Category: Features

When you mark something as “Features” you are forcing it to the top of the news page on news and events.

Walt Milligan: Kitchen Metallurgy

Trick, or treat? At first glance these almost look edible! (Sand molds, filled with molten metal castings, sit on a cooling rack in the Michigan Tech foundry.)

Walter Milligan shares his knowledge on Husky Bites, a free, interactive webinar this Monday, 10/31 at 6 pm. Learn something new in just 30 minutes or so, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Dr. Walt Milligan

What are you doing for supper this Monday (Halloween) night 10/31 at 6 ET? Grab a bite with Dean Janet Callahan and Walt Milligan, chair of the Department of Materials Science Engineering at Michigan Tech. 

It’s Halloween, and during Husky Bites, we’re going to learn a few things about knives! If you ever wondered what “tempered” means in a steel product, or have seen videos of people quenching red-hot steel into water or oil and wondered why, Prof. Milligan will explain. 

Just how do they make the high performance carbon and stainless steels that are used for kitchen knives? There’s a bit of nanotechnology involved. During Husky Bites we’ll learn about the different kinds of stainless steel.

“How do you store your knives?” asks Professor Milligan. “You don’t want them banging around in the drawer,” he says.

But why not?

Lightsaber? Nah. This is annealed copper at 900°C.

Have you ever wondered why some stainless steel items in your kitchen stick to a magnet, and why some don’t?

Or what kind of steel is used to make an extraordinarily sharp knife, or an ultra-strong knife? During Husky Bites, Prof. Milligan will teach us about all this, and a lot more. 

In the photo to the right, Prof. Milligan teaches his Intro to MSE class at Michigan Tech how annealing, a heat treatment process, alters the physical and sometimes chemical properties of metal to increase its ductility and reduce its hardness, making it more workable.

After he grabs a copper bar out of the furnace that was annealed at 900°C for roughly an hour, Prof. Milligan holds the copper bar, about to demonstrate to the class how its ductility increased (and strength decreased) by having a student easily bend the previously unbendable rod with just their hands.

Milligan began his academic career at Michigan Tech in 1989, and for 17 years he taught MSE and conducted interdisciplinary research on high-performance structural materials. In 2006, he took on a new challenge, and was appointed as Michigan Tech’s first Chief Information Officer, and was tasked with building a robust, campus-wide information technology organization. He held that position until 2015 when he returned to the faculty, and then, a few years later, served as the interim department chair in the (then) brand new Department of Manufacturing and Mechanical Engineering Technology at Michigan Tech. He became chair of the Department of Materials Science and Engineering in July 2021.

“Cold working is the process of strengthening a metal through plastic deformation. Annealing is the process of heat treating a metal to increase its ductility and decrease its strength.”

Walt Milligan
Yes, the MSE classrooms are equipped with metallurgy furnaces!

Prof. Milligan earned a BS in Metallurgical Engineering from the University of Cincinnati, as well as MS and PhD Degrees in Materials Engineering from Georgia Tech. He has worked for GE Aircraft Engines, Carpenter Technology Corporation, NASA—Glenn Research Center, the Nuclear Research Center in Grenoble, France, and the University of Science and Technology in Trondheim, Norway. He is a Fellow of ASM International and a Distinguished Life Member of Alpha Sigma Mu, and has served on the Boards of Directors of TMS and ABET.

Prof. Milligan, how did you first get into engineering? What sparked your interest?

My father was a skilled machinist in the forging industry, so I was aware of manufacturing.  I was good at math and science, and those subjects interested me, so I decided to study engineering at the University of Cincinnati.  

Are those some cat ears behind that foundry crucible!?!

Hometown, family?

I grew up in a blue-collar neighborhood in the city of Cleveland, Ohio, the oldest of 6 children.  I have been married to my wife Sheila, who is a Teaching Associate Professor of Accounting at Michigan Tech, since 1984.  We met at school in Cincinnati.  We got married and moved to Atlanta, where I received my PhD from Georgia Tech.

The Milligans relax after a holiday ice hockey rental with friends and family. Left to Right: Walt’s son, Patrick Milligan, wife Sheila Milligan, associate teaching professor of accounting at Michigan Tech. Walt. Walt’s other son, Brian Milligan.

We have two adult sons. Patrick, age 31, received a BS in Materials Science and Engineering and an MS in Energy Systems Engineering, both from the University of Michigan. He works as a consultant in the electric power generation industry. Patrick is expecting his first child in March, so I’ll be a grandfather soon, which is hard to believe. He currently lives in Louisville, Kentucky.

Brian, age 27, received BS and PhD Degrees from the Colorado School of Mines in Metallurgical and Materials Engineering, and is currently a postdoctoral researcher at the Pacific Northwest National Laboratory in Richland, Washington. All on his own, Brian became obsessed with high-quality knives in middle school and high school. So he welded together a home-made coal stove from junkyard parts, bought a used anvil on Craigslist, and started forging knives. He also has quite a collection of $200-$300 pocket knives from the likes of Benchmade and Spyderco.  

Walt with an MSE student, in his early days at Michigan Tech. He’s been a member of the Michigan Tech faculty for over 33 years!

Any hobbies? Pets? What do you like to do in your spare time?

Shortly after I moved to Houghton in 1989, I started playing ice hockey. Now, 32 years later, I am still playing (as a goalie, no less!) 2 to 3 times per week, 6 months per year.  I also was very involved in coaching kids’ hockey and am still involved in maintaining websites and leagues for kids hockey across the UP.

Mike Christianson: The Michigan Tech Band Experience—Wonderful Ruckus to Symphonic Thrills

The Huskies Pep Band. We love this scramble band for its energy, colorful hats and dress, and joviality!

Mike Christianson shares his knowledge on Husky Bites, a free, interactive webinar this Monday, 10/24 at 6 pm. Learn something new in just 30 minutes or so, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Dr. Mike Christianson, leading bands, enriching lives.

What are you doing for supper this Monday night 10/24 at 6 ET? Grab a bite with Mike Christianson, Associate Professor, Visual and Performing Arts and Director of Bands at Michigan Tech. Joining in will be two members of the Huskies Pep Band, Matt Bettwy (mechanical engineering) and Laura Bufanda (theatre and entertainment technology), both who will be graduating with their bachelor’s degrees in December.

He’s Got The Music In Him

Mike Christianson learned all about bands at a young age, accompanying his band leader/director father to concerts in their hometown of Fargo. He saw all the greats like Count Basie and Buddy Rich. Christianson heard the music and absorbed the performances. He listened to them talk about the music and the different players in the band. And music was always in abundance at home and at Christianson family gatherings. Mike’s great-great grandfather and grandfather were band leaders too. His grandmothers also played music. And the music bug continued in his children. It’s fair to say in the Christianson household music is ever present.

In Pursuit of a Dream

This love and appreciation of music drove his dream. Christianson pursued that dream, moving to New York City to play professionally. You’d find him in different orchestra pits on and off-Broadway, playing in studios and clubs with a variety of musicians, Carnegie Hall, and even hitting the road for two years with Ray Charles. Christianson’s professional career led to a Grammy nomination with John Hollenbeck Large Ensemble. The group was nominated for “Best Large Jazz Ensemble Album,” at the 61st Annual Recording Academy’s Grammy Awards, for its recording “All Can Work.”(recounted in Tech News back in 2019)

Eventually Christianson was asked to lead a band when a professor went on sabbatical. Directing the band brought joy. He was hooked. When he asked how he can do more of that, he was told to get his PhD. Enrollment at Rutgers University across the Hudson in New Jersey followed, as did another twelve years as a founder and band director for a local community band. 

The stage was set to begin a new career teaching music at Michigan Tech; trading in the iconic skyline of New York with the Empire State Building for that of Houghton-Hancock featuring the Lift Bridge and Quincy Mine. And we could not be more excited to have him here. Music at Tech has been a unique experience for Christianson. It has been all about the joy.

“If we were a music conservatory, we would likely be yelling at students all of the time, putting pressure on them to get better and not miss out on opportunities. Here students can just focus on the joy in music,” he says.

Mike Christianson earned his Bachelor’s of Music at Minnesota State University Moorhead, then his Masters of Music at the Manhattan School of Music, and his Doctor’s of Music at Rutgers University.

Because of that Christianson knew coming to Tech that teaching music would be a different experience for him. Michigan Tech Professor Emeritus Mike Irish, a great mentor of Christianson’s, told him “You’ll be surprised why you like this job.”

Originally, the new-kid-on-the-block did not know what his mentor meant.  Now Christianson thinks “Huh! I get it. I pick-up something new all the time. I estimate every year or two I learn a new way to approach the job. And every year I find a new reason why I like this job.”

“I see it in this Pep Band. That joy that comes from playing music and having fun with it.”

