 270-foot SICK LiDAR sensor, the TIM, and accessories, and challenged to solve a problem, create a solution or new application.

The Tech team members — Brian Parvin, Kurtis Alessi, Alex Kirchner, David Brushaber and Paul Allen — earned Honorable Mention (fourth place overall) for their project, Evaluating Road Markings (the Road Stripe Evaluator). The innovative product aims to help resolve issues caused by poor road markings.

“Road stripes around the world require frequent maintenance,” Pinar explains. “That’s because fading road stripes cause fatal car accidents and other safety concerns. The team’s software and device can be mounted on police cars in order to cover a wide region. And instead of repainting all road stripes, road crews can become discerning, learning which roads need repainting, and focus only on those, potentially saving a fortune each year on paint and maintenance.”

“Each year, fading road stripes cause fatal car accidents,” says Pinar. “This senior design team’s software and device the Road Stripe Evaluator, could potentially save lives.”

SICK asked each team in the competition to submit a video and paper for judging upon completion of its project. A panel of judges decided the winning submissions based on creativity and innovation, ability to solve a customer problem, commercial potential, entrepreneurship of the team, and reporting.

While the team’s prototype does not depend on machine learning, the project may continue in upcoming semester. That way, another senior design team will be able to build a machine learning solution into the prototype, notes Pinar.

In April, the team also won an Honorable Mention for the Road Stripe Evaluator project at Michigan Tech’s Design Expo, competing with 50+ other senior design teams.

How did you first get interested in engineering? What sparked your interest?

I was raised near the small town of Trout Creek, Michigan. I’ve always been obsessed with figuring out how things work. I was also interested in electricity from a young age, thanks to my dad, who had me help him to wire houses as an electrician. These led me to pursue electrical engineering at Michigan Tech, where I learned EE was so much more than power distribution.

You earned your BS, MS and PhD at Michigan Tech, all in electrical engineering. What kind of projects did you work on as a student?

I had the opportunity to work on many interesting projects as a student, both applied and research-based. As an undergrad I contributed to projects such as a solar-tracking solar panel, a Tesla coil, and an industry-sponsored project concerning wireless power transfer. In graduate school I worked on projects involving autonomous underwater gliders, 3D metal printers, and explosive hazard detection using ground penetrating radar; my dissertation was focused on the algorithms I developed and used for much of the explosive hazard detection problem.

What do you like most about teaching electrical engineering?

Teaching is like a puzzle where one may have to take a difficult concept, reduce it to digestible pieces, and deliver them to fresh minds in a way to maximize understanding and insight. That challenge is what drives me to be a better teacher. It keeps me on my toes, forces me to constantly identify holes in my knowledge, and drives me to continuously strive to learn new things.

Can you tell us about your life now? Any hobbies?

I live in Hancock with my wife, Noelle, and our two small boys, Malcolm and Dexter. If I’m not spending time outdoors in the Keweenaw with my family, you will probably find me playing guitar or tinkering with a side project.

Learn More

Play 232: Road Marking Reflectivity Evaluator video
Preview image for 232: Road Marking Reflectivity Evaluator video

232: Road Marking Reflectivity Evaluator