Tag: CEE

Stories about Civil, Environmental, and Geospatial Engineering.

Zhanping You: Where the Rubber Meets the Road

Professor Zhanping You and his team of students have engineered crumb rubber from waste tires into a sustainable rubber asphalt material for a better road. 
Professor Zhanping You

Zhanping You generously shared his knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan back on Monday, February 21. You can view the YouTube recording of his session to learn something new in just 30 minutes (or so). Here’s the link to watch. Register for future sessions of Husky Bites at mtu.edu/huskybites. Grab some supper, or just flop down on your couch. Everyone’s welcome! It’s BYOC (Bring Your Own Curiosity).

Dr. Zhanping You, a Distinguished Professor of Transportation Engineering in the Department of Civil, Environmental and Geospatial Engineering, uses old tires to make new roads. One of Prof. You’s doctoral students, Dongzhao “Kobe” Jin, joined in to talk about the process.

Kobe Jin

Dr. You works with recycled materials to improve asphalt pavement performance. Crumb rubber, made from scrap tires, is one such material. ”Crumb rubber in asphalt reduces rutting and cracks and extends life, and it lowers noise levels,” he says. 

Scrap tires are plentiful, though not in a good way. “Hundreds of millions of scrap tires are generated in the US every year,” he notes. “Those giant piles of waste tires pose concerns of potential contamination of local groundwater and fire risk.”

You and his team of students have engineered crumb rubber from waste tires into a sustainable rubber asphalt material for a better road. “We do it through various experimental and numerical modeling techniques,” You explains. “Our research team has also expanded the work to include field pilot projects, too. Over the past 6-7 years or so, we’ve constructed quite a few roads in Michigan that use recycled tire rubber.” The team works with the Michigan Department of Environment, Great Lakes, and Energy (EGLE) and the EGLE Scrap Tire division, plus road commissions in Dickinson County, Kent County, St. Clair County, Clare County, and Bay County.

“Teaching provides me with broad dimensions to sharpen my research vision, while research helps me develop in-depth understanding so that I can teach better,” Dr. You says.

Another material You and his team employ: pavement rubble. “More than 94% of the roads in the United States are paved with asphalt mix—about 360 million tons each year. In turn, that generates over 60 million tons of old asphalt pavement waste and rubble,” he notes. Recycling these waste materials not only greatly reduces the consumption of neat asphalt mix, it also lowers related environmental pollution, he adds. 

Blending recycled asphalt pavement (RAP) with fresh asphalt mix has presented several challenges for You and his team. “One noticeable issue of using RAP in asphalt pavement is the relatively weaker bond between the RAP and neat asphalt, which may cause moisture susceptibility,” he says. “We have determined that modifying the asphalt mix procedure and selecting the correct neat asphalt can effectively address this concern.” 

Before the recycled asphalt-tire-gravel mix ever makes it outside, You and his research team do plenty of work indoors, using computer modeling and lab tests to make sure they put viable material out in the elements. 

“When crumb rubber is blended into an asphalt binder, the stiffness of the asphalt binder is increased,” You explains. “ A higher mixing temperature is needed to preserve the flowability of asphalt binder. Conventional hot-mix asphalt uses a lot of energy and releases a lot of fumes. To solve this problem we developed a warm mix technology, a foaming process at lower temperatures, that requires less energy and reduces greenhouse gas emissions.” 

You and his group developed and tested several foaming technologies for warm mix asphalt, integrating state-of-the-art rheological and accelerated aging tests, thermodynamics, poromechanics, chemical changes and multi-scale modeling to identify the physical and mechanical properties of foamed asphalt materials. 

You has other solutions in the works, too, including man-made asphalt derived from biomass. “We tried using bio oil (derived from biomass) in asphalt and found it also improved pavement performance,” he says. 

Not even the pandemic can stop the construction of recycled roads in Michigan!
A Michigan Tech research team of students led by Zhanping You tests a new, cooler way to make rubberized asphalt in Michigan’s Upper Peninsula.

“Asphalt made from bio oil can potentially reduce the consumption of petroleum asphalt and lower the production temperature while road rutting resistance can be improved. We actively work with local, state, and national recycling efforts to develop better road materials, using plastics, waste glass, and several other recyclables, too,” he notes. “We hope our efforts will contribute to a circular and low-carbon economy.”

Prof. You, how did you first get into engineering? What sparked your interest?

I got into civil engineering accidentally, but started to love it. When I was little, I had debates with my friends on the possible damage on roads–was it the load or the pressure from the tires?

Hometown, family?

I view Houghton as my hometown now since I have been here almost 17 years, even though I was born and raised in Northwest China.

A lot of testing goes on in Dr. You’s lab at Michigan Tech.

What do you like to do in your spare time?

