Category: Features

Mary Raber: Solving Wicked Problems

Mary Raber shares her knowledge on Husky Bites, a free, interactive webinar this Monday, November 2 at 6 pm ET. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

What are you doing for supper this Monday night 11/2 at 6? Grab a bite with Dean Janet Callahan and Mary Raber, Chief Doing Officer of IDEAhub, Michigan Tech’s collaborative working group for educational innovation. Joining in will be Brad Turner, one of Mary’s former students, who earned his BS in Software Engineering 2017. He started his career at Handshake SF and recently joined Blackfynn Philly.

In this Husky “bite” you will be introduced to how Michigan Tech is using design thinking to reimagine education for the 21st century, and how Brad has used the process in his work after graduation.

Mary Raber

A professor of practice, Raber serves as assistant dean for academic programs in Michigan Tech’s Pavlis Honors College. She’s also co-director of Husky Innovate (Michigan Tech’s resource hub for innovation & entrepreneurship). A design-thinking and innovation enthusiast, Raber loves to help others embrace the tools and mindsets of innovation to effect positive change. 

While earning his software engineering degree at Michigan Tech, Brad Turner joined the Pavlis Honors College. He worked as student coordinator for the Innovation Program within the PHC Innovation Center for Entrepreneurship, and that’s when he met Raber. “Mary became my mentor,” he said.

Brad Turner

Nowadays, Turner is a product designer, one who recently made the switch from building tools that help college students find jobs, to designing software that improves the treatment of neurological diseases. 

During Husky Bites, Raber and Turner will introduce the design thinking process, developed at the Stanford d.school. 

“Design thinking is a tool to help you reframe life’s challenges into opportunities,” says Raber. “It’s a process widely used to solve messy, wicked problems,” she explains. “At its core is the human…those whose lives we are trying to improve in some way.  The process fosters mindsets and skills that enables anyone, young and old, to tackle ambiguous problems.”

Design Thinking: Emphathize, Define, Ideate, Prototype, Test

After a 14-year career in the automotive industry, Raber first joined Michigan Tech to lead the implementation and growth of the highly distinctive undergraduate Enterprise Program. She helped found the Pavlis Honors College, where she now facilitates learning in leadership, human-centered design, and lean start-up. 

Raber was honored with Michigan Tech’s Faculty Distinguished Service Award in 2018. “Through Mary’s exceptional dedication and efforts, opportunities and resources for innovation and entrepreneurship on our campus have grown substantially,” said Lorelle Meadows, dean of the Pavlis Honors College.

Over the years Raber has co-founded several start-ups (“some of which have been successful, and some that haven’t fared as well,” she says). She’s currently pursuing a PhD at Michigan Tech with a focus on engineering education, and working on developing another start-up to help bring her passion for innovative teaching and learning to others. 

“Design thinking is a tool to help you reframe life’s challenges into opportunities.”

Mary Raber

Raber has cultivated a strong relationship with the Stanford d.school, opening up additional avenues for student exploration and education. Through this collaboration, Michigan Tech has a highly active group of University Innovation Fellows (UIF).

“Fellows work to ensure that their peers gain the knowledge, skills and attitudes required to make a positive impact on the world,” Raber explains. “They attend training at Stanford’s d.school, where they can meet students from across the country engaged in change-making on their own campuses.” Michigan Tech’s UIFs engage with incoming first-year students during orientation week, exposing them early on to powerful entrepreneurial tools and resources.

Turner was a University Innovation Fellow during his years at Michigan Tech. He worked closely with Raber to develop and launch Michigan Tech’s first-ever makerspace, The Alley, located on campus in the Memorial Union Building. He facilitated design thinking classes, and developed a visual language for Alley.

Some of Michigan Tech’s Innovation Fellows exploring the Google campus in Mountain View, CA during a UIF meetup. Brad is second from the left. Looks like fun!

“I went through the (UIF) training with the Stanford d.school during my second year at Tech,” Turner recalls. “It was an 8-week online course where we learned about design thinking. “When I started working on more initiatives related to UIF, I found myself continually looking to Mary for advice, guidance, and support on those initiatives. By the time I graduated, Mary and I worked on a variety of projects together and presented our work together on campus and at national conferences.”

A group of student volunteers helped build tables for Michigan Tech’s Alley Makerspace when it launched.

In 2014 Turner took an internship at Handshake, a company founded 2014 by three engineering students at Michigan Tech to give students access to a larger number of potential employers, no matter their location. Turner worked in the company’s first small office in Houghton, then moved with them to San Francisco for a second internship. Upon graduation he joined the company, helping grow its design system and processes as the Handshake team grew from 35 to over 200 employees.

As Handshake’s lead designer on a variety of projects, Turner collaborated with project managers to dig into challenges and articulate compelling problem statements. He conducted user research and user testing, and partnered with engineers to deliver high quality, accessible experiences.

Turner recently moved from Handshake to Blackfynn, a company that seeks to transform the treatment of neurological disease—including Parkinson’s disease, which affects nearly one million people in the US—with data-driven, next-generation therapeutics.

Raber was honored with Michigan Tech’s Faculty Distinguished Service Award in 2018.

Mary, when did you first get into engineering? What sparked your interest?

I enjoyed math, science and design in high school, so engineering seemed like a logical next step. My concentration was in biomechanics and I was hooked on the connections between health and engineering with my first internship at UMich hospitals where I tested hypodermic needles on cadavers. I was very fortunate to get my first job after graduation at Chrysler Motors working with an all female engineering team to design the sensing and diagnostics systems for the first mass-produced airbag systems. It’s led me to fascinating careers in automotive electronics and now engineering education.

Hometown, Hobbies, Family? 

I have lived in Michigan all my life, moving back and forth from lower Michigan to the UP several times. I’m easing into the empty nester life while my son lives nearby and attends Michigan Tech, and occasionally brings his laundry home. I love to travel and have had the opportunity to visit many wonderful places around the world.  In my spare time I enjoy hiking, gardening, skiing, and creating through hobbies like baking, knitting, and quilting.  

Brad, How did you first get into engineering? What sparked your interest?

After watching too much Grey’s Anatomy in high school, I was sure that I wanted to be a surgeon when I grew up. I was also interested in technology, so instead of thinking about going to med school, I decided to study biomedical engineering to blend my interests in medicine and technology. (My interest in biomed only lasted a year before I discovered design thinking and decided to switch to software engineering).

Brad made the move to Philly after running the Philadelphia Marathon last year.

Hometown, Hobbies, Family?

I grew up in Bay City, Michigan. My older brother was studying mechanical engineering at Michigan Tech and I really enjoyed Houghton when I came to visit him. After spending a weekend on campus with the Leading Scholars program during my senior year of high school, I knew it was the right place for me. I’ve spent the past 4 years in San Francisco and recently (during the pandemic) found a new home with my partner in Philadelphia. Outside of work you’ll normally find me running along the Schuylkill River, trying out a new recipe in my kitchen, or virtually volunteering to help get out the vote this November.


Paul Bergstrom: Nanoscaled Epic Fails!

A cell of eight SET (single electron transistor) devices at room temperature. Paul Bergstrom, an electrical engineering professor at Michigan Tech, created the first operating SET of any kind accomplished with focused ion beam technology, the second demonstration of room temperature SET behavior in the US, and sixth in the world.

Paul Bergstrom shares his knowledge on Husky Bites, a free, interactive webinar this Monday, October 26 at 6 pm ET. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Doing anything for supper this Monday night at 6? Grab a bite with Dean Janet Callahan and Professor Paul Bergstrom for “Nanoscale Epic Fails!” Joining in will be one of Bergstrom’s former students, Tom Wallner, now an R&D engineer at PsiQuantum.

At Michigan Tech, ECE Prof. Bergstrom and his team of student researchers develop nanoelectronic devices.  The effort takes them down some (seemingly) impossible pathways. 

“If you don’t know where you are going, any road will get you there.” It’s one of Prof. Paul Bergstrom’s favorite lines from Alice in Wonderland, by Lewis Carroll.