Mike Christianson

“Mike has been a musical mentor of mine ever since I joined Michigan Tech’s music program in 2019,” says Laura Bufanda, who earned her BS in Theatre and Entertainment Technology in 2022. They met briefly at the summer community concert in 2014, back when Bufanda’s brother, Randy, was attending Michigan Tech.

“Mike has been a great influence in my desire to learn how to perform other areas of music, including Jazz,” she adds. “As a euphonium player, it is somewhat expected that I only participate in performing classical music. However, I enjoyed the vast amount of different styles and genres of music Mike has exposed us to in the Superior Wind Symphony so much—that I chose to join MTU’s jazz program, as well!”

“I met Mike before I even started at Michigan Tech, during Michigan Tech Preview day in spring 2018 when I auditioned for the Visual and Performing Arts Talent Award scholarship,” says Matt Bettwe. “Mike was my first contact with the music department, and he was also one of the first faculty members I got to know during my first semester at MTU. I joined Superior Wind Symphony and the Huskies Pep Band,” he adds.

“With the academic rigors of my degree (almost all STEM courses) my time in Mike’s ensembles has been a huge part of my life at Michigan Tech. It’s the time of the work week when I can be less analytical, and focus on something different that I really enjoy.”

Flaming Trumpets (!) at Michigan Tech’s Parade of Nations

The Band Program at Michigan Tech

Michigan Tech offers multiple opportunities for students to engage in music, including five jazz ensembles, a symphony orchestra, two choirs, and three bands. Not bad for a technological university without a school of music. But the three band experiences (Visual and Performing Arts Campus Concert Band, Huskies Pep Band, and Superior Wind Symphony) would not be the same without the leadership of Mike Christianson.

The Superior Wind Symphony (SWS) is the premier wind ensemble at Michigan Tech. This auditioned ensemble of winds and percussion performs the music of composers spanning five centuries, living and not, from all genders, ethnicities and genres. SWS concerts offer symphonic thrills, innovative programming, fruitful collaborations, and exciting premieres. These concerts feature music from the standard repertoire and often utilize innovative formats that include visual art, the spoken word, and dance. Plus, the ensemble takes to the road to play concerts throughout the Great Lakes region. SWS invites renowned guest conductors and performing artists to work with them, like Frank Battisti, Bill Berz, and Scott Robinson.

The Campus Concert Band was founded to enable the marching drill ROTC band continue to play in the spring semester. The band plays a variety of traditional and contemporary concert band literature as well as popular works. It also performs around the community at a variety of venues. The ROTC band is no longer, but the Campus Concert Band continues to play on.

Matt Bettwy conducts the Huskies Pep Band during a hockey game at Michigan Tech.

But perhaps the most famous of the three bands is the Huskies Pep Band. They are known by many names: The Pride of Pastyland, the Cream of the Keweenaw, the Second-best Feeling in the World, the loudest, most spirited pep band in the nation. We love this scramble band for its energy, colorful hats and dress, and joviality. From its humble beginnings in 1928 as the Michigan Tech ROTC Band under the baton of E.E. Melville, the Michigan Tech Huskies Pep Band has grown to become one of the most recognized bands in all of college hockey. We bet there were no bassists and guitarists in that original incarnation like there are now! The Huskies Pep Band is open to any Michigan Tech student that likes it louder, faster, and higher! No audition required.

Prof. Christianson, how did you first get into music? What sparked your interest?

Band directing is a Christianson family tradition. I am the fifth consecutive generation in my family to become a band director. My grandmother was a pianist and my father a band director. So I was exposed to music at a very young age. Even though I grew up in Fargo, ND, we had all these amazing bands come to play there: Count Basie, Buddy Rich, Stan Kenton are just a few. My father took me along to see them, and I dreamed of going on the road with one of those bands.

To become a professional musician, I knew I had to go to music school, which took me to Minnesota State University Moorhead. 

New York was next, where it took a little while to get established, but I landed a job playing with Ray Charles’ band. And then built a varied, interesting, and successful career as a musician.

When was this photo taken of Mike Christianson? We hope to find out during Husky Bites!

Hometown and Family?

Fargo, North Dakota is my hometown. My wife is Cyndi. Our daughter, Michelle, represents the sixth consecutive generation in my family to become a band director, and our son, Aaron, when at Michigan Tech, was a student director of Pep Band.

Is there a band you think of when you think of the Pep Band?

I saw all the great big bands with my dad as a kid. But years before I took the Tech job, I asked my father which band he enjoyed seeing the most. It was Spike Jones and the City Slickers. Not only were they terrific musicians, but they were a really goofy comedic band. They wore these crazy outfits and props. They played well and had so much fun doing it. My dad saw all these jazz greats, but still enjoyed Spike Jones the most. That stuck with me. And I see it in this Pep Band. That joy that comes from playing music and having fun with it.

The Huskies Pep Band is open to any Michigan Tech student. No audition required! Note: we’re pretty sure “ASS” (in this case) is short for “alto sax”.

How did you become a band director?

I worked at New Jersey City University and volunteered to be the band director while a professor went on sabbatical. I really enjoyed the experience and decided to start a town band in Fair Lawn, New Jersey, where my family lived. It was a great learning experience. I put up flyers and posted online to recruit members. At our first meeting we had five flute players show up out of eight musicians, so a little imbalance. But they kept coming, and bringing their friends. Eventually we grew into a delightful band of friends, neighbors, and music professionals. Many musicians stepped in and wanted to be a part of it. I met some fantastic musicians along the way and learned a variety of music styles. I was with that community band for twelve years.

How did you get into teaching music?

Remember that interim band director position? Well I loved being a band director so much, I asked “How can I get a job doing this?” That’s when they told me to get a doctorate. So I enrolled at Rutgers to get my DMA (Doctor of Musical Arts). And I ended up here because they offered me a job!

What do you like to do in your spare time?

If I’m not playing music, I’m probably writing it. I am not a composer. But one of my favorite teachers of all-time, Ludmila Ulehla, taught our composition class. She served as the chair of the Department of Composition at the Manhattan School of Music from 1972 to 1989.

Ludmila laid it out as follows: “Write a piece of music for your best friends. Otherwise, no matter what you write, it will never compare to Beethoven or Bach. And it will always be played last. And how good is it going to sound, anyway, when played by skilled musicians who have spent hours practicing and refining the Greats, but not so much time with your music? So, identify four favorite musicians who happen to be your friends. They are the ones most likely to practice and play your piece, and you win. They’ll do their best. They won’t be critical. And they will love you for it.”

Laura Bufanda’s career goal is to work in advertising as art director. She’s well on her way!

Laura, how did you first get into music? What sparked your interest?

I began playing the Euphonium in 4th grade (about 17 years ago) after both of my older brothers had gotten involved- I was always inspired to join Band because of their interest in it–and with a strong interest of my own, through elementary dance and music classes.

What is it like playing in the Huskies Pep Band?

For me it’s been a great experience for getting out and getting involved. As someone who isn’t super into sports, I still found games fun to attend with the Pep Band (my favorites are volleyball and hockey).

The most memorable experience happened during my first year, the “Flooter/A.S.S. Thanksgiving,” basically a “friendsgiving” shared by the Flute and Alto Sax sections of the Pep Band. This one event introduced me to many of the people I would be living with, and the house I would be living in for the majority of my time at MTU—some arm-wavers and some instrumentalists—all of my housemates were heavily involved in Pep Band throughout their years. It was something we all had in common. I’ve always been a big fan of band camp, too. That almost goes without saying. I’m what some may call a “band nerd”, but all growing up and to this day I have always loved band camp rehearsals and getting to meet all of the new members.

What are you hoping to do after graduation?

I am pursuing the world of art direction and advertising design. Growing up, I was always very interested in art of all mediums. After graduating from high school I chose to continue my path in digital media by completing a photography certificate program. Over time, I have grown more interested in the other areas of digital design. I’ve gained experience in graphic design to help me toward my goal of becoming an art director.

Hometown, family?

I grew up in Burlington, Connecticut with my Mom, Dad, and two older brothers (three are Michigan Tech alumni). I have been a permanent resident of Michigan since I graduated from high school in 2015.

Any hobbies? Pets? What do you like to do in your spare time?

Outside of Michigan Tech, I enjoy photography, graphic design, horseback riding, camping/adventuring, and exploring Detroit. I have 2 dogs: Mylee, a maltese/shih-tzu; and Hana, a maltese.

Says Matt: “The Copper Country Color Tour 2021 (I’m in the gray), a fall road bike ride put on by the MTU cycling club.”

Matt, how did you first get into music and engineering? What sparked your interest?

I started playing trumpet in fifth grade, found I loved it, and followed the hobby ever since. It was my favorite school activity for many years and I briefly considered a career in music, but late in high school I settled on engineering after taking physics class in high school and loving that, too. My interest in both subjects was roughly equal. The better financial and career prospects of engineering is what tipped the scale for me.