I love to read books—non-engineering, engineering, history, and literature. I’m also a recently appointed coadvisor to the Michigan Tech student chapter of Society of Asian Scientists and Engineers (SASE). After years of service in various professional groups at Michigan Tech, I believe an organization of Asian students involved in science and engineering is really needed.

Kobe, how did you first get into engineering? What sparked your interest?

Says Kobe: “Dr. You’s humor, lifestyle, rigorous academic attitude, and profound understanding of sustainable pavement all impact me a lot.”

The first time I got interested in engineering was when they were paving the concrete road in my hometown. I became interested in how and why a mix of some aggregate, sand, and water could create such a hard road.

Hometown, family?

My hometown is a small county in Henan Province, China. I have two sisters and I love my family.

Any hobbies? Pets? 

I like cats and basketball (I go by Kobe in honor of my favorite basketball player). I read science fiction books during my spare time.

Read More

Q&A with Research Award Winner Zhanping You
When Rubber Becomes the Road

Kobe enjoys the Houghton Waterfront Park near campus (even in the middle of winter!)

Dean’s Teaching Showcase: Melanie Watkins

Melanie Watkins
Melanie Watkins

Melanie Watkins, research assistant professor in the Department of Civil, Environmental, and Geospatial Engineering (CEGE), has been selected for this spring’s Deans’ Teaching Showcase.

Watkins will be recognized at an end-of-term luncheon with other spring showcase members, and is a candidate for this summer’s CTL Instructional Award Series.

“This nomination highlights a faculty member who is incorporating Fourth Industrial Revolution concepts into the curriculum so that our graduates will be leaders in their future jobs,” states College of Engineering Dean Janet Callahan. “Dr. Watkins is integrating new concepts and skills into course learning outcomes and also developing new courses as industry aligns with digital and computing competencies.”

Watkins models the importance of lifelong learning. Her industrial experiences taught her to master new approaches and modeling tools to maintain a competitive advantage against other engineering consulting firms. Now in academia, she has completed multiple computing and data science courses, and remains thirsty to learn more.

Watkins used the skills she gained to design a new course first offered in spring 2021: CEE 4610/5610 Water Resources System Modeling and Design.

The course incorporates 2D hydraulic modeling with lidar data, Linux scripting, and OpenFOAM computational fluid dynamics. Additionally, Watkins included 2D modeling using lidar and computer programming in CEE 4620 River and Floodplain Hydraulics to extend student preparedness.

Watkins’ teaching approach ties the knowledge and skills students need to be successful into project-based instruction. In fall 2021’s CEE 4620, Watkins had students model and design a culvert for U.S. Highway 41 at Peepsock Creek, west of Pilgrim River, after the Michigan Department of Transportation gave a guest presentation overviewing the damage from the Father’s Day Flood. 

Former student Jenna Koenig says the Hydraulic Engineering Center’s River Analysis System and Aquaveo materials she encountered in Watkins’ class are giving her an edge.

“I have been in a unique position at my current job because I have quite a bit of experience in these areas where many of my colleagues don’t,” Koenig says. “Dr. Watkins did an amazing job with these courses and with Senior Design. I’m very prepared to tackle almost anything on any project I’ve been put on; it is a great feeling! The first couple of months have been a pretty steep learning curve, but it’s been a great experience so far. I’m thankful for her help in preparing me in a great way!”

Watkins’ efforts to keep pace with the changes in industry also make her a strong graduate student recruiter. “Melanie provides a positive impression on our junior and senior students, and she is a convincing salesperson,” says Audra Morse, chair of CEGE. “Our students want to keep their Michigan Tech connection after they complete their undergraduate degree.”

“The Water Resources Modeling Certificate, which Melanie led, is one of our most popular online certificates,” Morse adds.

“Dr. Watkins’ passion for learning permeates everything she does, and I commend her for her work in support of integrating the Fourth Industrial Revolution into the undergraduate curriculum,” concludes Callahan.

By the Center for Teaching and Learning.

Tau Beta Pi Inducts 15 New Members at Michigan Tech

Congratulations to our Fall 2021 Tau Beta Pi Initiates! (Not pictured here: Andrew Scott and Dr. Mary Raber)

The College of Engineering recently inducted 14 students and one eminent engineer into the Michigan Tech chapter of Tau Beta Pi.

Tau Beta Pi is a nationally recognized engineering honor society and is the only one that recognizes all engineering professions. Students who join are the top 1/8th of their junior class, top 1/5th of their senior class, or the top 1/5th of graduate students who have completed 50% of their coursework. The society celebrates those who have distinguished scholarship and exemplary character, and members strive to maintain integrity and excellence in engineering.