“Nanoscaled materials and devices that leverage quantum—or nearly quantum—scales enable extraordinary behavioral changes that can be very useful in sensing and electronics,” he says.

“Conducting research in this area constantly demonstrates that what we think we know is not always everything we need to know about how atoms and molecules interact. One experimental failure leads to understanding for the next. It’s a life lesson under the microscope.

“With the scientific method, we have an idea. We know where we want to go. We create a path to get there. Depending on our results, we decide whether or not we’re on the right path,” he explains.

Working in the nanoscale, it’s all about the size of things, he says. Bergstrom and his team use focused ion beam (FIB) systems to fabricate electrical devices at the nanoscale, using elemental gallium. He’ll explain the process in detail during his session on Husky Bites.

“We can see down to the 10s of hundreds of atoms and molecules, and see quantum mechanical effects that take place,” he says. “Many nanodevices exhibit quantum mechanical electronic behavior at subzero temperatures. There are lots of blind alleys we need to map out in order to understand where to go next with our research.”

“Experimental failure is not final. There can be success through failure, even epic failure.”

Paul Bergstrom

Bergstrom and his team had a goal: make a single electron transistor (SET) operable at room temperature. And they did: Theirs was the first operating SET of any kind accomplished with focused ion beam technology, the second demonstration of room temperature SET behavior in the US, and sixth in the world.

Room-temperature SETs could someday open up whole new aspects of the electronics industry, says Bergstrom. “Moving to nanoscaled electronic devices such as SETs that rely on quantum behavior will allow us to eliminate leakage current. The SET may also allow technology its continued migration toward high levels of integration—from hundreds of millions of transistors to hundreds of billions of transistors ultimately—so that cost per device will continue to drop at its historic rate, or even faster.”

Bergstrom’s effort goes beyond the SET. “We hope to find ways to create devices ultimately that will not transfer current when they do logic. That is the ‘Holy Grail’ for nanoelectronics. And we are taking that challenge seriously.”

He also takes it in stride. “In research, past failures define the starting place. Current failures define impossible pathways. We know our starting point and our end point. We just don’t know the path in between.” And that’s okay, even good, he says.

Jin and Tom during their college days at Michigan Tech. She earned her PhD in electrical engineering at Michigan Tech. Did they first meet in the lab? We’ll try to find out during Husky Bites.

Michigan Tech alum Tom Wallner graduated from Michigan Tech with a BS in 2002 and an MS in ‘04, both in electrical engineering. “From my undergrad work and throughout my career I’ve built things,” he says. “I’ve always been especially interested in building small things.” That fascination has led Wallner to some amazing places and workplaces. He also found the love of his life at Michigan Tech, Jin Zheng-Wallner.

After graduation, Wallner spent time at Sandia National Labs, and then joined IBM doing microelectronics R&D, including time spent in South Korea for IBM, working with Samsung. After nearly a decade Wallner moved to GLOBALFOUNDRIES, “a company formed out of a bunch of fabs.” (AKA chip fabricators). Then one day Wallner’s career path took a fortuitous turn. “Some old IBM buddies knocked on my door, some very good friends. They said, ‘Hey Tom, do you want to try this photonics stuff?”

“It turns out testing photonics devices is a wide open field,” he says. “Not many people have a background and skill set in that area. I thought to myself, well, I know a little about photonics, I’ll just go figure it out.” Wallner went to work at SUNY Polytechnic Institute as an integrated photonic test engineer. 

Recently Wallner joined PsiQuantum, a startup based in Silicon Valley. “Our mission is to build the world’s first useful quantum computer. We’re taking a photonic path to that, which is different than most quantum computing,” he says.

As a student at Michigan Tech, Wallner worked on a team that developed an unmanned vehicle. “It looked like a bumblebee—300 pounds of unmanned robotics, with cameras on it. We navigated it on a course we set up out on the Michigan Tech golf course.”

Wallner was a management advisor in Douglas Houghton Hall (DHH) and president of Michigan Tech’s IEEE chapter for 4 years. “I was in charge of the building.  If a hallway light went out, or a door got jammed, OR the one time there was a water line break and a whole floor flooded–that was my responsibility,” he recalls.

“Tom not only renovated the IEEE student lab—he even secured industry sponsorship to cover the costs,” says Bergstrom. The Kimberly Clarke plaque still hangs outside the door of Room 809 in the EERC.”

“Tom also started building the MFF for me, and he developed the tool set for our room temperature SET research,” notes Bergstrom. Today the Microfabrication Shared Facility (MFF) at Michigan Tech provides resources for micro- and nano-scaled research and development of solid state electronics, microelectromechanical systems (MEMS), lab-on-a-chip, and microsystems materials and devices, serving researchers across campus and across the country.

Prof. Bergstrom, when did you first get into engineering? 

I knew I wanted to be, specifically, an electrical engineer by the time I was 16. I am the son of an analytical chemist who trained chemical technicians for industry. When donated tools would come into his teaching laboratory, I would come in and either fix them or disassemble them and recycle the components that could be processed. A passion for high-end audio also led me to analog amplifier design and speaker assembly. My desire to learn about the coupled electromechanical physics and engineering in audio as a young teenager sparked my interest in electronics and microelectromechanical systems—and launched my career at the micro- and nanoscale.

An “Ent” from Lord of the Rings.

Hometown, Hobbies, Family?

I grew up in the suburbs of the Twin Cities of Minnesota with family roots in northwestern Wisconsin. After formative years in Minnesota came graduate school in Michigan, semiconductor research with Motorola, Inc. in Arizona, and the last 20 years in the Keweenaw as faculty. I have too many hobbies and acquired skills outside of my profession, but they mostly revolve around musical enjoyment and performance, or enjoying and utilizing the northern forest and timber, or both. My wife calls me an “ent” (one of those mythical tree creatures who move and talk in the Lord of the Rings).

ECE Alumnus Tom Wallner ’02 04 is now an R&D Engineer at PsiQuantum

Tom, how did you find engineering? 

I started getting interested way back in grade school when I learned that you can make electromagnets with a lantern battery, a nail, and some wire. Later, in high school, my part time job was at a family owned electronics shop. I loved working with customers to help solve their problems. This was back in the day of mobile phones being “bag phones” and then I saw the transition to smaller phones. I remember being blown away by the Motorola Startac flip phone. When I graduated high school, I wanted to take the next step and learn more about how such cool devices work and how they are made.

Hobbies and Interests?

I was born and raised in Ashland, Wisconsin. My parents still live in the house I grew up in. I enjoy playing trombone, hunting, fishing, woodworking, and language learning. I met my wife,  Jin, at Michigan Tech. She earned her PhD in electrical engineering at Michigan Tech, advised by Dr. Bergstrom. Our two sons, now aged 10 and 12, know all the technical jargon and acronyms. They talk about “SOP” (Standard Operating Procedure) while doing the dishes, and BKM (Best Known Method) while putting them away! 


Tim Havens: Warm and Fuzzy Machine Learning

A test vehicle to collect data for explosive hazards detection. Havens has spent the past 12-plus years developing new, improved methods to find explosive hazards, working with the US Army.

What are you doing for supper this Monday night at 6? Grab a bite with Dean Janet Callahan and Associate Professor Tim Havens, director of the Michigan Tech’s Institute of Computing and Cybersystems and associate dean for research in the College of Computing. Get the full scoop and register at mtu.edu/huskybites.

“Nearly everyone has heard the term ‘Deep Learning’ at this point, whether to describe the latest artificial intelligence feat like AlphaGo, autonomous cars, facial recognition, or numerous other latest-and-greatest gadgets and gizmos,” says Havens. “But what is Deep Learning? How does it work? What can it really do—and how are Michigan Tech students advancing the state-of-the-art?”

Professor Tim Havens is a Michigan Tech alum. He earned his BS and MS in electrical engineering in 1999 and 2000.