Hometown, family?

I’m from Sussex, Wisconsin, a town about 30 minutes west of Milwaukee. I grew up with my parents and one brother, who attends Columbia College in Chicago studying music business.

What do you like to do in your spare time?

Outside of music and school/work, my biggest hobby is cycling. I race road bikes quite seriously during the summer months. I taught the beginner road cycling PE class at Michigan Tech in fall 2021. I mountain bike more casually during the spring and fall. It certainly helps that some of the best mountain biking trails in the Midwest are right here in the Keweenaw. I also occasionally like to hike, camp and explore the outdoors.

Listen

View (and hear) some recent concerts:

Superior Wind Symphony Reparations is a collection of 19 pieces of music by Black composers performed in 2021.

Superior Wind Symphony performs Centurius in February 2022

The Huskies Pep Band play their classic opener, Thus Spoke Zarathustra, the theme song from the movie 2001: A Space Odyssey.

The Huskies Pep Band still brought joy during lockdown. Who can forget the Virtual Fight Song video!

Read more

All That Jazz: Christianson a Member of Grammy Nominated Ensemble

Making Music

Yixin Liu: Sensing Smells

Dogs can potentially detect human diseases—including cancer and diabetes—from smell alone. At Michigan Tech, Yixin Liu, an assistant professor Chemical Engineering, develops “electronic noses” that can rival even the best dog nose.

Yixin Liu shares her knowledge on Husky Bites, a free, interactive webinar this Monday, 10/17 at 6 pm. Learn something new in just 30 minutes or so, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Prof. Yixin Liu

What are you doing for supper this Monday night 10/17 at 6 ET? Grab a bite with Yixin Liu, assistant professor of Chemical Engineering at Michigan Tech. Joining in will be Riley Smith, the first undergraduate student researcher to join Prof. Liu’s Smart Chemical and Biological Sensing Laboratory at Michigan Tech. Liu develops chemical sensors and biosensors, electronic noses/tongues and sensor data analytics.

During Husky Bites, Prof. Liu will share how she goes about developing an “electronic nose” using an array of gas sensors and a data-analyzing algorithm. The result is a device that can mimic our biological olfactory system, able to sense smells in various applications, such as gas pollutants and breath analysis for medical diagnosis.

The ideal electronic nose is capable of sensing far better than even the best human nose ( more like a dog nose). “Dogs have a superior sense of smell. With training, dogs can sniff out bombs and drugs, pursue suspects, search and rescue lives, and potentially detect human diseases—including cancer and diabetes—from smell alone,” Liu says.

Prof. Liu uses nanofibers (seen here on the nanoscale) as sensing material to create electrochemical sensors. Coupled with machine learning techniques, the device turns into a smart nose with a number of superpowers.

Liu joined the faculty of the Department of Chemical Engineering as an assistant professor in 2020. She earned her PhD in Chemical Engineering from the University of Connecticut and her bachelor’s degree in Polymer Material Science and Engineering from Zhejiang University in China. 

Riley Smith

“Riley was the first undergraduate student to join my lab at Michigan Tech,” says Liu. He reached out to me last year after my brief presentation to the Michigan Tech AIChE student group, indicating his interest in undergraduate research. 

“Riley is highly motivated and proactive,” adds Liu. “After training on the lab’s electrospinning machine for nanofiber fabrication, he took the initiative to come up with a detailed operation manual with pictures. Riley’s manual has helped many students in my lab to learn how to use the machine.”

“Once I heard Dr. Liu’s AIChE presentation, I reached out to learn more,” Smith adds. “I started working with Dr. Liu, and now I work along with many more students who have joined the team as the lab continues to grow.”

Liu’s interdisciplinary lab combines advanced nanostructured materials, device design, and data-driven approaches to develop high performance chemical and biological sensing technologies. Liu and her collaborators already have 4 US patents granted, with another six patent applications pending.

The Liu Research Group at dinner.

At Michigan Tech Liu and her research group work together to develop electrochemical sensors coupled with machine learning techniques. “The knowledge gained from our research leads us to other new low-cost biosensing devices and manufacturing processes,” says Liu. 

Control panel for the electrospinning machine in Dr. Liu’s Smart Chemical and Biological Sensing Lab.

Recently she was awarded an Engineering Research Initiation (ERI) grant from the National Science Foundation to develop a nanocomposite sensor for the simultaneous detection of glucose and cortisol.

“People with diabetes are 2-3 times more likely to have depression,” note Liu. “In addition, symptoms of depression and anxiety are often associated with elevated cortisol (the ‘stress hormone’) which can lead to the onset of type 2 diabetes. If we could monitor both glucose and cortisol levels in a cost-effective and effortless way, that could help manage both diabetes and stress—it could also prevent pre-diabetes from progressing to full-blown type 2 diabetes,” Liu says.

The needle that generates the nanofibers.

“One of my long-term research goals is to develop a low-cost, easy-to-manufacture and high-performance biosensing technology based on e-MIPS—electropolymerized Moleculary Imprinted Polymers. I think e-MIPS could become an important platform for detecting biomarkers in human biofluids,” she says. “This would allow for ‘decentralized diagnostics’—rapid medical testing that can take place outside a hospital setting. Testing could be done at a satellite lab, doctor’s office, or even at home.”

Developing a reliable sensor that can detect polluting gas in real time, at an early stage, even in aggressively high heat, is another one of Liu’s research projects.

“Monitoring and control of combustion-related gases, including oxygen, carbon monoxide and hydrocarbons, are a top priority in many industries,” she says. “To be effective, though, sensors must be operate at 800~1000 ◦C. Right now, very few sensors have been able to detect gases above 600 ◦C, even in a laboratory setting.”

Once achieved, though, Liu says real-time, high-heat monitoring could save energy and help reduce pollution emissions.

Some of Prof. Liu’s beautiful acrylic paintings!

Prof. Liu, how did you first get into engineering? What sparked your interest?

My father is a mechanical engineer, and I have always watched him fix things and build new things at home since I was very young. I liked math, hands-on experiments, and exploring new technologies when I was in high school. It was quite natural for me to choose an engineering major when I went to university.

Hometown, family?

I grew up in Sichuan, China (hometown of spicy foods and the panda.) I was the only child of my parents (no siblings). My husband and I have a 4-year-old son.

What do you like to do in your spare time?

I have liked painting for years, and still do acrylic paintings in my spare time. I started to learn piano 5 years ago, and now I’m still learning, practicing, and having fun.

“Riley’s manual has helped many students in my lab to learn how to use the electrospinning machine,” says Prof. Liu.

Riley, how did you first get into engineering? What sparked your interest?

I first got interested after having a conversation with my chemistry teacher in high school. I thought that engineering would be a fitting job—I knew I wanted to do something that required some type of problem-solving. After talking with a family friend who works in chemical engineering, my interest solidified. I finished my associate degree in science at a community college and started looking into four-year technological universities. 

Hometown, family?

I am from Kalamazoo, Michigan. My family consists of my mom, a younger brother who is in his junior year of high school, an older sister who is getting married in October, and my dad who works in consulting.   

What do you like to do in your spare time?

I like to spend a lot of time outdoors, whether hiking, kayaking, or hammocking. I have a small poodle mix who accompanies me on many of my outdoor ventures. I also like to work with my hands, on either woodworking projects or refinishing furniture.

Mike Roggemann: Mixing Lasers with the Atmosphere

“A mirage is light from the sky that is refracted back to your eye, with turbulence thrown in to make it shimmer,” says Michigan Tech Professor Emeritus Mike Roggeman. Image of ship on horizon, taken in Dubrovnik. Credit: Thriol, Flickr.

Mike Roggemann shares his knowledge on Husky Bites, a free, interactive webinar this Monday, 10/10 at 6 pm. Learn something new in just 30 minutes or so, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Michigan Tech Professor Emeritus Mike Roggemann

What are you doing for supper this Monday night 10/10 at 6 ET? Grab a bite with Associate Dean Leonard Bohmann and Mike Roggemann, professor emeritus of Electrical and Computer Engineering at Michigan Tech. The two worked together for many years as colleagues in the ECE Department.

Note: Dr. Bohmann will fill in as host for Husky Bites on Monday, October 10. He is Michigan Tech’s associate dean for academic affairs in the College of Engineering, and also a professor of Electrical and Computer Engineering.

According to the National Weather Service, turbulence is an irregular motion of the air resulting from eddies and vertical currents, associated with fronts, wind shear, and thunderstorms. It can be chaotic, irregular, random, and swirling. “That’s the mechanical form of turbulence,” notes Roggemann. “I’m interested in the optical effects of turbulence,” he says.