Fall 2021 Initiates

Undergraduate Students: Dom Bianchi, Mechanical Engineering; Sean Bonner, Civil Engineering; Sam Breuer, Computer & Electrical Engineering; Sophia Brylinski, Materials Science & Engineering; Spencer Crawford, Computer Engineering; Jacqui Foreman, Chemical Engineering; Stephen Gillman, Computer Engineering; Michael Kilmer, Materials Science & Engineering; Emerald Mehler, Chemical Engineering; Ben Stier, Computer Engineering; Alex Stockman, Computer Engineering; and Jordan Zais, Biomedical Engineering

Graduate Students: Tonie Johnson, MS, Biomedical Engineering; and Andrew Scott, MS Electrical & Computer Engineering

Eminent Engineer

Mary Raber is Chair of Michigan Tech’s Department of Engineering Fundamentals

Dr. Mary Raber

The Portage Lake Bridge

Portage Lift Bridge, Hancock, Michigan

An ASCE National Historic Civil Engineering Landmark

Dr. Tess Ahlborn

Located a little more than a stone’s throw from the Michigan Tech campus, the Portage Lake Bridge connects the cities of Houghton and Hancock, Michigan. The Lift Bridge was named as an ASCE National Historic Civil Engineering Landmark in late 2019, following a State Historic Landmark designation in mid 2019.

The Michigan Tech trio who submitted its 300-page application to the American Society of Civil Engineers (ASCE) includes Professor Tess Ahlborn and two of her former students, Michael Prast ’19, now a timber structural engineer at Fire Tower Engineered Timber in Calumet, Michigan; and Emma Beachy ‘19, a design engineer at Corbin Consulting in Portland, Oregon. Both earned both their BS and MS degrees in civil engineering at Michigan Tech.

Emma Beachy wearing patterned knit capstands in front of a waterfall in the wood.
Emma Beachy ’19

“Emma and Michael are two of Michigan Tech’s best students,” says Ahlborn. “I mentioned the topic of National Historic Landmarks during Bridge Design class, and let the class know I would be delighted if someone wanted to work on a nomination application for the Portage Lake Bridge. It didn’t take long for Emma and Michael to speak up, and the rest is history. I can’t thank them enough for taking on this project and seeing it through the application process.”

Prof. Ahlborn is a Michigan Tech alum, too. She earned her BS and MS at Michigan Tech, then went to the University of Minnesota to earn a Doctorate of Philosophy in Civil Engineering in 1998. She’s been a member of the faculty at Michigan Tech for the past 26 years, teaching structural engineering courses focusing on concrete and the design of concrete buildings and bridges.

Michael leans at a wooden deck looking out over a harbor on Lake Superior with sailboats
-Michael Prast ’19

Ahlborn has a passion for bridges, something that began when she was quite small. “Growing up, I once told my mom I loved bridges. After that, she started taking me to look at a different bridge each week. Michigan has such beautiful bridges!”

“Bridges are structural art! A piece of art fully exposed to the elements. They involve so many people every day.”

Prof. Tess Ahlborn

As the former Director of the Center for Structural Durability within the Michigan Tech Transportation Institute, Ahlborn has worked with the MDOT (Michigan Department of Transportation) and USDOT (US Department of Transportation) to seek solutions to improve resiliency of our nation’s transportation infrastructure.

In 2020, Ahlborn was appointed to the American Concrete Institute Committee 318, placing her in the small group of people who establish the ACI structural concrete building code used around the world, a “Supreme Court” of concrete, if you will.

After water, concrete is the most widely used substance on the planet. As a member of the committee, Ahlborn helps to chart the future of structural concrete—its safety, sustainability, technological advances and environmental impacts.

Ahlborn is also a world expert in remote sensing applications for bridge condition assessment.

As for her secrets to good teaching, she insists there aren’t any. “All you have to do is be fair and consistent and crack a joke once in a while,” said Ahlborn.

Tinu Folayan Welcomed as Write-D Facilitator

Write-D Space

Writing in the Discipline (Write-D) and the Department of Chemical Engineering are pleased to welcome Tinu Folayan as the department’s Write-D facilitator beginning in the spring 2022 semester.

Write-D provides a dedicated time and space for graduate students to get work done and receive support on writing projects within their discipline, such as manuscripts, research proposals, etc. Guest speakers from the department and industry visit to briefly present research, writing and publishing tips.

Current departments and facilitators include:

Write-D is a free program open to all graduate students. If your department is not listed but you would like to participate, contact Write-D coordinator Sarah Isaacson at sisaacso@mtu.edu.

By Sarah Isaacson, Write-D Coordinator.

Engineering Graduate Students Place in 2021 3MT

This year’s Three Minute Thesis competition organized by the Graduate Student Government (GSG) of Michigan Tech had great participation both in person at The Orpheum Theater and virtually over Facebook Live. Twenty-eight participants competed at the MUB Ballroom for a place in the finals, held at The Orpheum Theater on Nov. 4.