In this session of Husky Bites, Prof. Havens will talk about everyday uses of machine learning—including the machine learning research going on in his lab: explosive hazards detection, under-ice acoustics detection and classification, social network analysis, connected vehicle distributed sensing, and other stuff.

Joining in will be one of Havens’ former students, Hanieh Deilamsalehy, who earned her PhD in electrical engineering at Michigan Tech. She’s now a machine learning researcher at Adobe. Dr. Deilamsalehy graduated from Michigan Tech in 2017 and headed to Palo Alto to work for Ford as an autonomous vehicle researcher. She left the Bay Area for Seattle to take a job at Microsoft, first as a software engineer, and then as a machine learning scientist. In April she accepted a new machine learning position at Adobe, “in the middle of the pandemic!”

Havens is a Michigan Tech alum, too. He earned his BS in ‘99 and MS in Electrical Engineering in ‘00, then went to the MIT Lincoln Laboratory, where he worked on simulation and modeling of the Airborne Laser System, among other defense-related projects. From there it was the University of Missouri for a PhD in Electrical and Computer Engineering, researching machine learning in ontologies and relational data.

Nowadays, Havens is the William and Gloria Jackson Associate Professor and Associate Dean for Research in the College of Computing. In addition to serving as director of Michigan Tech’s ICC, he also heads up the ICC Center for Data Sciences and runs his own PRIME Lab, too (short for Pattern Recognition and Intelligent Machines Engineering).

“An important goal for many mobile platforms—terrestrial, aquatic, or airborne—is reliable, accurate, and on-time sensing of the world around them.”

Tim Havens

Havens has spent the past 12 years developing methods to find explosive hazards, working with the US Army and a research team in his lab. According to a United Nations report, more than 10,000 civilians were killed or injured in armed conflict in Afghanistan in 2019, with improvised explosive devices used in 42 percent of the casualties. Havens is working to help reduce the numbers.

“Our algorithms detect and locate explosive hazards using two different systems: a vehicle-mounted multi-band ground-penetrating radar system and a handheld multimodal sensor system,” Havens explains. “Each of these systems employs multiple sensors, including different frequencies of ground penetrating radar, magnetometers and visible-spectrum cameras. We’ve created methods of integrating the sensor information to automatically find the explosive hazards.” 

As a PhD student at Michigan Tech, Deilamsalehy worked alongside Havens as a research assistant in the ECE department’s Intelligent Robotics Lab (IRLab). “My research was focused on sensor fusion, machine learning and computer vision, fusing the data from IMU, LiDAR, and a vision camera for 3D localization and mapping purposes,” she says. “I used data from a sensor platform in the IRLab, mounted on an unmanned aerial vehicle (UAV), to evaluate my proposed fusion algorithm.”

Havens is also co-advisor to students in the SENSE (Strategic Education through Naval Systems Experience) Enterprise team at Michigan Tech, along with ME-EM Professor Andrew Barnard. Students in SENSE design, build, and test engineering systems in all domains: space, air, land, sea, and undersea. Like all Enterprise teams, SENSE is open to students in any major. 

You’d never know it looking at this hat, but Dr. Havens is a cat person with two “fur children.” He is also musical, playing the bass and the trumpet.

Prof. Havens, when did you first get into engineering? What sparked your interest?

I first became an engineer at Michigan Tech in the late 90s. What really sparked my interest in what-I-do-now was my introductory signal processing courses. The material in these courses was the first stuff that really ‘spoke’ to me. I have always been a serious musician and the mathematics of waves and filters was so intuitive because of my music knowledge. I loved that this field of study joined together the two things that I really loved: music and math. And I’ve always been a computer geek. I was doing programming work in high school to make extra money; so that side of me has always led me to want to solve problems with computers.

Hometown, Hobbies, Family?

I grew up in Traverse City, Michigan, and came to Tech as a student in the late 90s. I’ve always wanted to come back to the Copper Country; so, it’s great that I was able to return to the institution that gave me the jump start in my career. I live (and currently work from home) in Hancock with my partner, Dr. Stephanie Carpenter (an author and MTU professor), and our two fur children, Rick Slade, the cutest ginger in the entire world, and Jaco, the smartest cat in the entire world. I have a grown son, Sage, who enjoys a fast-paced life in Traverse City. Steph and I enjoy exploring the greater Keweenaw and long discussions about reality television, and I enjoy playing music with all the local talent, fishing (though catching is a challenge), and gradually working through the lumber pile in my garage.

Hanieh earned her MS and PhD in Electrical Engineering at Michigan Tech. Before that, she earned an MS in Medical Radiation Engineering from Amirkabir University of Technology – Tehran Polytechnic, and a BS in Electrical Engineering from K.N. Toosi University of Technology (KNTU).

Dr. Deilamsalehy, how did you find engineering? What sparked your interest?

I was born and raised in Tehran, Iran. I have always been into robotics. I was a member of our robotics team in high school and that led me to engineering. I decided to apply to Michigan Tech sort of by chance when a friend of mine told me about it. I looked at the programs in the ECE department, and felt they aligned with my interests. Then soon after I first learned about Michigan Tech, I found out that one of my undergraduate classmates went there. I talked to him, and he also encouraged me to apply. And that’s how I was able to join Michigan Tech for my PhD program. My degree is in electrical engineering but my focus at Michigan Tech involved computer science and designing Machine Learning solutions.

Hanging out above the clouds is one of Dr. Hanieh Deilamsalehy’s favorite pastimes. Since moving to Seattle she has hiked and climbed Mt. Rainier, Mt. Shuksan, Mt. Baker, Mt. Adams and other peaks in the Pacific Northwest.

Hobbies and Interests?

I now live in Seattle, famous for outdoor activities—kind of like the UP, but without the cold—so I do lots of mountaineering, biking, rock climbing, and in the winter, skiing. I learned how to ski at Michigan Tech, up on Mont Ripley. It’s steep, and it’s cold! Once you learn skiing on Ripley, you’re good. You can ski just about anywhere.


Erik Herbert: Holy Grail! Energy Storage on the Nanoscale

Ever wondered what a materials science engineer sees on their computer screen on any given day? Here’s what Dr. Erik Herbert and his team are focused on.

Erik Herbert shares his knowledge on Husky Bites, a free, interactive webinar tonight, Monday, October 12 at 6 pm ET. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Tonight’s Husky Bites delves directly into our phones, laptops and tablets, on how to make them cleaner, safer, faster, and more environmentally friendly. It’s about materials, and how engineers focus on understanding, improving inventing materials to solve big problems.

MSE Assistant Professor Erik Herbert

Materials Science and Engineering Assistant Prof. Erik Herbert is focused on the lithium metal inside the batteries that power our devices. Lithium is an extremely reactive metal, which makes it prone to misbehavior. But it is also very good at storing energy. 

Optical microscope image showing residual hardness impressions in a high purity, vapor deposited, polycrystalline lithium thin film. The indents are approximately 1 micron deep and spaced by 35 microns in the plane of the surface (1 micron is a millionth of a meter). Among the key takeaways are the straight edges connecting the 3 corners of each impression and the lack of any discernible slip steps or terraces surrounding the periphery of the contact. Now, if you’re wondering what this means, be sure to catch Dr. Herbert’s session on Husky Bites.

“We want our devices to charge as quickly as possible, and so battery manufacturers face twin pressures: Make batteries that charge very quickly, passing a charge between the cathode and anode as fast as possible, and make the batteries reliable despite being charged repeatedly,” he says. 

On campus at Michigan Tech, Dr. Herbert and his research team explore how lithium reacts to pressure by drilling down into lithium’s smallest and arguably most befuddling attributes. Using a diamond-tipped probe, they deform thin film lithium samples under the microscope to study the behavior on the nanoscale.

“Lithium doesn’t behave as expected during battery operation,” says Herbert.  Mounting pressure occurs during the charging and discharging of a battery, resulting in microscopic fingers of lithium called dendrites. These dendrites fill pre-existing microscopic flaws—grooves, pores and scratches—at the interface between the lithium anode and the solid electrolyte separator.