Leonard Bohmann is associate dean for academic affairs in the College of Engineering at Michigan Tech

“Think back to a hot summer day, when you’ve seen a car driving down a road that’s shimmering in the heat,” he says. “There are some really interesting atmospheric optic effects. A huge amount of work has been done to understand the nature of these effects and how to mitigate them—due to the practical impact on a huge number of things we really want to work.”

Over the years at Michigan Tech, Roggemann has put Michigan Tech’s north woods location on Lake Superior to great use for his research. One of his goals: to extend the range and understand the performance of imaging and laser systems in any kind of weather. 

“We’ve got it all here—remote locations, blizzards, thunderstorms, heat waves,” he says. “The UP is uniquely suited to the job.” 

Data from some of Dr. Roggemann’s previous research.

Roggemann and his research team at Michigan Tech developed a laser communications testbed to evaluate adaptive optics algorithms, installing it atop an eight-story building in the nearby city of Hancock. The system directed a laser beam 3.2 kilometers to a receiver located on the roof of the Dow Building on campus. They spent several years monitoring atmospheric turbulence, scattering, and weather to understand how such factors fluctuate in the real world. 


A Swiss F-5E Jet shimmers in the heat at RAF Fairford in England.

Free space laser communications systems send lasers through air. One challenge is that it’s not really free space—it’s air. “Atmosphere changes and turbulence can make the laser beam wander,” says Roggemann.  “Some technologies exist to partially mitigate these effects, but none are perfect,” he says.

Channel fading is one problem, and sometimes deep channel fading. If it goes down too low, the communication link can be broken. Roggemann and his research team of students designed and tested various ways of solving this problem to make laser communications more stable and reliable—and be able to achieve the highest possible channel capacity.

One thing they tried: using adaptive optics (AO) on the transmitter, to steer and focus the laser beam on the receiver aperture. The result was less fluctuation, which reduced fading. They discovered another benefit—an increase in received optical signal power.

A fellow of Optica (OSA) and fellow of SPIE, Roggeman is coauthor of the book “Imaging Through Turbulence,” and has authored or coauthored over sixty journal articles and over fifty conference papers, many relating to laser communication. Some of his other research interests include optical remote-sensing system design and analysis, and signal and image processing.

“Lasers and the atmosphere don’t mix all that well.”

Mike Roggemann

Before joining the faculty at Michigan Tech, Roggemann was an associate professor of engineering physics at the Air Force Institute of Technology, Wright-Patterson AFB, in Ohio. 

He earned a BS in Electrical Engineering at Iowa University, and an MS and PhD in Electrical Engineering at the Air Force Institute of Technology. Along the way he worked as an electro-optics program manager at Wright Laboratories, Wright-Patterson AFB, in Ohio, and an imaging researcher at the Phillips Laboratory, Kirtland AFB, in New Mexico. 

When you spot this sign, you’re in the right place to witness the Paulding Light.

Prof. Roggemann mentored and advised countless electrical engineering students over the years, many of whom earned their doctorate degrees. In addition to conducting research and teaching in photonics and optics, Prof. Roggeman served as the ECE department’s graduate director, no small feat. At any given time, the ECE department has about 50-plus PhD students and 140-plus MS students. 

In 2011, a group of Roggemann’s research students at Michigan Tech, led by then PhD student Jeremy Bos, examined the mysterious Paulding Light phenomena taking place in Paulding, Michigan. Their goal: separate fact from fiction.

Spoiler Alert: “The Paulding Light can be explained as a refraction of headlights from an inversion over the valley,” says Roggemann.

“If not for the students, why are we here?”

Leonard Bohmann
Free space laser communication is being tested and developed by NASA. At Michigan Tech, Dr. Roggemann is an expert on another kind: near ground laser communication. Credit: Laser Communications Relay Demonstration payload, NASA.

Dr. Bohmann was serving as interim ECE department chair when the position for the College of Engineering associate dean opened up. “I kind of like the administrative side of things, so I applied for the job,” he says.

It gives him the chance to participate in professional service, including volunteering as a program evaluator for ABET, the organization that accredits engineering programs (including Michigan Tech’s). He’s an ABET commissioner, working with ABET for close to 20 years now. 

But how did Dean Bohmann end up at Michigan Tech in the first place? The year was 1988, early October. 

“Janeen and I decided to make the long drive to Houghton to see what it was like at Michigan Tech,” he recalls. “That night we stayed at McLain State Park campground. We got up in the morning, looked out of the tent, and saw snowflakes in the air.” 

The rest is history. “We decided to move to the Great North Woods, to live near the shore of Lake Superior. This August it will have been 33 years!” 

The Paulding Light. Note: the small green light is a star. Credit: Wikimedia Commons

Dr. Roggemann, how did you first get into engineering? What sparked your interest?

I was fascinated by the space program as a boy in the 1960s and 1970s, and resolved to go to college and major in science or engineering to be a part of it.

Hometown?

I was born and raised in a small town in Iowa. After high school I went to Iowa State, and entered the Air Force upon graduation. I had some interesting assignments while on active duty, and got both my MSEE and PhD. I spent my last five years on active duty as a professor at the Air Force Institute of Technology. Upon retiring from the Air Force I joined the faculty at Michigan Tech, in the ECE department. I retired from academic life in June 2022.

What do you like to do in your spare time?

Quite a few hobbies:  hunting, fishing, exercise, reading, shooting replica firearms from the 1800’s, boating, traveling (more now that I’m not tied down by the academic calendar!), snowmobiling, snowshoeing, moving snow in the winter, and hiking. Never a dull moment. We have two lovable dogs, Fritz and Penne.  

Dr. Bohmann at Design Expo, Michigan Tech’s Annual showcase of Enterprise and Senior Design student projects.

Dr. Bohmann, what is your advice for new students? 

“It is important to study hard, but also important to play hard. If you are going to come to Michigan Tech you need to embrace the outdoors, because it’s here.”

Hometown?

Cincinnati, Ohio. “I went to college in Dayton, and graduate school in Madison. I just kept moving north until I ran into water—Lake Superior—and then I stopped.”

Family?

Janeen and Nick. Before that, I grew up in a family of 10.

What do you like to do in your spare time?

I like to snowshoe to and from work.

What is the most rewarding aspect of your job?

“Realizing that I am impacting students all across the college. Although I am more removed from day to day interactions, I have a chance to make sure they are getting a great education.”

Read More:

It’s Out There: Return to the Paulding Light

Watch

Play Unraveling the Paulding Light mystery. video
Preview image for Unraveling the Paulding Light mystery. video

Unraveling the Paulding Light mystery.

How to Mend a Broken Heart? Flow Dynamics.

Brennan Vogl and Dr. Hoda Hatoum test heart valves for overall performance and energetics, turbulence generated, sinus hemodynamics, plus ventricular, atrial, pulmonic, and aortic flows.
Brennan Vogl

Assistant Professor Hoda Hatoum conducts cardiovascular research with a team of students in her Biofluids Lab at Michigan Tech. One of those students, Brennan Vogl, first started at Michigan Tech as an undergraduate student studying biomedical engineering. Brennan is now pursuing his PhD, with Dr. Hatoum serving as his advisor. Brennan’s research focus is cardiovascular hemodynamics, the study of how blood flows through the cardiovascular system.

Prof. Hatoum, Brennan and her research team—six students in all—research complex structural heart biomechanics, develop prosthetic heart valves and examine structure-function relationships of the heart in both health and disease.

Dr. Hoda Hatoum

To do this, they integrate principles of fluid mechanics, design and manufacturing with clinical expertise. They also work with collaborators nationwide, including Mayo Clinic, Ohio State, Vanderbilt, Piedmont Hospital and St. Paul’s Hospital Vancouver.

“It is a great pleasure to work with Brennan,” says Dr. Hatoum. “He handles multiple projects, both experimental and computational, and excels in all aspects of them. I am proud of the tremendous improvement he keeps showing, and also his constant motivation to do even better.”

“When a student first joins our lab, they do not have any idea about any of the problems we are working on. As they get exposed to the problems, they begin to add their own valuable perspective. The student experience is an amazing one, and also rewarding,” she says.

“One of my goals is to evaluate and provide answers to clinicians so they know what therapy suits their patients best.”

Hoda Hatoum

Prof. Hatoum earned her BS in Mechanical Engineering from the American University of Beirut and her PhD in Mechanical Engineering from the Ohio State University. She was awarded an American Heart Association postdoctoral fellowship, and completed her postdoctoral training at the Ohio State University and at Georgia Institute of Technology before joining the faculty at Michigan Tech in 2020. Brennan was the first student to begin working with Dr. Hatoum in her lab.