After a very close competition, Priyanka Kadav, a PhD student from the Department of Chemistry, won first place.

Kadav’s presentation was titled “Capture and Release (CaRe): A novel protein purification technique.” She will go on to represent Michigan Tech at the regional levels of the competition.

The runner-up was Emily Shaw, a PhD student from the Department of Civil, Environmental, and Geospatial Engineering, with a presentation titled “Toxicity in Fish Tissue: Redefining our Understandings by Quantifying Mixture Toxicity.”

Yue (Emily) Kang from the Department of Mathematical Sciences department won the People’s Choice award with her presentation, titled “Robust numerical solvers for flows in fractured porous media.”

Other finalists were:

Each presentation was scored by a panel of judges from diverse academic backgrounds. The judges for the finals were:

  • Wallace Southerland III, Vice President for Student Affairs and Dean of Students
  • Jim Baker, associate vice president for research administration
  • Marie Cleveland, a Michigan Tech alumna who was awarded the Alumni Association Outstanding Service Award in 2014

This year’s finals were also streamed live on GSG’s Facebook page and can be watched online.

GSG would also like to thank all the volunteers and The Orpheum Theater for making this event possible.

By Graduate Student Government.

Emily Shaw presenting at 3MT.
Emily Shaw presenting at 3MT.
Sunit Girdhar presenting at 3MT.
Sunit Girdhar presenting at 3MT.
Arman Tatar presenting at 3MT.
Arman Tatar presenting at 3MT.
Michael Maurer presenting at 3MT.
Michael Maurer presenting at 3MT.

Michigan Tech Engineering Students at COP26

UN Climate Change Conference UK 2021 in Partnership with Italy

Six Michigan Tech students and three alumni will help lead events and a press conference at the 26th United Nations Climate Change Conference of the Parties (COP26) in Glasgow, Scotland.

As part of the Youth Environmental Alliance in Higher Education (YEAH), a multidisciplinary research and education network of students and faculty from 10 universities across four continents, MTU representatives will help showcase the “Voices of Optimism, Agents of Change” event and exhibit. They will also participate in a press conference Nov. 3 at 11:30 a.m. ET.

Participating engineering students are:

Read more about engineering students at COP26 in Michigan Tech Press Releases.

Richelle Winkler: The Sustainability Demonstration House

Michigan Tech student residents of the Sustainability Demonstration House work side by side with Michigan Tech’s student-run Alternative Energy Enterprise to showcase sustainable living. It’s extraordinarily rewarding, successful, and fun (even with several feet of snow on the ground).

Richelle Winkler shares her knowledge on Husky Bites, a free, interactive webinar this Monday, November 1 at 6 pm ET. Learn something new in just 20 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

What are you doing for supper this Monday night 11/1 at 6 pm ET? Grab a bite on Zoom with Dean Janet Callahan and Richelle Winkler, professor of Sociology and Demography—and advisor to students living in Michigan Tech’s Sustainability Demonstration House (SDH for short). “I took over as faculty advisor for the SDH just this fall,” she says. “I worked with Jay Meldrum (then executive director of sustainability at Michigan Tech) to start the House back in 2016 and 2017. I’m excited now to be more involved.”

Professor Richelle Winkler

Michigan Tech’s Sustainability Demonstration House is a residential learning environment where students test and practice sustainability in their daily lives. The SDH began in 2016 as a project by the student-run Alternative Energy Enterprise, with the goal of retrofitting the Kettle Gundlach house, a three-floor abode, built in 1953 by Herman “Winks” Gundlach (and a former residence for past presidents of Michigan Tech) into a net-zero energy, zero-waste house. 

In 2017 Michigan Tech students took residence and started retrofitting the three-floor abode to make it more sustainable. The SDH mission is to constantly innovate and design new additions that reduce the environmental impact of the house while also educating the MTU campus and larger community on sustainability.

Abbey Herndon: “This is my third semester living in the sustainability house. Some of my main sustainability interests are reducing waste and educating others on sustainability habits. I love finding new and creative ways to avoid waste or repurpose it.“

During Husky Bites, two current residents will take us on a tour of the house. Abbey Herndon ‘23, a sustainable bioproducts major and SDH coordinator, and Kendra Lachcik ’23, an environmental engineering major and SDH resident—will share improvements they’ve made, how living in the SDH impacts their lives, and what they’ve found to be opportunities and challenges for reducing our residential environmental footprints.

That includes toothbrush recycling. Community outdoor yoga sessions. An annual Earth Day dinner. Vertical hydroponics. Volunteering at local farms. Bird window strike prevention. Practicing Eco Sabbaths—and much more.