During continued cycling, these dendrites can force their way into, and eventually through, the solid electrolyte layer that physically separates the anode and cathode. Once a dendrite reaches the cathode, the device short circuits and fails, sometimes catastrophically, with heat, fire and explosions.

Pictured: High-purity indium, which is a mechanical surrogate to lithium. It can be used to make electrical components and low melting alloys. “Note the scale marker,” says Herbert. “That distance is 5 millionths of a meter. The image was taken in a scanning electron microscope and shows the residual hardness impression from a 550 nm deep indent. The key noteworthy feature is the extensive pile-up around the edges of the contact, which suggests a deformation mechanism that conserves volume.”

Improving our understanding of this fundamental issue will directly enable the development of a stable interface that promotes safe, long-term and high-rate cycling performance.

“Everybody is just looking at the energy storage components of the battery,” says Herbert. “Very few research groups are interested in understanding the mechanical elements. But low and behold, we’re discovering that the mechanical properties of lithium itself may be the key piece of the puzzle.”

Dr. Iver Anderson is a senior metallurgist at Ames Lab, an inventor, and a Michigan Tech alumnus.

Iver Anderson, PhD will be Dean Callahan’s co-host during the session. Dr. Anderson is a Michigan Tech alum and senior metallurgical engineer at Ames Lab, a US Department of Energy National Lab. A few years ago, he was inducted into the National Inventors Hall of Fame, for inventing a successful lead-free solder alloy, a revolutionary alternative to traditional tin/lead solder used for joining less fusible metals such as electric wires or other metal parts, and in circuit boards.

As a result, nearly 20,000 tons of lead are no longer released into the environment worldwide. Low-wage recyclers in third-world countries are no longer exposed to large concentrations of this toxic material, and much less lead leaches from landfills into drinking water supplies. 

“There is no safe lead level,” says Anderson. “Science exists to solve problems, but I believe the questions have to be relevant. The motivation is especially strong to solve a problem when somebody says it is not possible to solve it,” he adds. “It makes me feel warm inside to have solved one problem that will help us going on into the future.”

Anderson earned his BS in Metallurgical Engineering in 1975 from Michigan Tech. “It laid the foundation of my network of classmates and professors, which I have continued to expand,” he said.

Anderson went on to earn his MS and PhD in Metallurgical Engineering from University of Wisconsin-Madison. After completing his studies in 1982, he joined the Metallurgy Branch of the US Naval Research Laboratory in Washington, DC.

With a desire to return to the Midwest, he took a position at Ames Lab in 1987 and has spent the balance of his research career there and at Iowa State.

“I hope our work has a significant impact on the direction people take trying to develop next-gen storage devices.”

Erik Herbert

Professor Herbert, when did you first get into engineering? What sparked your interest?

The factors that got me interesting engineering revolved around my hobbies. First it was through BMX bikes and the changes I noticed in riding frames made from aluminum rather than steel. Next it was rock climbing, and realizing that the hardware had to be tailor made and selected to accommodate the type of rock or the type or feature within the rock. Here’s a few examples: Brass is the optimal choice for crack systems with small quartz crystals. Steel is the better choice for smoothly tapered constrictions. Steel pins need sufficient ductility to take on the physical shape of a seam or crack. Aluminum cam lobes need to be sufficiently soft to “bite” the rock, but robust enough to survive repeated impact loads. Then of course there is the rope—what an interesting marvel—the rope has to be capable of dissipating the energy of a fall so the shock isn’t transferred to the climber. Clearly, there is a lot of interesting materials science and engineering going on here.

Hometown, hobbies?

I am originally from Boston, but was raised primarily in East Tennessee. Since 2015, my wife Martha and I have lived in Houghton with our three youngest children. Since then, all but one have taken off on their own. When I’m not working, we enjoy visiting family, riding mountain bikes, learning to snowboard, and watching a good movie.

Dr. Iver Anderson’s invention of lead free solder was 15 years (at least) in the making.

Dr. Anderson, when did you first get into engineering? What sparked your interest?

I grew up in Hancock, Michigan, in the Upper Peninsula. Right out my back door was a 40 acre wood that all the kids played in. The world is a beautiful place, especially nature. That was the kind of impression I grew up with. My father was observant and very particular, for instance, about furniture and cabinetry. He taught me how to look for quality, the mark of a craftsman, how to sense a thousandth of an inch. I carry that with me today.


Orhan Soykan: How to Become a Prolific Inventor

Orhan Soykan shares his knowledge on Husky Bites, a free, interactive webinar this Monday, October 5 at 6 pm ET. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Join Dean Janet Callahan for supper along with Orhan Soykan, a prolific inventor and professor of practice in biomedical engineering at Michigan Tech with more than 100 patents to his name. Joining in will be one of Dr. Soykan’s former students, Tim Kolesar, MD, who earned his biomedical engineering degree at Michigan Tech in 2019 after first completing med school. He’s now a Development Quality Engineer at Abbott.

Who can be an inventor? “Anyone,” says Orhan Soykan. And he should know. Soykan has 37 issued U.S. patents and 66 pending U.S. patents. 

Soykan specializes in implantable devices, biosensors, and molecular medicine. He is the co-founder of two start-ups and has been a consultant to more than 20 firms.

Prolific inventor, scholar, alumnus, electrical engineer, and Professor of Practice, Dr. Orhan Soykan ’86 helped establish Michigan Tech’s Department of Biomedical Engineering.

He has long been associated with Michigan Tech, first as a master’s student in electrical engineering (he graduated in 1986), then as an adjunct faculty member in the Department of Electrical Engineering. Then, seven years ago, after working 20 years at biomedical device powerhouse Medtronic and several more at startup YouGene, Soykan rejoined the University in a more formal way, as a professor of practice in Michigan Tech’s Department of Biomedical Engineering.

He teaches a biomedical instrumentation lab and courses on medical devices, medical imaging, and numerical physics. He also mentors senior design teams of undergraduate students who work on projects for industry clients, the final big design project of their senior year.

Soykan commutes between homes and jobs in Houghton and Minneapolis in a single engine plane. He maintains a research lab in each home, too.

Michigan Tech BME alum, Tim Kolesar ‘19 was one of his students. “Dr. Soykan was my senior design team advisor,” says Kolesar. “Our team (three biomedical engineers and one electrical engineer) all worked together on a project for Stryker, investigating the thermal side effects of a surgical device used in brain surgery.”

Michigan Tech biomedical engineering alumnus Tim Kolesar, MD.

Before coming to Michigan Tech, Kolesar earned a BS in Human Biology from Michigan State University, and then a Doctorate of Medicine from the American University of Antigua College of Medicine, in the Carribean. He also volunteered as a medical practitioner for the Himalyan Health Exchange, providing health care for underserved populations within remote regions along the Indo-Tibetan borderlands.

After graduating from Michigan Tech, Kolesar landed his dream job at Abbott, a multinational medical devices and health care company with headquarters in Abbott Park, Illinois, He works on cardiovascular devices for Abbott, including aortic and mitral heart valve replacements. At the moment he’s lead engineer on two projects, involved in device submission to the FDA in the US, and the EMA (European Medicines Agency) in the European Union.

Kolesar underscores the importance of time spent in the lab. During his time at Tech, he worked as an undergraduate researcher in the labs of biomedical engineering professors Dr. Rupak Rajachar and Dr. Jeremy Goldman, working on tissue engineering for injury repair in joints, and bioabsorbable stents for the heart. “These two opportunities played a large role in confirming my decision to pursue a career in biomedical engineering,” he says. “I believe the lab experience I gained at Michigan Tech played a pivotal role in securing my current role at Abbott.”

How do inventors get their ideas?

“I believe necessity is the mother of all invention. You must truly understand the problem and the boundaries the solution will have,” says Soykan. “After that, it is absolutely necessary to study scientific and engineering principles relevant to the problemAmong all his inventions, Dr. Soykan says he is most proud of those at the intersection of engineering and biology. His favorite: A method of isolating a small portion of a patient’s own heart muscle and converting it into a sensor to monitor levels of an antiarrhythmic heart medication.they will eventually become the tools for the development of the solution. And finally, you must look at work done by others, by reviewing technical literature and patent publications,” he adds.