One important focus for the team: studying how AFib ablation impacts the heart’s left atrial flow. Hatoum designed and built her own pulse duplicator system—a heart simulator—that emulates the left heart side of a cardiovascular system. She also uses a particle image velocimetry system in her lab, to characterize the flow field in vessels and organs.

AFib, or Atrial fibrillation is when the heart beats in an irregular way. It affects up to 6 million individuals in the US, a number expected to double by 2030. More than 454,000 hospitalizations with AFib as the primary diagnosis happen each year.

Another focus for Dr. Hatoum and her team: developing patient-specific cardiovascular models. The team conducts in vitro tests to assess the performance and flow characteristics of prosthetic heart valves. “We test multiple commercially-available prosthetic heart valves, and our in-house made prosthetic valves, too,” says Hatoum.

From the Biofluids Lab website: a wide array of current commercial bioprosthetic transcatheter mitral valves.

“Transcatheter bioprosthetic heart valves are made of biological materials, including pig or cow valves, but these are prone to degeneration. This can lead to compromised valve performance, and ultimately necessitate another valve replacement,” she notes.

To solve this problem, Hatoum collaborates with material science experts from different universities in the US and around the world to use novel biomaterials that are biocompatible, durable and suitable for cardiovascular applications. 

Look closely at this photo to see the closed leaflets of an aortic valve.

“Every patient is very different, which makes the problem exciting and challenging at the same time.”

Hoda Hatoum

The treatment of congenital heart defects in children is yet another strong focus for Hatoum. She works to devise alternative treatments for the highly-invasive surgeries currently required for pulmonary atresia and Kawasaki disease, collaborating with multiple institutions to acquire patient data. Then, using experimental and computational fluid dynamics, Hatoum and her team examine the different scenarios of various surgical design approaches in the lab.

“One very important goal is to develop predictive models that will help clinicians anticipate adverse outcomes,” she says.

“In some centers in the US and the world, the heart team won’t operate without engineers modeling for them—to visualize the problem, design a solution better, improve therapeutic outcomes, and avoid as much as possible any adverse outcomes.”

Hoda Hatoum

Dr. Hatoum, which area of research pulls your heartstrings the most?

Transcatheter aortic heart valves. With the rise of minimally-invasive surgeries, the clinical field is moving towards transcatheter approaches to replace heart valves, rather than open heart surgery. I believe this is an urgent field to look into, so we can minimize as much as possible any adverse outcomes, improve valve designs and promote longevity of the device.

How did you first get into engineering? What sparked your interest?

As a high-school student, I got the chance to go on a school trip to several universities and I was fascinated by the projects that mechanical engineering students did. That was what determined my major and what sparked my interest.

Hometown, family?

I was raised in Kab Elias, Bekaa, Lebanon. It’s about 45 kilometers (28 miles) from the Lebanese capital, Beirut. The majority of my family still lives there.

‘My niece took this image from the balcony of our house in Lebanon, located in Kab Elias. It shows the broad landscape and the mountains, and the Lebanese coffee cup that’s basically iconic.”

Brennan, how did you first get into engineering? What sparked your interest?

I first got into engineering when I participated in Michigan Tech’s Summer Youth Program (SYP) in high school. At SYP I got to explore all of the different engineering fields and participate in various projects for each field. Having this hands-on experience really sparked my interest in engineering.

Hometown, family?

I grew up in Saginaw, Michigan. My family now lives in Florida, so I get to escape the Upper Peninsula cold and visit them in the warm Florida weather. I have two Boston Terriers—Milo and Poppy. They live with my parents in Florida. I don’t think they would be able to handle the cold here in Houghton, as much as I would enjoy them living with me.

Paul van Susante: Multiplanetary INnovation Enterprise (MINE)

Dr. Paul van Susante’s Planetary Surface Technology Development Lab (PSTDL) at Michigan Tech, home of the Dusty Thermal Vacuum Chamber. It’s about as close to moon conditions as one can get on Earth!

Paul van Susante shares his knowledge on Husky Bites, a free, interactive webinar this Monday, 10/3 at 6 pm. Learn something new in just 30 minutes or so, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Paul van Susante

What are you doing for supper this Monday night 10/3 at 6 pm ET? Grab a bite with Dean Janet Callahan and Paul van Susante, Assistant Professor, Mechanical Engineering—Engineering Mechanics at Michigan Tech. Joining in will be several of his current Michigan Tech students, all members of MINE, the Multiplanetary INnovation Enterprise: electrical engineering majors Brenda Wilson and Gabe Allis; and mechanical engineering major Parker Bradshaw.

Wilson, Allis and Bradshaw—along with about 50 other student members of the MINE team—design, test, and implement robotic technologies for extracting (and using) local resources in extreme environments. That includes Lunar and Martian surfaces, and flooded subterranean environments here on Earth. Prof. van Susante helped launch the team, and serves as MINE’s faculty advisor.

The award-winning Enterprise Program at Michigan Tech involves students—of any major—working in teams on real projects, with real clients. Michigan Tech currently has 23 different Enterprise teams on campus, working to pioneer solutions, invent products, and provide services.

“As an engineer, I’m an optimist. We can invent things that allow us to do things that now seem impossible.”

Paul van Susante
Students in the Huskyworks Lab at Michigan Tech work on the T-REX rover (Tethered permanently-shadowed Region Explorer). The T-REX lays down lightweight, superconducting cable connected to a lander, and it won NASA’s top prize—the Artemis Award.

MINE team members build and test robotic vehicles and technologies for clients in government and the private sector. They tackle construction and materials characterization, too. It all happens in van Susante’s Planetary Surface Technology Development Lab (PSTDL) at Michigan Tech, a place where science fiction becomes reality via prototyping, building, testing—and increasing the technology readiness and level of tech being developed for NASA missions. The PSTDL is also known as Huskyworks.

Prior to coming to Michigan Tech, Prof. van Susante earned his PhD and taught at the Colorado School of Mines, and also served as a NASA Faculty Fellow. He has been involved in research projects collaborating with Lockheed Martin, Northrop Grumman, SpaceX, TransAstra, DARPA, NASA Kennedy Space Center, JPL, Bechtel, Caterpillar, and many others.

Prof. van Susante created the PSTDL’s Dusty Thermal Vacuum Chamber himself, using his new faculty startup funding. It’s a vacuum-sealed room, partially filled with a simulated lunar dust that can be cooled to minus 196 degrees Celsius and heated to 150 degrees Celsius—essentially, a simulated moon environment. In the chamber, researchers can test surface exploration systems (i.e., rovers) in a box containing up to 3,000 pounds of regolith simulant. It’s about as close to moon conditions as one can get on Earth.

Students in the PSTDL move a testbox into position for testing in the Dusty Thermal Vacuum Chamber.

The NASA Artemis program aims to send astronauts back to the moon by 2025 and establish a permanent human presence. Building the necessary infrastructure to complete this task potentially requires an abundance of resources because of the high cost of launching supplies from Earth. 

“An unavoidable obstacle of space travel is what NASA calls the ‘Space Gear Ratio’, where in order to send one package into space, you need nearly 450 times that package’s mass in expensive rocket fuel to send it into space,” notes van Susante. “In order to establish a long-term presence on other planets and moons, we need to be able to effectively acquire the resources around us, known as in-situ-resource utilization, or ISRU.”

“NASA has several inter-university competitions that align with their goals for their up-and-coming Artemis Missions,” adds van Susante. 

Huskyworks and MINE have numerous Artemis irons in the fire, plus other research projects, too. We’ll learn a lot more about them during Husky Bites.

LUNABOTICS

A peek at the integrated system of MINE’s Lunabotics rover.
Six members of the Michigan Tech Astro-Huskies (plus Dr. van Susante) at NASA Kennedy Space Center Visitor Center, during the 2021-22 Lunabotics competition

Electrical engineering undergraduate student Brenda Wilson serves as the hardware sub-team lead of the Astro-Huskies, a group of 25 students within MINE who work on an autonomous mining rover as part of NASA’s Lunabotics competition. It’s held every year in Florida at the Kennedy Space Center with 50 teams in attendance from universities across the nation. This is the Astro-Huskies’ third year participating in the competition, coming up in May 2023. 

This year the Astro-Huskies are designing, building, testing, and competing with an autonomous excavation rover. The rover must traverse around obstacles such as mounds, craters, rocks; excavate ice to be used for the production of rocket fuel, then return to the collection point. By demonstrating their rover, each team in the competition contributes ideas to NASA’s future missions to operate on and start producing consumables on the lunar surface. 

DIVER

Mechanical engineering undergraduate student Gabe Allis is manager of the MINE team’s DIVER project (Deep Investigation Vehicle for Energy Resources). The team is focused on building an untethered ROV capable of descending down into the Quincy mine to map the flooded tunnels and collect water samples. The team supports ongoing research at Michigan Tech that aims to convert flooded mine shafts into giant batteries, or Pumped Underground Storage for Hydropower (PUSH) facilities.