Over the past four years the house has been equipped with a 8.6 kWh solar array, two composting systems, aquaponics, hydroponics, a rain barrel, energy-efficient appliances, low-flow faucets, LED lights, and a bee hive. In addition, the tenants of the house strive to educate the community on sustainability through open houses, workshops, tours, the Waste Reduction Drive, and many other initiatives.

A beehive in the SDH backyard
Kendra Lachcik: “This is also my second semester living in the SDH. I enjoy collaborating (and goofing off) with my housemates, upkeeping all of the house systems, and making my own improvements to the house. Sustainability, especially on a small-scale, is all about being creative.””

“I’ve been extremely passionate about environmental issues for a very long time,” says Lachcik. “I’ve been on a journey to reduce my environmental impact as much as possible, while encouraging those around me to do the same. The SDH has served as an amazing opportunity to do both of those things.”

When she’s not advising SDH, Prof. Winkler’s teaching and research include migration, community-engaged scholarship, and environmental sustainability.

“Most of my work here at Michigan Tech is guided by a concern about spatial inequalities—the fact that life and well-being is better in some places than others,” says Winkler. “I see these things as interrelated. Social and environmental well-being complement one another. Migration is both a cause and a consequence of socio-ecological well-being. People move toward places they see as good, or at least better than where they are coming from. So migration can serve as a sort of indicator of where things are going well. At the same time, both in-migration and out-migration can impact community development in positive and negative ways. It’s a circular pattern.”

Community-engaged research just puts the whole pattern into practice, says Winkler. “I really enjoy seeing how these things play out on the ground and working directly with community groups who are working to improve conditions.”

Dr. Winkler gives a community presentation on the US Census. Photo credit: Garrett Neese/Daily Mining Gazette

Prof. Winkler, When was the moment you knew sociology was the field for you?

When I went to college, I didn’t know what I wanted to do for my career. I was curious about just about everything. I took a sociology class and learned that it was possible to study just about anything from a sociological perspective. This meant I didn’t have to choose! I also wanted a career where I could help people and make a positive difference in the world, and it seemed to me then (and still) that sociology is a field where I could focus on that.

Hometown, family?

I grew up in Rush and Shelby counties in Indiana, between Indianapolis and Cincinnati. Most of my cousins, aunts and uncles still live in that area today, and it still feels like home. My immediate family and I (husband and two kids, ages 9 and 12) have lived in Houghton for over a decade now, and we love it here. 

Any hobbies? What do you do in your spare time?

I love exploring natural areas across the Keweenaw and beyond, mostly hiking, visiting beaches and rock hunting, and mountain biking with my dog (Opal) and with family and friends. I also love sports, especially volleyball which I’ve played and coached for almost my entire life. I cheer on my alma mater (the Wisconsin Badgers!) and have grown pretty attached to the Packers, spending the last twenty years in Wisconsin and the UP. 

SDH hosts a community yoga session.

Abbey, how did you first get into sustainability? What sparked your interest?

My family has a few engineers. Growing up they told me I always had a problem-solving mindset and I enjoyed engineering topics so I pursued it. However, during my second year studying engineering I switched to Sustainable Bioproducts. This course of study strongly fits my career goals. So far, I have thoroughly enjoyed my new path and am excited for what I will be able to do with it. 

Hometown, family?

I grew up in Appleton, Wisconsin with one older brother. I’ve always had a small family, which I enjoy because I get to see everyone often. 

What do you like to do in your spare time?

I enjoy traveling, trying new things, and various forms of creating art. In my free time I like to be outdoors getting exercise. I’ve also got four cats and a pug named Dave.

SDH invites campus to an Earth Day Special Dinner each year.

Kendra, how did you first get into engineering? What sparked your interest?

I’m a very hands-on person and science has always been my favorite school subject, so engineering seemed like a natural fit. In high school, I participated in a program called “Science Olympiad.” Two of my favorite events involved constructing a wind turbine and building a Rube Goldberg machine. Engineering is all about applying science and technology to the real world, which I think is pretty darn cool. 

Hometown, family? Hobbies?

I’m originally from Chicago, IL and have two younger brothers. I’m into figure skating, dancing, running, exploring places, cooking vegan food, and doing all those things with lovely people.

Michigan Tech students have transformed a former residence for past presidents into the ever-evolving, net-zero energy, zero-waste Sustainability Demonstration House.

Read more:

This Old House Teaches U.P. Residents, and an Appliance Manufacturer, New TricksMaking it Personal: Richelle Winkler Wins Distinguished Teaching Award

Innovators in Industry: Future of Autonomous Vehicles and Mobility

Michigan Tech is excited to launch Innovators in Industry: a project connecting students with MTU alumni who are industry experts, leaders, and influencers.