“Now you are ready to tackle the problem by thinking as creatively as you can. This can be anywhere—outside when running or skiing, driving in traffic—make a list of the solutions you think of and discuss them with your colleagues and experts in the field. Finally, the ones that seem to pass the test, try them in the lab.”

Dr. Soykan, when did you first get into engineering? What sparked your interest?

I grew up in Ankara, the capital city of Turkey. I became interested in science and technology through my high school physics teacher. Eventually I began to build some electronic circuits as a hobbyist, which eventually turned into a profession.  I cannot forget about the contributions of Mr. Spock from the original Star Trek series. (And yes, I am old enough to remember watching the original episodes each week on TV as a young boy!

What is your favorite out of all your inventions?

Among all my inventions, I am most proud of a method of isolating a small portion of a patient’s own heart muscle and converting it into a sensor to monitor levels of an antiarrhythmic heart medication.

Dr. Orhan Soykan makes the commute between Houghton and Minneapolis at least twice a week.

Hometown, hobbies?

I earned my BS from Middle East Technical University, my MS from Michigan Tech and my PhD from Case Western Reserve University, all in electrical engineering. I worked for NASA in Huntsville, Alabama, the Food and Drug Administration in Rockville, Maryland, and Medtronic in Minneapolis and Tokyo, before becoming a part-time consultant to the medical device industry and a part time faculty member at Michigan Tech. I actually maintain two residences, one in Houghton, and the other in the Twin Cities. I’ve got labs in both homes. I commute weekly between the two locations with my single engine Mooney.  When I am not working or flying, I’m usually busy training for my annual marathon, or cross country skiing at Tech trails. 

Kewee and Birch

Dr. Kolesar, When did you first get into engineering? What sparked your interest?

Whether I knew it or not, engineering has always been a part of me. My love for Physiology pushed me towards the world of medicine. However, during my third year of medical school, I had the pleasure of working with an orthopedic surgeon, and mechanical engineer, in Atlanta, Georgia. The experience truly opened my eyes to the realm of biomedical engineering, and sparked a fascination with the possibilities. This eventually led me back to Michigan Tech upon completion of my medical degree. 

Hometown, hobbies?

My wife, Jenn and I were both raised in the Upper Peninsula of Michigan. We now reside in the Minneapolis area. During my time at Michigan Tech we loved being able to return to the Upper Peninsula. The Keweenaw quickly became our second home, especially Copper Harbor. We spend our free time biking, nordic and downhill skiing, camping, hiking, running, and exploring the outdoors with our two dogs Kewee (short for Keweenaw) and Birch Bark.

Read more

In a Heartbeat


Michigan Tech SWE Chapter Makes It Their Mission to Give Back

child looks in wonder as a play-doh circuit lights up a small led light
Who knew! Play Doh can be used to complete a circuit!

The Society of Women Engineers (SWE) at Michigan Tech make it their mission to give back to the community and to spark youth interest in STEM-related fields.

“We’re always looking for opportunities to grow and make new connections, both as an organization on campus and as a member of the community,” says Michigan Tech SWE section president and mechanical engineering major Katie Pioch. “We love getting kids excited about STEM.”

The team gathered for a photo in Fall 2019. This fall gatherings have been mostly virtual for the Michigan Tech section.

This past year, Michigan Tech SWE students helped high school students at Lake Linden-Hubbell Schools form the first-ever SWENext Club. They also mentored two eCYBERMISSION teams, sponsored by the U.S. Army Educational Outreach Program.

SWENext enables girls ages 13 and up to become a part of the SWE engineering community as a student through age 18. SWENexters have access to programming and resources designed to develop leadership skills and self-confidence to succeed in a career in engineering and technology.  Although the program focuses on girls, all students are encouraged to get involved. 

Students in the Michigan Tech SWE section worked closely with a team of 8th graders from Lake Linden Hubbell schools–Jenna Beaudoin, Chloe Daniels, Rebecca Lyons, and Olivia Shank–to develop three hands-on electrical engineering outreach activity kits for SWENext-age students and elementary students, too. The girls worked on the activity kits in conjunction with the eCYBERMISSION Competition sponsored by the US Army Educational Outreach Program, earning an Honorable Mention award for their efforts.

The activities: Play-Doh Circuits for upper elementary students, and Paper Circuits and Bouncy Bots for middle school students. 

Play-Doh and Paper Circuits teach how parallel and series circuits work. Bouncy Bots involves a simple series circuit where a coin vibration motor—the kind used in cell phones and video game controllers—is connected to two 1.5 V batteries and adhered to a 4 oz medicine cup. When the circuit is operational, the device “bounces” across a surface.

Together with Michigan Tech’s Department of Electrical and Computer Engineering SWE students shared the activity kits with more than 400 students: regional Upper Michigan and Northern Wisconsin Girl Scouts; 5th-grade students at Calumet-Laurium-Keweenaw (CLK) schools; 4th-grade students at Hancock Elementary; and 5th-grade students at Lake Linden-Hubbell Schools. 

SWE students mentored Lake Linden-Hubbell eCYBERMISSION 6th grade team, SCubed (Super Superior Scientists). The team recycled school lunch food waste as a food source for pigs, earning an Honorable Mention in the eCYBERMISSION competition.

The Michigan Tech SWE section prepared two grant proposals, one for the SWE-Detroit Professional Section and the other for the Michigan Space Grant Consortium (MSGC), working closely with Michigan Tech’s ECE department. Both proposals were funded, enabling the students to create more activity kits and take them out into the local community.

The funding also allowed for the purchase of soldering tools, electronics components, and other supplies that will now be used to introduce an entire pipeline of students to electrical engineering topics.

High school students create heart rate monitor circuit boards, and also help mentor middle school students through the process of completing holiday tree boards. From there, high school and middle school students will be shown the Bouncy Bot activity; they will lead that activity for their school district’s elementary students. 

“Both SWE and ECE are excited for this “trickle-down” mentoring program,” says Liz Fujita, academic advisor and outreach specialist for Michigan Tech’s Department of Electrical and Computer Engineering. Due to the pandemic, SWE members cannot go to area schools. Fujita plans to resume school outreach once the pandemic ends.

Michigan Tech’s SWE Section developed a video describing their year-long outreach projects for SWE’s national FY20 WOW! Innovation Challenge. A portion of the video was created by high school junior Jenna Beaudoin, founding member of the Lake Linden-Hubbell Schools SWENext Club. For their exceptional outreach efforts, SWE awarded Michigan Tech second place in the challenge.

Gretchen Hein, senior lecturer in the Department of Manufacturing and Mechanical Engineering Technology is Michigan Tech’s SWE faculty advisor. “We really encourage our SWE section members to develop professionally and personally,” she says. Students work especially hard on their annual Evening with Industry event, which takes place each fall during Michigan Tech Career Fair.” The event, held just a few weeks ago, was virtual. Sponsors included Nucor, Marathon Oil, John Deere, Amway, Milwaukee Tool, Corteva and CWC Textron.

Gretchen Hein, MMET senior lecturer and Michigan Tech’s SWE section advisor

Hein and a group of ten Michigan Tech SWE section members traveled to the annual WE19 Conference in Anaheim, California, the world’s largest conference for women in engineering and technology. They attended professional development sessions, participated in the SWE Career Fair, and networked with other student sections and professional members. 

While there, Romana Carden, a major in engineering management, participated in the SWE Future Leaders (SWEFL) program. Carden also attended the day-long SWE Collegiate Leadership Institute (CLI) with Mackenzie Brunet, a fellow engineering management major. Both programs are led by female engineers working in industry and academia, to help college students gain leadership skills. Zoe Wahr, a civil engineering major, received a scholarship in recognition of her academic, university, and SWE accomplishments. And Hein was recognized at WE19 for her 20-plus years of service with the SWE Engaged Advocate Award, which honors individuals who have contributed to the advancement or acceptance of women in engineering.