What it looks like beneath the Quincy Mine in Hancock, Michigan. Illustration courtesy of Michigan Tech’s Department of Geological and Mining Engineering and Sciences.

“Before a mine can be converted into a PUSH facility it must be inspected, and most mines are far deeper than can be explored by a conventional diver,”Allis explains.

“This is where we come in, with a robust, deep-diving robot that’s designed for an environment more unforgiving than the expanse of outer space, and that includes enormous external pressure, no communication, and no recovery if something goes wrong,” he says.  

“Differences in water temperature at different depths cause currents that can pull our robot in changing directions,” adds Allis. “No GPS means that our robot may have to localize from its environment, which means more computing power, and more space, weight, energy consumption, and cooling requirements. These are the sort of problems that our team needs to tackle.”

TRENCHER

During Husky Bites, Bradshaw will tell us about the team’s Trencher project, which aims to provide proof-of-concept for extracting the lunar surface using a bucket ladder-style excavator. “Bucket ladders offer a continuous method of excavation that can transport a large amount of material with minimal electricity, an important consideration for operations on the moon,” Bradshaw says. “With bucket ladders NASA will be able to extract icy regolith to create rocket fuel on the moon and have a reliable method to shape the lunar surface.” Unlike soil, regolith is inorganic material that has weathered away from the bedrock or rock layer beneath.

Parker Bradshaw, also a mechanical engineering student, is both a member of MINE and member of van Susante’s lab, where he works as an undergraduate researcher. “Dr. van Susante is my boss, PI, and Enterprise advisor. I first worked with him on a MINE project last year, then got hired by his lab (the PSTDL) to do research over the summer.”

Bradshaw is preparing a research paper detailing data the team has gathered while excavating in the lab’s Dusty Thermal Vacuum Chamber, with a goal of sharing what was learned by publishing their results in an academic journal.

The PSTDL’s field-rover HOPLITE gets ready for field-test last winter.

“An unavoidable obstacle of space travel is what NASA calls the ‘Space Gear Ratio’, where in order to send one package into orbit around Earth, you need nearly 10 times that package’s mass in expensive rocket fuel to send it into space, and even more for further destinations,” van Susante explains. “So in order to establish a long-term presence on other planets and moons, we need to be able to effectively acquire the resources around us, known as in-situ-resource utilization, or ISRU.”

In the world-class Huskyworks lab (and in the field) van Susante and his team work on a wide variety of projects:

Paul van Susante served as a mining judge during the 2018 Regolith Mining Competition at the NASA Kennedy Space Center Visitor Center

NASA Lunar Surface Technology Research (LuSTR)—a “Percussive Hot Cone Penetrometer and Ground Penetrating Radar for Geotechnical and Volatiles Mapping.”

NASA Breakthrough Innovative and Game Changing (BIG) Idea Challenge 2020—a “Tethered permanently shaded Region EXplorer (T-REX)” delivers power and communication into a PSR, (also known as a Polarimetric Scanning Radiometer).

NASA Watts on the Moon Centennial Challenge—providing power to a water extraction plant PSR located 3 kilometers from the power plant. Michigan Tech is one of seven teams that advanced to Phase 2, Level 2 of the challenge.

NASA ESI Early Stage Innovation—obtaining water from rock gypsum on Mars.

NASA Break the Ice—the latest centennial challenge from NASA, to develop technologies aiding in the sustained presence on the Moon.

NASA NextSTEP BAA ISRU, track 3—”RedWater: Extraction of Water from Mars’ Ice Deposits” (subcontract from principal investigator Honeybee Robotics).

NASA GCD MRE—Providing a regolith feeder and transportation system for the MRE reactor

HOPLITE—a modular robotic system that enables the field testing of ISRU technologies.

Dr. van Susante met his wife, Kate, in Colorado.

Dr. van Susante, how did you first get into engineering? What sparked your interest?

Helping people and making the world a better place with technology and the dream of space exploration. My interest came from sci-fi books and movies and seeing what people can accomplish when they work together.

Hometown and Hobbies?

I grew up in The Netherlands and got my MS in Civil Engineering from TU-Delft before coming to the USA to continue grad school. I met my wife in Colorado and have one 8 year old son. The rest of my family is still in The Netherlands. Now I live in Houghton, Michigan, not too far from campus. I love downhill and x-country skiing, reading (mostly sci-fi/fantasy), computer and board games, and photography.

Dr. van Susante has been a huge help—not just with the technical work, but with the project management side of things. We’ve found it to be one of the biggest hurdles to overcome as a team this past year.

Brenda Wilson

Brenda, how did you first get into engineering? What sparked your interest?

My dad, who is a packaging engineer, would explain to me how different machines work and how different things are made. My interest in electrical engineering began with the realization that power is the backbone to today’s society. Nearly everything we use runs on electricity. I wanted to be able to understand the large complex system that we depend so heavily upon. Also, because I have a passion for the great outdoors, I want to take my degree in a direction where I can help push the power industry towards green energy and more efficient systems.

Hometown, family?

My hometown is Naperville, Illinois. I have one younger brother starting his first year at Illinois State in general business. My Dad is a retired packaging engineer with a degree from Michigan State, and my mom is an accountant with a masters degree from the University of Chicago.

Any hobbies? Pets? What do you like to do in your spare time?

I am an extremely active person and try to spend as much time as I can outside camping and on the trails. I also spend a good chunk of my time running along the portage waterfront, swing dancing, and just recently picked up mountain biking.

I got involved in the DIVER project in MINE, and have enjoyed working with Dr. van Susante. He’s a no nonsense kind of guy. He tells you what you need to improve on, and then helps you get there.

Gabe Allis
Gabe Allis

Gabe, how did you first get into engineering? What sparked your interest?

I first became interested in engineering when my great-uncle gave me a college text-book of his on engineering: Electric Circuits and Machines, by Eugene Lister. I must have been at most 13. To my own surprise, I began reading it and found it interesting. Ever since then I’ve been looking for ways to learn more.

Hometown, family?

I’m from Ann Arbor, Michigan, the oldest of nine. First in my family to go to Tech, and probably not the last. 

Any hobbies? Pets? What do you like to do in your spare time?

I like to play guitar, read fiction, mountain bike, explore nature, and hang out/worship at St. Albert the Great Catholic Church.

“Doing both Enterprise work and research under Dr. van Susante has been a very valuable experience. I expect to continue working in his orbit through the rest of my undergrad degree.”

Parker Bradshaw
Parker Bradshaw

Parker, how did you first get into engineering? What sparked your interest?

I was first introduced to engineering by my dad, who manufactured scientific equipment for the University of Michigan Psychology department. Hanging around in his machine shop at a young age made me really want to work with my hands. What I do as a member of MINE is actually very similar to what my dad did at the U of M. I create research equipment that we use to obtain the data we need for our research, just for me it’s space applications (instead of rodent brains).

Hometown, family?

I grew up in Ann Arbor Michigan, and both of my parents work for the University of Michigan Psychology department. My dad is now retired.

Any hobbies? Pets? What do you like to do in your spare time?

I have a variety of things to keep me busy when school isn’t too overbearing. I go to the Copper Country Community Art Center Clay Co-Op as often as I can to throw pottery on the wheel. I also enjoy watercolor painting animals in a scientific illustration style. Over the summer I was working on my V22 style RC plane project.

Michigan Tech MINE team photo (taken last year). The constraints of the pandemic complicated some of their efforts, yet brought out the best in all of them.

Read more

To the Moon—and Beyond

Watch

Mine Video for Michigan Tech 2022 Design Expo

Pasi Lautala: Railroads—Back to the Future

The US rail network comprises nearly 140,000 miles of track—and more than 200,000 highway-rail grade crossings. Photo credit: Eric Peterson.

Pasi Lautala shares his knowledge on Husky Bites, a free, interactive webinar this Monday, 9/26 at 6 pm. Learn something new in just 30 minutes or so, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Dr. Pasi Lautala

What are you doing for supper this Monday night 9/26 at 6 ET? Grab a bite with Dean Janet Callahan and Pasi Lautala, associate professor of Civil, Environmental, and Geospatial Engineering at Michigan Tech.

Lautala directs Michigan Tech’s innovative Rail Transportation Program (RTP), preparing students to thrive and succeed in the rail industry—something he has done for the past 15 years.

Joining in will be Michigan Tech alumnus Eric Peterson, retired assistant chief engineer of public projects at CSX Transportation, who helped establish and grow the RTP at Michigan Tech.

During Husky Bites the two will share the secrets behind the energy efficiency of rail, and guide us from past railroads to what they are today. They’ll also discuss how railroads are securing a future in the era of rapid technology development. 