The initial three-part series kicks off on Monday, October 25 at 7 pm with a session titled, “The Future of Autonomous Vehicles and Mobility.”

Featured alumni for the session will be Sean Kelley ‘86 of the Mannik & Smith Group, Inc., an engineering and environmental sciences consulting firm; Mark Rakoski ‘95, of Mitsubishi Electric Automotive America Inc.; and Birgit Sorgenfrei ’91 of Ford Motor Company.

Janet Callahan, Dean of the College of Engineering, will host the first session. Jeremy Bos, assistant professor of Electrical and Computer Engineering (and also an alum) will serve as co-moderator. Bos earned a BS in Electrical Engineering at Michigan Tech in 2000 and a PhD in Electrical Engineering and Optics in 2012. He serves as advisor to Michigan Tech students taking part in the SAE AutoDrive Challenge.

The featured alumni will make short presentations with time for Q&A from the audience. All Michigan Tech students, faculty, and staff are invited to join the Zoom session.

During the session Sorgenfrei, Kelley, and Rakoski will discuss the future of autonomous automobiles and their design, and the design of the infrastructure with which those automobiles will need to communicate.

If the three alums could each go back in time, what would they have strived to learn while at Michigan Tech? They’ll share those insights with us, and provide valuable advice for students—those due to graduate soon, and in the next few years.

“Cars are some of the most complicated things out there, more complicated than jets or commercial aircraft. They’re basically really smart computers that move and let people get inside them.”

Sean Kelley

Sean Kelley is senior vice president and principal with the Mannik & Smith Group, Inc., a 370-person engineering and environmental sciences consulting firm with 15 offices in Michigan, Ohio and West Virginia. He earned a BS in Civil Engineering at Michigan Tech, and an MBA at Eastern Michigan University. He’s a registered Professional Engineer in both Michigan and Ohio.

Sean Kelley (’86 Civil Engineering), Mannik & Smith Group, Inc.

Kelley has led the development of infrastructure for closed-system test facilities to advance smart mobility technology, including three of the most significant facilities in the Midwest: University of Michigan’s Mcity in Ann Arbor; the American Center for Mobility located 30 minutes west of Detroit and the Transportation Research Center located at Honda’s North American test center in Central Ohio.  

He’s a recognized leader in the engineering consulting industry in Michigan. His focus on both the public and private sectors allows him to understand and appreciate the challenges associated with creating and maintaining a well-functioning and sustainable infrastructure to support a high quality of life for everyone. Kelley is often a featured speaker at conferences related to transportation and smart mobility. He has two grown children—Morgan and Aaron—who share his passion for learning and helping to advance humanity and a healthier planet.  

“Today there seems to be a huge disruption in the deeply embedded culture of the automotive industry: in order to get a common platform for smart mobility, there really has to be a lot more sharing and working together.”

Mark Rakoski

Mark Rakoski is VP, Advanced Engineering at Mitsubishi Electric. He joined the company in 1996 as an application engineer, soon after earning his BS in Mechanical Engineering at Michigan Tech. Over the course of his career, he has served the company in various capacities, including as senior account manager for Fiat Chrysler Automobiles (FCA) and director and executive director for both the FCA and Ford accounts. 

Mark Rakoski (Mechanical Engineering ’95), Mitsubishi Electric

In his current position Rakoski is responsible for leading product development engineering teams for vehicle connectivity, autonomous sharing and electric solutions, and Mobility-as-a-Service—with specific focus on infotainment and advanced driver-assistance systems (ADAS). 

In 2020, Rakoski was appointed to the Mitsubishi Electric Mobility Ventures (MEMO Ventures) Board. MEMO Ventures explores and funds ideas to create new business opportunities for the company’s Automotive Equipment Group (AEG) in the rapidly evolving mobility sector.

Rakoski is also responsible for Silicon Valley new ventures team management, contract negotiations, marketing and global strategic accounts management. He resides in South Lyon, Michigan. 

“The auto industry has been assisting our customers while behind the wheel for years, starting with the introduction of cruise control in 1948. Working in Driver Assist Technology is exciting, as the technologies leading to self-driving vehicles are available to customers now to increase safety and convenience.”

Birgit Sorgenfrei (EE ’91) Ford Motor Company
Birgit Sorgenfrei (Electrical Engineering ’91) Ford Motor Company

Birgit Sorgenfrei is currently a Driver Assist Technology Applications Lead at Ford Motor Company. She was previously Electrical Lead for Lincoln & Ford Programs, as well as a systems manager responsible for Autonomous Vehicle integration and advanced features for electrified vehicles. Her more than 20-year career at Ford includes research on sensors for electrical power assist steering systems, component and system radio design, vehicle planning, hybrid battery software delivery, fuel cell technology development, and the introduction of StartStop Technology to North America. Previously, she worked for General Electric, Johnson Controls Inc., IBM, General Motors, and internationally for Schlumberger Industries in France, the University of Hanover in Germany, and Ford Motor Company in England and Germany. Sorgenfrei earned her BS in Electrical Engineering at Michigan Tech in 1991, graduating summa cum laude. She then earned a MSEE degree from MIT, and later an MBA from the University of Michigan.