“We have a strong and sustainable SWE chapter at Michigan Tech, and Dr. Hein’s work as the college of engineering chapter advisor has played a key role in this,” says Janet Callahan, Dean of the College of Engineering. “I am truly grateful to every person who has contributed to SWE—past, present and future.”

“In the coming year, SWE students plant to expand their outreach,” she adds. “We’d love to have more Michigan Tech students join the section and explore what SWE and the SWE members have to offer.” 

Next month, in early November, the section will participate in the WE20 Conference in New Orleans, virtually.

Interested in learning more about the SWE section at Michigan Tech? Join their email list at swe-l@mtu.edu, or follow the section on Facebook and Instagram, @michigantechswe.


Bill Sproule: Houghton, Michigan Tech, and the Stanley Cup

The Stanley cup became NHL’s famous trophy in 1927. This is an early version of the trophy, circa 1893.

Bill Sproule shares his knowledge on Husky Bites, a free, interactive webinar on Monday, September 21 at 6 pm EST. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Bill Sproule, civil engineering professor turned hockey historian

What are you doing for supper this Monday night at 6? How about grabbing a bite with Bill Sproule, hockey historian and Michigan Tech civil and environmental engineering professor emeritus, along with Michigan Tech alumnus John Scott, NHL All-Star MVP?

Sproule’s research into hockey history began about 15 years ago when he first volunteered to teach a class on the subject at Michigan Tech. During Husky Bites he plans to share the history of the Stanley Cup and tell how a Canadian-born dentist, Doc Gibson, and his “partner in crime” Houghton entrepreneur James Dee made Houghton the birthplace of professional hockey, several years before the National Hockey League came into existence. He’ll also discuss the role Gibson and Dee played in Michigan Tech hockey.

When and where did hockey begin? A civil engineer in Montreal organized the first amateur game in 1875. Pictured: artists painting of an early hockey game at the Victoria Skating Rink in Montreal, Canada.

Serving as co-host along with Dean Janet Callahan during this session of Husky Bites is John Scott, an inspiration to many and the embodiment of Husky tenacity. 

Sproule and Scott two have a lot in common. A love of hockey, for one. A fondness for Houghton, for another. Both born in Canada. They’re both retired—but not really retired. They’re both authors. Finally, they’re both Michigan Tech engineering alums. Sproule earned his BS in Civil Engineering in 1970. Scott, a practicing engineer, graduated with his BS in Mechanical Engineering 2010. 

We’re proud to claim NHL All-Star MVP John Scott as a Husky. From 2002 to 2006, he provided no-holds-barred defense and effective penalty killing for Michigan Tech.


In college, Scott had no professional hockey ambitions. That was until he met former Huskies Hockey Assistant Coach Ian Kallay. “He said, ‘You can do this. You can make a career out of this. If you put in the work, put in the hours.’ It was a huge moment for me,” Scott recalled.

How does his ME degree impact his game? “It definitely helps me pass a puck. I’m better than most at figuring out a bank pass off the boards. And most guys sharpen their skates to one-half of an inch. But I know how to increase—or not increase—my bore,” he said.

Scott’s wife, alumna Danielle Scott, who earned a BS in biomedical engineering from Michigan Tech in 2006, stepped away from her role with leading biomed company Boston Scientific to care for the couple’s six daughters, one just a few months old. Their oldest is now 8. John works with a mechanical engineering consulting firm in Traverse City. His podcast, Dropping The Gloves, also keeps him busy. “That’s where we talk about hockey, family, and all other things that are going on in my life post-NHL.”

Scott’s number one job, he firmly insists: family. That means raising his six daughters together with Danielle. He says he’s already hoping for number seven.

John Scott has a book out: A Guy Like Me: Fighting to Make the Cut. It’s his personal memoir.

Professor Sproule, when did you first get into engineering? What sparked your interest?

Actually, engineering was not my first choice. I hoped to become an architect but wasn’t accepted into an architectural program. My uncle was a civil engineer, so that’s why I picked civi; I was thinking structural engineering would be similar to architecture, and I was right, in a way!

I spent my first two years learning at Lake Superior State, a branch of Michigan Tech at the time, then came to Houghton for my junior and senior years, where I took a few transportation courses. After graduating from Tech I headed to the University of Toronto for a master’s degree, specializing in transportation engineering.

After earning my graduate degree I worked for Transport Canada and then joined a transportation engineering consulting firm. I always wondered about teaching, and was hired by a community college to help teach their their transportation engineering program. Teaching soon became my passion. Then, I headed to Michigan State University where I earned my Ph.D. in civil engineering, specializing in airport planning and design. I also taught at the University of Alberta and did more consulting before deciding to join the birthplace of Hockey—and, the faculty at Michigan Tech—in 1995.

At Tech, in my role as professor, I conducted research and taught courses in transportation engineering, public transit, airport design, and hockey history. The hockey history course was always full. How in the world did I end up teaching hockey history? I’ll tell the full story during Husky Bites…

Bill Sproule’s book, Houghton, the Birthplace of Professional Hockey, came out in 2018. And he’s got another hockey book in the works.


Family and Hobbies?

I was born and raised in Sault Ste. Marie, Ontario. My wife, Hilary was born and raised on a dairy farm north of Toronto, and earned her degrees from the University of Toronto and University of Alberta. We met in Toronto on a blind date. Together we raised two sons in Houghton. One graduated in engineering at Michigan Tech and Virginia Tech and now works in the Detroit area. The other is currently a graduate student in art history at Queen’s University in Kingston, Ontario, Canada. All the while Hilary taught in the Physical Therapy Assistance program at nearby Finlandia University.

We’re now retired, living here in Houghton. I’m still active on several professional committees and serve on the executive committee of the Society for International Hockey Research. I’ve taken a few online courses in my retirement, too: Hockey GM and Scouting, and Hockey Analytics.

I’ve penned two books, Copper Country Streetcars, and Houghton: The Birthplace of Professional Hockey. I’m currently working on my third book project, all about the history of Michigan Tech hockey—and doing some cartooning.

Credit: Dr. Bill Sproule

Read more:

Showing Off a Love of Hockey
Heart of a Husky

Save the Date!

Michigan Tech’s 100-Year Hockey Reunion will be August 5-7, 2021. You’re invited! Learn more here.


Joshua Pearce: 3D Printing Waste into Profit

Joshua Pearce shares his knowledge on Husky Bites, a free, interactive webinar this Monday, September 14 at 6 pm EST. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Dr. Joshua Pearce is the Richard Witte Endowed Professor of Materials Science and Engineering and Professor, Electrical and Computer Engineering

Want to know how you can save money, even make money, by turning your household waste into valuable products? Well, you’ve come to the right place. Professor Joshua Pearce and alumna Megan Kreiger, will cover the exploding areas of distributed recycling and distributed manufacturing. They’ll also explain just how using an open-source approach enables the 3-D printing of products for less than the cost of sales taxes on commercial equivalents.

3-D printing need not be limited to household items. In other words, don’t be afraid to think big—like the whole house! Kreiger’s team was the first to 3-D print a building in the Americas and last year they 3-D printed a 32-foot-long reinforced concrete footbridge.

Yes, you can 3-D print concrete, in addition to plastic and metal.

Kreiger was Pearce’s very first Michigan Tech graduate student. She earned her BS in Math in 2009, and her MS in Materials Science and Engineering in 2012, both at Michigan Tech. She is now Program Manager of Additive Construction at the US Army Engineer Research and Development Center.

Kreiger says she first became aware of 3-D printing at Michigan Tech, while working in Pearce’s 3-D printing lab. She worked with Pearce to show that distributed recycling and distributed manufacturing were better for the environment than traditional centralized processes.