“Rail is considered more energy efficient. In many ways it is a more sustainable transportation mode compared to highway and air transport, says Lautala. “However, in order for rail transportation to keep up with the other modes of transportation, it must keep developing alongside them—and with an equal amount of passion. In the US, some of those challenges (but also opportunities) include long asset lives, non-flexible structures, and private ownership.”

Pat and Eric Peterson

Before moving to the US from Finland, Lautala worked for several summers with the Finnish Railway system. After graduating from Michigan Tech with his MS in Civil Engineering, he worked for five years as a railroad and highway engineering consultant in Chicago, before returning to Michigan Tech for his PhD in Rail Transportation and Engineering Education.

Michigan Tech’s Railroad Engineering Activity Club, aka REAC, is “for students interested in establishing contacts with, learning about, getting involved with, and a hair’s breadth away from being obsessed with the railroad and transportation industries in the United States of America and beyond.” Lautala and Peterson are honorary members.

“I first met Eric as a young consultant,” Lautala recalls. “He was one of the managers for our client, CSX Transportation. Once I returned to campus as a doctoral student, I learned Eric was a former classmate of my PhD advisor. Eric became an influential force and tireless supporter of our efforts to start the Rail Transportation Program. He still teaches some signals and communications lectures for us.”

“My wife, Pat, and I supported the startup of the Michigan Tech Rail Transportation Program with Pasi as the leader,” adds Peterson. “At the time, we were hiring engineers at CSX for all types of jobs, including field supervisors—people comfortable working both in the field and in the office. The rest of the rail industry was hiring, too.” 

“The railroad industry is still hungry for young people with interest and education in rail transportation,” says Lautala. When he first came to Michigan Tech from Finland in 1996 to earn an MS in Civil Engineering, Lautala brought the railroad bug with him. The son of a locomotive engineer, Lautala grew up in a culture that embraced rail transportation as a sustainable public transit alternative, as well as an efficient way to move freight.

While the US has the most extensive and efficient freight rail system in the world, the development of railroads had been on the back burner for decades, while the rest of the world kept moving forward, he observes. 

In 2007 Lautala established the RTP at Michigan Tech in order to advance rail education to a wide range of students, with integrated coursework, for both undergraduate and graduate students, and a minor in rail transportation. CN, Canadian National Railway Company, quickly came on board as a major sponsor of the program. The RTP also collaborates closely with many industry companies, associations and alumni. Their involvement provides professional networking, education, field trips, conferences, and guest speakers for Michigan Tech students involved in the Railroad Engineering and Activities Club (REAC), the first student chapter ever established by the American Railway Engineering and Maintenance of Way Association (AREMA).

“Students can also take part in hands-on rail industry-sponsored research projects across disciplines. Some topic areas include grade crossing and trespasser safety, materials research on railway equipment, locomotive emissions, the impact of climate change on railroads, and more,” says Lautala. Learning by doing is a central component of RTP’s approach to rail education.

Rail companies actively work with RTP to fill openings with Michigan Tech RTP students, whether for for full time jobs, internships or co-ops. And the RTP Experience wouldn’t be complete without the Railroad Night, an over 15 year tradition at Michigan Tech.

“Rail just makes sense, and it’s something this country needs.”

Pasi Lautala
Michigan Tech RTP students conduct field work

Lautala initially founded RTP’s innovative Summer in Finland program, which integrated an international component to rail education. It was an intensive five-week program, a collaboration among Michigan Tech, the Tampere University of Technology, and the North American and Finnish railroad industry. “That program created sufficient interest from the students and industry to officially launch the Rail Transportation Program,” Lautala says.

Outside Michigan Tech, Lautala serves as chair of National Academies’ Research Transportation Board Rail Group. “There are so many research possibilities—everything from infrastructure, with automated track-monitoring systems and recycled materials in railroad ties, to energy efficient equipment and operations,” he says.

Team Lautala!

Lautala’s own engineering research currently involves connected and autonomous vehicle communications at grade crossings, with fellow Civil, Environmental, and Geospatial Associate Professor Kuilin Zhang. The two are working to develop safe and efficient driving and routing strategies for autonomous vehicles at railroad grade crossings. Reduced energy consumption, emissions, and potential time delays are some of their goals. Their research is supported with two separate grants from the Federal Railroad Administration (FRA).

Dr. Lautala, how did you first get into engineering? What sparked your interest?

Prof. Lautala likes to fish, hunt, and play the accordian.

Probably my early summer internships, first at a rail construction site, and then with Finnish Railways.

Hometown?

Kangasala, Finland. I have split my life evenly between Finland and the US, twenty-five years each. I recently spent a year in Finland with my wife and two rascals (children): Olavi (10) and Ansel (8).

What do you like to do in your spare time?

Hobbies, you name it…..soccer (including coaching), hockey, golf, and many other sports. Three accordions and an equal number of bands. I’ve done some acting, too (though that’s been pretty quiet recently).

A rail adventure!

Eric, how did you first get into engineering? What sparked your interest?

I saw the Mackinac Bridge while it was under construction. A few years later when our subdivision was expanded, I spent the summer watching the grading contractor.  

Boating is another hobby. We have a 17’ boat for water skiing and a 20’ sailboat we use each summer for a few weeks on Crystal Lake near Frankfort, Michigan, when our family vacations together.

One of your most memorable accomplishments?

Training as a locomotive engineer.

Hometown?

I was born in Detroit and moved to Bloomfield Township when I was in the 4th grade. I am an only child. I married Patricia Paoli in 1970.

Eric and Pat thus far have three married adult children, and nine grandchildren.

What do you like to do in your spare time

My dad exposed me to both model railroading and real railroads. My primary hobby is model railroading in O Scale 2 rail, which is 1/48 scale. My work was all in the railroad industry.

Read more:

See Tracks? Think Train!

The Michigan Department of Transportation and Michigan Operation Lifesaver are partnering together to raise rail safety awareness. Most Americans today know the dangers associated with drunk driving, distracted driving or texting while crossing the street, But many are unaware of the risks they are taking around railroad tracks.

Husky Bites: Join Us for Supper This Fall!

Husky dog with plaid shirt and glasses sitting at a table with a bowl of dog bones
What are you doing for supper each Monday night at 6 pm ET this fall? Join us for some brain food, via Zoom or Facebook Live. Get the full scoop at mtu.edu/huskybites.

Craving some brain food? Join Dean Janet Callahan and special guests each Monday at 6 p.m. ET this for a 20-minute (or so) interactive Zoom webinar, with plenty of time after for Q&A. Grab some supper, or just flop down on your couch. This family friendly event is BYOC (Bring Your Own Curiosity). All are welcome. Get the full scoop and register⁠—it’s free⁠—at mtu.edu/huskybites.

Guests include Michigan Tech faculty members, who share a mini lecture and weave in a bit of their own personal journey to their chosen field. Also invited to join in during the session—their colleagues, mentors, former students, or current students.

“We created Husky Bites for anyone who likes to learn, across the universe,” says Callahan. “We aim to make it very interactive, with a ‘quiz’ (in Zoom that’s a multiple choice poll), about every five minutes. Everyone is welcome, and bound to learn something new. Some entire families enjoy it,” she adds.

Those who join Husky Bites via Zoom can take part in the session Q&A, one of the best parts of Husky Bites. But there are a few ways to “consume” the webinar. Catch the livestream on the College of Engineering Facebook page. Or, if you happen to miss a session, watch any past session on Zoom or youtube. (Scroll down to find the links on mtu.edu/huskybites).

On Monday (September 26), we’ll launch the season with “Railroads—Back to the Future, with Dr. Pasi Lautala, alumnus, director of Michigan Tech’s Rail Transportation Program, and associate professor of Civil, Environmental and Geospatial Engineering. Prof. Lautala will be joined by Eric Peterson ’70, ’71, retired former assistant chief engineer of public projects at CSX—and one of Michigan Tech’s greatest supporters and advocates of railroad activities and education.

About Husky Bites

Dean Callahan first launched Husky Bites June 2020, after the the first few months of the pandemic. Since then, she has hosted attendees from Michigan Tech’s campus community, across the US, and even attendees from various countries around the world. “There’s something of interest for all ages,” she adds. “A lot of folks turn it on in the background, and listen or watch while preparing, eating or cleaning up after supper,” she says. Dean Callahan awards some really great prizes for attendance. Also, high school students qualify for a nifty swag bag.

Get the Full Scoop

Want to see full schedule details? Just go to mtu.edu/huskybites. You can register from there, too. Husky Bites is presented by the College of Engineering at Michigan Technological University.