Other upcoming sessions of Innovators in Industry include:

Monday, November 1 – The Computing Revolution (hosted by the College of Computing)

Monday, November 8 – Entrepreneurship: Startups & Venture Capital (hosted by the College of Business)

All sessions will begin at 7 p.m. on Zoom.

The series is organized by the Office of Advancement and Alumni Engagement, Innovators in Industry aims to give students direct access to industry leaders to help shape their paths. Future plans for the Innovators in Industry series include in-person sessions and on-location visits for students to industry hubs.

Amlan Mukherjee: Net Zero—How Do We Get There?

Forest fires, warmer summers, storms and floods: global warming is compounding the frequency and intensity of extreme weather events, causing disruptions, costing us resources—and lives.

Amlan Mukherjee generously shared his knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan, back on Monday, October 11. You can view the YouTube recording of his session to learn something new in just 30 minutes (or so). Here’s the link to watch. Register for future sessions of Husky Bites at mtu.edu/huskybites. Grab some supper, or just flop down on your couch. Everyone’s welcome! It’s BYOC (Bring Your Own Curiosity).

Michigan Tech Professor Amlan Mukherjee: “As stewards of this planet we owe it to ourselves, and to every species we share this home with, to ensure that we build to sustain.”

Michigan Tech CEGE Department Chair Audra Morse and Amlan Mukherjee, Professor of Civil, Environmental, and Geospatial Engineering at Michigan Tech got together on Zoom to talk about Net Zero. 

The United States has set the ambitious target of reaching Net Zero emissions economy-wide by no later than 2050, and roughly halfway to zero by 2030. “Reducing our atmospheric greenhouse gas emissions is crucial to reducing the long-term rise in average global temperatures,” says Mukherjee. “Given the carbon intensive nature of our economy, it seems unlikely that we can reduce our emissions to zero. However our shared goal of Net Zero—balancing the net amount of greenhouse gas emissions that are being emitted, versus that which is being absorbed back from the atmosphere—will result in promising new methods and technologies.” 

During Husky Bites, Mukherjee will explore Net Zero implications for engineering practice. Joining in will be Dr. Heather Dylla, Mukherjee’s good friend and longtime professional collaborator. Dylla is the VP of Sustainability and Innovation at Construction Partners Inc.

green round zero emission carbon neutral rubber stamp print vector illustration

“There’s a product component and a process component to reaching Net Zero,” adds Mukherjee. “It is daunting. But I think we can do this. There are various approaches we can use.”

Mukherjee has extensive background and experience in life cycle assessment for the construction materials industries. His focus: integrated data, rich workflows, and model-based processes—the digital transformation of construction. 

Dr. Heather Dylla, advises on engineering policy at the US House of Representatives

Early on as a civil engineering professor and researcher, Mukherjee recognized the need to consider energy efficiency and life cycle environmental impacts of construction materials and processes when designing our infrastructure. He set out to lay the foundation for best practices. “I wanted to inform design and construction using life cycle thinking to optimize project cost and performance with an eye on reducing environmental impacts,” he says.

Fast forward 15 years. Mukherjee’s hard work has resulted in important project management tools to help government agencies and construction firms consider reductions in life cycle CO2 emissions of their projects—in addition to cost and project duration—as they develop strategies that improve the sustainability of their projects.

One size does not fit all, he says. “For agencies involved in horizontal infrastructure—such as roads, bridges, highways—we developed separate guidelines for construction, rehabilitation and maintenance projects. Incorporating Net Zero by 2050 will involve many of the same types of solutions,” adds Mukherjee. “We need data tools to enable improved decision making, recognizing that the solutions for one project may not apply to another.”

penguins on a beach with mother and chick
“Personally, I worry about how life on this planet—home to many different species—will adapt to warmer temperatures,” says Mukherjee. “As stewards of this planet we owe it to ourselves, and to every species we share this home with, to ensure that we build to sustain.”

At Michigan Tech, Mukherjee completed the National Science Foundation I-Corps program, created to reduce the time and risk associated with translating promising ideas and technologies from the lab to the marketplace. His involvement not only led to starting his own business but it also revamped the way he teaches his classes, with a focus on lean start-up practices and design thinking—a methodology for creative problem solving from the Stanford d.school.