“As the Program Manager for Additive Construction for ERDC, I lead a team of amazing researchers composed of engineers, scientists, technicians, and students,” says Michigan Tech Alumna Megan Kreiger. They created the first 3D printed footbridge in the Americas. “We were the first to look at continuous print operations and printing on unprepared surfaces.”

Pearce and his team of researchers in the MOST Lab (Michigan Tech Open Sustainability Technology) continue to focus on open and applied sustainability. As the Richard Witte Endowed Professor of Materials Science and Engineering, with a joint appointment in the Electrical and Computer Engineering, Pearce conducts research on photovoltaics ⁠— the materials behind solar energy⁠ — as a means to generate power in regions of the world where electricity is unavailable or prohibitively expensive. His research is also internationally renowned for its work in open source 3-D printing in order to enable both individuals as well as underserved regions to gain manufacturing capabilities.

Michigan Tech’s Open Source Hardware Enterprise developed the Granulator, a machine used to grind up plastic waste into usable feedstock that can be used in a filament extruder. Be sure to check out their site to learn more.

The MOST Lab, a cornerstone of Michigan Tech’s open source initiative, fosters strong collaboration between graduate and undergraduate researchers on campus—and with vast open source international networks, visiting scholars and industrial partners. Currently, most 3-D printing is done with virgin polymer feedstock, but research conducted by Michigan Tech’s MOST lab has shown that using recycled 3-D printing feedstock is not only technically viable, but costs much less, and is better for the environment.

Pearce is the advisor of the multidisciplinary, student-run Open Source Hardware Enterprise, part of Michigan Tech’s award-winning Enterprise Program. Dedicated to the development and availability of open source hardware, the Enterprise team’s main activities: Design and prototype, make and publish—and collaborate with community.

Professor Pearce, when did you first get into engineering? What sparked your interest?

Pearce’s latest book project: Create, Share, and Save Money Using Open-Source Projects (October 2020), soon be published by McGraw Hill.

It happened just as I began to choose what type of graduate school to pursue. I was a physics and chemistry double major at the time. One of my close friends, a physics and math double major, claimed he never wanted to work on science with an application. As for me, I was painfully aware of the enormous challenges facing the world, challenges I believed could at least partially be solved with applications of science. That day my career trajectory took a definite tack towards engineering.

Family and Hobbies?

I live with my wife and children, all consummate makers, in the Copper Country. Old hobby: when flying, picking out how many products I could make for almost no money from the SkyMall catalog. New hobby: sharing how to do it with other people.

Megan, when did you first get into engineering? What sparked your interest?

Throughout high school I had a profound love of mathematics. I took every math class I could, and graduated a semester early. This love of mathematics drove me to engineering. I started my undergraduate degree in 2004, but switched over to Mathematics after an injury and a bad-taste-in-my-mouth experience during a summer engineering job. I graduated during the recession of 2009 and after one year off, decided to return to Michigan Tech for my graduate degree. I had an interest in recycling and earned an MS in Materials Science and Engineering while obtaining a graduate certificate in Sustainability. That’s when I fell in love with 3D printing. My passion has evolved into the union of materials science and additive manufacturing. I push the bounds and perceptions of large-scale additive manufacturing / construction.

Michigan Tech alumna Megan Kreiger is Program Manager for Additive Construction for US Army Corps of Engineers. She is also project manager and technical lead on Additive Manufacturing & Robotics projects.

Hometown, Family and Hobbies?

I grew up in rural Montana with my brother, raised by eco-friendly parents. At Michigan Tech while pursuing my degree, I spent her time hiking, snowboarding Mont Ripley, and backpacking the 44 miles of the Pictured Rocks National Lakeshore with my husband. We now live in Champaign, Illinois, with our two children and our three at-home 3D printers. We spend our time raising chickens, wrangling pets (and kids), and working to modernize the construction industry for the US Military through the integration of concrete 3D printers.

Megan Kreiger and her team completed the first full-sized 3D printed concrete building in the United States, printed entirely in a field environment.

Read more:

MTU Engineering Team Joins Open-source Ventilator Movement

Q&A with the MTU Masterminds of 3D-printed PPE

Just Press Print: 3-D Printing At Home Saves Cash

Power by the People: Renewable Energy Reduces the Highest Electric Rates in the Nation


Husky Bites Returns for the Fall, Starts Monday

What are you doing for supper each Monday night this fall? Join College of Engineering Dean Janet Callahan and special guests at 6 p.m. (EDT) each Monday, for a 20-minute interactive Zoom webinar, followed by a Q&A session.

Launched last June during the pandemic and back by popular demand, the fall season of Husky Bites starts Monday (Sept. 14). Each “bite” is a free, suppertime mini-lecture, presented by a different Michigan Tech faculty member. They’ll weave in a bit of their own personal journey, and bring a co-host, too — an alumnus or current student who knows a thing or two about the topic at hand.

Important note: Even if you registered for Husky Bites last summer, you will need to register again — a second time — for fall at mtu.edu/huskybites.

Know others who might be interested? Feel free to invite a friend. All are welcome. “We’ve had attendees from nine countries, and a great mix of students, alumni, our Michigan Tech community and friends,” says Dean Callahan, who mails out prizes for (near) perfect attendance, too. (Last summer there were Husky Bites t-shirts, and Michigan Tech face masks, sewn right here in Houghton).

The series kicks off Monday (Sept. 14) with a session from Joshua Pearce (ECE/MSE), with co-host Megan Kreiger, Pearce’s first Michigan Tech grad student. Want to know how you can make money turning your household waste into valuable products? Well, you’ve come to the right place. Professor Joshua Pearce and his co-host, alumna Megan Krieger, will cover the exploding areas of distributed recycling and distributed manufacturing. They’ll also explain just how using an open-source approach enables the 3-D printing of products for less than the cost of sales taxes on commercial equivalents.

Get the full scoop and register (or re-register) at mtu.edu/huskybites.


Here’s a quick rundown of our Fall 2020 lineup, below:

Monday, 9/14
Joshua Pearce — “3D Printing Waste into Profit,” with co-host Megan Kreiger, Program Manager, Additive Construction, US Army Engineer Research and Development Center (ERDC) and Michigan Tech (Math ‘09, MSE‘12) alumna.

Monday, 9/21
Bill Sproule (professor emeritus CEE) — “Michigan Tech, and the Stanley Cup,” with co-host John Scott, NHL All-Star MVP and Michigan Tech alumnus (ME ‘10).

Monday, 9/28
Sarah Ye Sun (ME-EM) — “Nice Shirt! Embroidered Electronics and Motion-Powered Devices,” with co-host George Ochieze, a current Michigan Tech student.”

Monday, 10/5
Orhan Soykan (BioMed) — “Prolific Inventing,” with co-host Dr. Tim Kolesar, MD, development quality engineer, Abbott Labs, and a Michigan Tech alumnus (BME ‘19).

Monday, 10/12
Erik Herbert (MSE) — “Holy Grail! Energy Storage on the Nanoscale,” co-host TBD.

Monday, 10/19
Tim Havens (CC) — “Warm and Fuzzy Machine Learning,” with co-host Hanieh Deilamsalehy, a machine learning researcher at Adobe and Michigan Tech alumnus (ECE ‘17).

Monday, 10/26
Paul Bergstrom (ECE) — “Quantum Dot Devices and Single Electron Transistors,” co-host TBD.

Monday, 11/2
Mary Raber (PHC) — “Solving Wicked Problems,” co-host TBD.

Monday, 11/9
David Shonnard (ChE) —” Waste Plastics are Taking Over the World and The Solution is Circular,” co-host TBD.

Monday, 11/16
TBD

Monday, 11/23
Bill Predebon, (Chair ME-EM) — “Say Yes to the Quest,” with co-host Marty Lagina, CEO, Heritage Sustainable Energy, winemaker, Michigan Tech alumnus (ME ‘77), and reality TV show star (Curse of Oak Island): “Say Yes to the Quest,” with co-host Bill Predebon, (Chair ME-EM)

Monday, 11/30
Pengfei Xue (CEE) — “What Superior (the Supercomputer) Tells Us About Superior (the Lake),” co-host TBD.