Pamela Rogers Klyn to Deliver First Year Engineering Series Lecture

Pam Klyn ’93 is Senior Vice President, Corporate Relations and Sustainability at Whirlpool Corporation

Pamela Rogers Klyn, Senior Vice President, Corporate Relations and Sustainability at Whirlpool Corporation, will deliver the First-Year Engineering Series Lecture to more than 1,000 Michigan Tech’s incoming engineering majors on Monday, September 26 at 6 pm on campus at the Rozsa Center Auditorium.

The title of Klyn’s lecture: “Effort Creates Opportunities.”

“The First-Year Engineering Series Lecture provides an exciting opportunity for our students to learn how they can use their new technological education to positively impact the world, by hearing from some of the nation’s most innovative engineering leaders,” says Mary Raber, chair of the Department of Engineering Fundamentals. “We look forward to learning more about Pam’s engineering journey as our students begin creating their own.”

“Pam’s dedication to continuous learning and developing others as a part of her own career journey are important keys to her own success and the success of many others. Her words of wisdom will be especially helpful to our new students,” adds Janet Callahan, Dean of the College of Engineering.

Klyn grew up in Auburn, Michigan and joined Whirlpool soon after graduating in 1993 with a bachelor of science degree in Mechanical Engineering from Michigan Tech.

“I chose engineering because it provided a strong foundation of problem-solving skills for whatever it was I would choose to explore in the future,” Klyn says. “I originally thought I would pursue medical school. Instead I decided to enter the professional world.”

“The engineering education I received at MTU was a strong stepping stone to my career success at Whirlpool Corporation.”

Pam Klyn ’93, Senior Vice President, Corporate Relations and Sustainability at Whirlpool Corporation

Klyn has held advancing roles in engineering, product development, global innovation, and marketing at Whirlpool. Its vision: “Be the best kitchen and laundry company, in constant pursuit of improving life at home.” World-class Manufacturing, IoT (Internet of Things), environmental and social responsibility, leading-edge design, craftsmanship, and digital technologies all drive innovation at Whirlpool.

Whirlpool reported approximately $19 billion in annual sales in 2020, with 78,000 employees and 57 manufacturing and technology research centers. Its iconic brand portfolio includes Whirlpool, KitchenAid, Maytag, Consul, Brastemp, Amana, Bauknecht, JennAir, Indesit and Yummly. The company had 472 patents awarded in 2020 alone. (Klyn was named on one that same year).

The Whirlpool Corp. site in Cassinetta, northern Italy, reached its zero waste to landfill goal a year ahead of schedule, and reduced its carbon emissions by 38 percent in just four years. Whirlpool is aiming for carbon neutrality at all of its 54 sites around the world by 2030. Photo credit: Whirlpool Corporation.

After her first year at Whirlpool, Klyn earned a master’s degree in engineering at the University of Michigan. Later she earned an executive MBA from Bowling Green State University.

Klyn is now a member of the Executive Leadership team at Whirlpool, and reports directly to the company’s chairman and chief executive officer, Marc Bitzer. 

“Pam has been an outstanding leader at Whirlpool. She brings not only a strong technical understanding of the products and the types of purposeful innovation that exceed our customer’s expectations, but also a commitment to bettering the communities around her,” Bitzer said.

Klyn describes herself as hardworking and focused—while being grateful for the support she was given throughout her youth and early in her career. “This has fueled my strong desire to give back and leave things better than I found them in everything I do,” she says.

Klyn has excelled in a number of business and engineering leadership roles at the company. She lived in Milan, Italy as vice president, products and brands for Whirlpool EMEA (Europe, Middle East and Africa), then led all washer, dryer and commercial laundry platforms globally as senior vice president of global product organization. Klyn was accountable for developing the product plans and long-term strategy to drive profitable growth in all regions.

In 2011, the Wall Street Journal profiled Klyn in an article, “Finding Their Way to the Fast Track, Rising Stars to Senior Managers,” about the initiatives that saved her company $854 million. “Be confident in your approach,” states Klyn in the WSJ article. “Look your senior leaders in the eye and say, ‘Here’s my plan, and here’s why it will work.’”

As the first female technology director for Whirlpool, Klyn has made it a point to serve as mentor to a number of individuals, seeking to provide tools and guidance for emerging female leaders. “I want to support their career growth and to give them the confidence to pursue roles at the highest levels of the organization,” she says.

She was elected to the Michigan Tech Presidential Council of Alumnae in 2012. Last year she was welcomed into the Michigan Tech Academy of the Department Mechanical Engineering-Engineering Mechanics Academy. Selection into the Academy recognizes excellence and leadership in engineering and civic affairs. 

Klyn also serves on the College of Engineering Advisory Board as part of her ongoing connection to Michigan Tech. 

Closer to home in Benton Harbor, Michigan, Klyn is a member of the Boys and Girls Clubs Board of Directors. She has served as the co-lead of the Whirlpool United Way Campaign for multiple years in support of her community. She’s also a trustee on the Whirlpool Foundation Board. Klyn is also a member of the Board of Directors for Patrick Industries, a $5 billion-plus publicly traded company. 

In her spare time, Klyn is an avid runner (24 marathons and counting) and a devoted landscaper. She lives with her husband, Steve, near Lake Michigan. She has two step-children, Parker and Cara.

Read more:

Providing the best leadership: Pam Klyn takes on new communications role at Whirlpool

Meet a Six-Time Fellow at Michigan Tech

By working at the interface of theory and experiments, Dr. Yun Hang Hu is building a bright future for energy devices and technology.

Have you ever met a professor bestowed with the distinguished honor of Fellow…six times? At Michigan Tech, that professor is Yun Hang Hu, the Charles and Carroll McArthur Endowed Chair Professor in the Department of Materials Science and Engineering. Dr. Hu is an international leader in energy research for his innovative processing of materials.

He has been named a Fellow six times for the breadth and rigor of his work:

  • Fellow of the American Physical Society – 2020: “For pioneering contributions to the dynamic control of structures and properties for carbon nanomaterials in their chemical synthesis, for the discovery of phase-disorder effects on memristive behaviors of metal sulfides, and for advances in chemical physics of catalysis and photocatalysis.”
  • Fellow of the ASM International – 2020: “For outstanding contributions to research and innovation in energy conversion materials; including application in solar cells, supercapacitors, hydrogen production and hydrogen storage.”
  • Fellow of the American Chemical Society – 2020: “Recognized for pioneering the synthesis and application of shape-controlled 3D graphene, discovering memristive behavior of 2D layer materials, inventing thermal-photo hybrid catalytic processes, designing efficient electrodes for energy devices, and inventing novel hydrogen storage materials.”
  • Fellow of the American Association for the Advancement of Science – 2014: ”For distinguished contributions in the field of novel materials and catalysts, particularly for molecular design and synthesis of nanomaterials for energy conversion, storage, and utilization.”
  • Fellow of the American Institute of Chemical Engineers – 2013: “Recognized for his exceptional, sustained accomplishments in energy, materials, catalysis and novel processes.”
  • Fellow of the Royal Society of Chemistry – 2013: “More than five years in a senior position….efforts have made an impact in any field of the chemical sciences.”
Microscopic view of a material that flakes in thin, angular sheets.
Hu’s research has resulted in the development of promising new memrister materials. Electrical circuits made of molybdenum disulfide nanosheets (pictured above) can potentially store massive amounts of data in a miniscule amount of space on a computer. Memristers could make today’s iPhones as powerful as a supercomputer. Image credit: Yun Hang Hu

Hu innovates the processing of hydrogen production, hydrogen storage materials, greenhouse gas conversion, and energy conversion and storage. 

His groundbreaking work has led to several brand-new materials and processes, innovations will help in a number of applied technologies—from supercapacitors that run elevators to solar cell banks to computer data storage to making hydrogen fuel from water and sunlight.

In particular Hu investigates advanced materials for energy applications—their characterization and synthesis—using both chemical and physical approaches. His research areas include graphene for solar energy, dye-sensitized solar cells, photocatalysis, synthesis of novel solid materials and liquid fuels from CO2, hydrogen storage materials, and heterogeneous catalysis for energy and fuels. 

Hu also conducts research on 3D graphene materials for supercapacitors and solar cells and has developed several processes to synthesize 3D graphene with excellent performance for dye-sensitized solar cells and perovskite solar cells.

In addition to being elected a Fellow thrice in 2020, Hu earned the Distinguished Service Award from the Energy and Fuels Division of the American Chemical Society that same year.

And most recently, in 2022, for his pioneering contributions to hydrogen energy, Hu won the Rudolf Erren Award from the International Association of Hydrogen Energy (IAHE). The award is given for “Leadership in the Thermochemical Area (involvement with heat engines and combustion, thermochemical production, facets of hydrogen transmission, distribution and storage, such as metal hydrides).”

Read More

A Bright Future for Energy

Memristors: Making a New Generation for Digital Memory and Computation

Yun Hang Hu Wins Both Research Award and Bhakta Rath Award