“A design thinking mindset changes your approach to everything you do,” Mukherjee says. “You start looking at the world not just as a problem-solver, but also as a value creator. Once you identify the client’s needs, the math is the easy part, but being able to do the right math for the right project—that’s where the design-thinking mindset comes in. Are you solving a problem that matters, and are you creating value out of it? As the American Society of Civil Engineers reminds us, it’s not enough to build the project right, it’s also important to build the right project.”

Mukherjee formed his company, Trisight Engineering, in 2013. Trisight provides life cycle assessment services, data analyses, and data interface tools for sustainability assessment of horizontal infrastructure. He brought on Michigan Tech Alums Lianna Miller (’06) and Dr. Benjamin Ciavola (’14) as full-time managing partners.

“There’s a product component and a process component to reaching Net Zero,” adds Mukherjee. “It is daunting. But I think we can do this. There are various approaches we can use.”

Prof. Amlan Mukherjee
Presenting together at the Euroasphalt and Eurobitume Conference in Prague in 2016. Back then, Dylla served as director of sustainable engineering for the National Asphalt Pavement Association.

“In academia, Dr. Heather Dylla has been my collaborator for the past 8 years,” notes Mukherjee. “We’ve developed several protocols and practices together that are now in the process of becoming industry standards.” Some of their most recent collaborations took place while Dylla was with Federal Highway Administration (FHWA), working as a Sustainable Pavement Engineer. Dylla managed the FHWA Sustainable Pavements Program and the Pavement Policy, leading an effort to incorporate principles of life cycle thinking into the design and decision-making process. “That includes the three pillars of sustainability: economic, environmental, and social impacts,” she says. She earned her doctorate from Louisiana State University where she focused on quantifying the environmental impacts of photocatalytic “smog-eating” concrete pavements.

Prof. Mukherjee, how did you first get into engineering? What sparked your interest?

“Here I am on a concrete paving job on I-496 in Lansing, Michigan.”

As a child my favorite toy was a model of a Boeing 707. I imagined all the places I could fly to on it, and that started my early love for all things transportation—highways, airports, and trains. I liked tinkering with stuff and putting things together, whether it was jigsaw puzzles or robots involving simple circuitry. I also enjoyed math and science in school, so engineering was the logical direction. 

During my undergraduate experience, as I began to understand the science behind climate change and appreciate its challenges, I was drawn to investigating ways to engineer functioning systems while also reducing environmental impacts. 

A few years ago, Prof. Mukherjee helped facilitate the development of the ISO-compliant environmental product declaration program for the asphalt industry in North America. Here, on an asphalt paving job on I-69 near Charlotte, Michigan.

A love for all things transportation and the many new worlds our transportation assets provide us access to—along with a growing concern for the environment—largely shape what I do.”

Hometown, family?

I was born in the northeastern state of Assam in India, but left before I was a year old and never returned. Hence, I have found home in many different cities, chief of them Kolkata and Seattle. Now I call Houghton home, having lived here the longest of any place.

Cheeky, indeed: that’s Oscar in the front, and Zoey.

What do you like to do in your spare time?

I enjoy singing in community choirs, volunteering for service-oriented community organizations, and getting trained to be a better version of myself by my two cheeky dachshunds.

Did you know?

Prof. Mukherjee serves on the Federal Highway Administration (FHWA) Sustainable Pavements Technical Working Group. He’s on the board of both the Green Buildings Initiative and the Greenroads Foundation. And he recently co-authored guidelines for sustainable highway construction practices for the National Academies’ National Cooperative Highway Research program (NCHRP).

Dr. Dylla, how did you decide to become an engineer?

I had already applied to many schools to study environmental science, geology, or international studies, (though not engineering). Later in my senior year of high school, my Physics teacher introduced me to a mentor from the Society of Women Engineers. I was unaware of the opportunities in engineering and she explained all the options to me. Civil engineering piqued my interest since it covered many of the topics I was interested in: architecture, math, and environment. I decided to apply to one engineering school, Bradley University in Peoria, Illinois. It all worked out from there.

Heather and her family live in Minnesota.

Hometown, family? 

I grew up in Eden Prairie, Minnesota. I have a younger brother and sister. I am close to both. I never thought I would live in Minnesota and always dreamt of living abroad. In fact, my husband is from Brazil. However, after having a kid, we got tired of always using our vacation to see family and the busy life of DC with long commutes, so we moved to Minnesota to be near my family. My son Lucas is now 4 years old. He’s always by my side. 

Any hobbies?

After having Lucas, I feel my spare time is limited. Generally, he keeps me busy every free moment I have. We enjoy playing cars, puzzles, games, traveling, spending time with family and friends, watching movies such as Harry Potter, dancing, and swimming at one of the many beaches in Minnesota.