Monday, 12/7
Raymond Shaw (Physics) — “Lake Superior in My Driveway: Lake Effect Snow in the Keweenaw,” with co-host Will Cantrell, dean of the Graduate School.


Gordon Parker: Control Systems—Math in Motion

Three meters wide x 10 meters long. Eight paddles One-sided glass panel for easy visibility. Can you guess what this is?

Gordon Parker shares his knowledge on Husky Bites, a free, interactive webinar this Monday, August 3 at 6 pm EST. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

What do machines that move all have in common? Control systems that coordinate the machines. 

Can you recognize a control system when you see one? How about a controlled dynamic system? Well, after 20 minutes with Professor Gordon Parker, John & Cathi Drake Endowed Chair in Mechanical Engineering, you will. And then some…

“My most important and satisfying professional objective is sharing my passion for dynamics and controls with students,” says Dr. Gordon Parker.

“I’ve been working on control system theory and design for (gulp) 32 years with applications such as rockets, spacecraft, ships, cranes, ground vehicles, microgrids, wave energy converters, and more,” says Gordon. “I love working with students and colleagues to field control systems—the bigger, the better.”

Last April, our own Gordon Parker became one of just four instructors at Michigan Tech to receive the inaugural Provost’s Award for Sustained Teaching Excellence. The award brings special recognition to instructors who have been nominated as finalists for the Distinguished Teaching Award four or more times.

Mike Agostini knows firsthand Parker’s effective teaching and mentoring. Nowadays, Agostini is a senior manager of application engineering at The MathWorks in Boston. Back in 2001, he was a graduate student working with Parker to design control strategies for large boom cranes mounted on ships at sea.

“The goal was to minimize vibration from inputs,” explained Agostini. “Inputs could come from operator commands or from ship motion. We injected crane commands on top of the ship-induced motion to minimize vibration of the payloads. The payloads could be 30-plus tons, in containers 40 feet on a side. The chance for uncontrolled swing to damage property or lives was significant. It is for this reason that ship cranes traditionally have been limited to operating in very calm seas,” he says.

Example of a crane operation on a ship.

“The most enjoyable aspect was the tool building,” adds Agostini. “We had both a ship crane (on the ship) as well as a scale model crane at Sandia National Labs. But the utility of using them for day-to-day research was limited. They were simply too expensive and difficult to access regularly. So we built high-fidelity models, and took the algorithms we built and tested in software to the hardware.

“It was and incredible feeling to be on a crane ship rolling back and forth 14 degrees and see a huge 35 meter boom crane automatically actuating to compensate. So much steel and hardware under command of software and algorithms you helped design,” says Agostini. “But better than that was working with Dr. Gordon Parker. He really helped me mature as an engineer. His mentoring has helped make me the person I am today.”

Nowadays, Parker still specializes in control system design, and a key area of his research is the optimal control of microgrids. A microgrid is a local energy grid with control capability, which means it can disconnect from the traditional grid and operate autonomously, or independently.

Underwater robots and autonomous vehicles rely on battery power. When working in the middle of the ocean or other large body of water, charging sources aren’t readily available. Parker is developing a solution for this problem, tapping into the energy that comes from ocean waves.

Parker and his research team work on providing an energy source through a floating microgrid system, or a marine energy grid. “We’re developing control strategies that bridge the gap between the theoretical models and the realistic conditions you find on the ocean,” Parker explains.

Using the wave tank on the Michigan Tech campus, Parker pairs machine learning with model predictive control to help engineers measure key parameters accurately and predict wave energy converter (WEC) behavior. (Hey, and Yes, there is a wave tank in the basement of the R.L. Smith Building, with state-of-the-art instrumentation for WEC studies. Wave tanks create reproducible wave fields to aid the understanding of the motion of submerged and partially submerged bodies, such as underwater vehicles, ships, and WECs.

Michigan Tech’s Wave Tank research facility is located in the Department of Mechanical Engineering-Engineering Mechanics. Among its key uses: developing control systems for wave power, capturing the energy of waves in the ocean, or other large bodies of water.

“There’s a spectrum of wave energy converter systems in development right now. And there’s an opportunity in controlling these systems in interesting and sophisticated ways,” says Parker.

How? “In a control scheme, we look up a device, harmonize with the wave field, and resonate. With reinforcement learning, we can look at what is happening in the wave field and other wave energy converters in the array and try different controls. Our system is penalized if it doesn’t perform well and rewarded if it does,” says Parker.

Wave Energy Converters (WECS) are devices with moving elements directly activated by the cyclic oscillation of waves to harvest energy from ocean waves. Power is extracted by converting the kinetic energy of these displacing parts into electric current.

“We are analyzing the potential of exploiting the interactions between converters in compact arrays. After small scale tank testing we could potentially look at testing in the Great Lakes,” says Parker. 

Michigan Tech students are heavily involved in the research through senior design projects—developing a wave tank testing model of a wireless WEC. And a research team in Parker’s research lab, the Intelligent Systems and Control Laboratory, is creating a WEC array that extracts maximum power.

Another look at the Michigan Tech Wave Tank. Want to see and hear it? Check out the video link at the end of this post.

“These control schemes and marine energy grids have applications beyond refueling unoccupied underwater vehicles,” says Parker. “They can be applied to environmental sensing, too.” That includes monitoring meteorological conditions, sea-water chemical/physical properties, tsunamis and storm surges, fish and other marine life, coastal and sea-floor conditions.

There are microgrids on land, too, of course, and space. Parker is an expert on microgrids of all kinds. At Michigan Tech, he co-founded the Agile and Interconnected Microgrid (AIM) Center to bring together faculty from across campus—Computer Science, Mathematics, Cognitive Sciences and Learning, Electrical and Computer Engineering and Mechanical Engineering—to form an interdisciplinary team. AIM now has 18 researchers spanning seven academic units whose customers include NSF, ONR, NAVSEA, ARL, TARDEC, AFRL, DOE, and Sandia National Laboratories.

When he’s not teaching undergraduates, advising senior design teams, or mentoring graduate students, Parker is creating content for his popular, 64 segment, open source, video series on control system analysis and design. The series is used internationally by students on YouTube.

Before coming to Michigan Tech, Parker was a research fellow at Sandia National Laboratories in Albuquerque, New Mexico, where he developed systems for large angle spacecraft reorientation and fault-tolerant robots. He also worked as an aerospace engineer for General Dynamics Space Systems in San Diego, California, designing trajectories for new launch vehicle systems.

Parker earned a PhD in Mechanical Engineering at SUNY Buffalo, an MS in Aerospace Engineering at the University of Michigan, and a BS in Systems Engineering at Oakland University.

Dr. Parker, when did you first get into engineering? What sparked your interest?

My passion for control systems first occurred in a single, identifiable moment. I was in the third year of my undergrad studies in a class similar to a course at Michigan Tech, Dynamic Systems (MEEM 3750). This is where we learned about differential equation modeling of mixed physics systems—motors, masses, and springs. I was looking out the window at the tree branches swaying in the breeze. (Okay, perhaps I should have been paying attention to the Prof., but the truth is what it is.) That’s when it clicked. The motion of the branches, vibration, was similar to what we were learning—and it could be modeled with math and then controlled.

At that point I was hooked on the notion of using math to predict how things respond to being poked—including machines, the stock market, etc.—and then devising control systems to make them do what you want. By the way, in theory, this should work with people, but I’ve not cracked that nut.

Hometown, Hobbies, Family?

My most important and satisfying professional objective is sharing my passion for dynamics and controls with students—from application-focused undergraduate courses to theory-laced graduate-level material. Hopefully some of that sticks, and is multiplied through their achievements, both professionally and personally.

I’ve been at Michigan Tech for 24 years now, while raising two wonderful kids with my wife, Karen. We now live in the woods outside of town enjoying the wildlife (not the wild life), fitness (usually followed by physical therapy), baking bread, and exploring the esoteric features of MATLAB/Simulink.

Learn More