Tag: CEE

Stories about Civil, Environmental, and Geospatial Engineering.

Graduate School Announces Fall 2021 Finishing Fellowship Award Recipients

Campus vista in hazy light showing the canal bending.

The Graduate School proudly announces the recipients of its Fall 2021 Finishing Fellowships. Congratulations to all nominees and recipients.

Finishing fellowship recipients in engineering graduate programs are:

Tess Ahlborn: Lift Bridge—a Michigan Landmark

Tess Ahlborn shares her knowledge on Husky Bites, a free, interactive webinar this Monday, September 27 at 6 pm ET. Learn something new in just 20 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Prof. Tess Ahlborn: Structural durability and safety are her life’s work.

What are you doing for supper this Monday night 9/27 at 6 ET? Grab a bite with Dean Janet Callahan and Tess Ahlborn, Professor of Civil, Environmental, and Geospatial Engineering at Michigan Tech. The Portage Lake Bridge connecting Houghton and Hancock, Michigan, more commonly known as the Lift Bridge, was named as an ASCE National Historic Civil Engineering Landmark in late 2019 following a State Historic Landmark designation in 2018. 

During Husky Bites we’ll hear about the wonders of the Lift Bridge from the very trio who submitted its 300-page application to the American Society of Civil Engineers (ASCE). Prof. Ahlborn will be joined by two of her former students, Michael Prast ’19, now a timber structural engineer at Fire Tower Engineered Timber in Calumet, Michigan; and Emma Beachy ‘19, a design engineer at Corbin Consulting in Portland, Oregon. Both earned both their BS and MS degrees in civil engineering at Michigan Tech.

Emma Beachy wearing patterned knit capstands in front of a waterfall in the wood.
Emma Beachy ’19

We’ll learn about crossings prior to the current Lift Bridge, the people involved in designing and building the Lift Bridge, and what makes the Lift Bridge so unique to the region and the nation to proudly earn the National Landmark designation. 

“Emma and Michael are two of Michigan Tech’s best students,” says Ahlborn. “I mentioned the topic of National Historic Landmarks during Bridge Design class, and let the class know I would be delighted if someone wanted to work on a nomination application for the Portage Lake Bridge. It didn’t take long for Emma and Michael to speak up, and the rest is history. I can’t thank them enough for taking on this project and seeing it through the application process!”

Michael leans at a wooden deck looking out over a harbor on Lake Superior with sailboats
Michael Prast ’18

By the way, Prof. Ahlborn is a Michigan Tech alum, too. She earned her BS and MS at Michigan Tech, then went to University of Minnesota to earn a Doctorate of Philosophy in Civil Engineering in 1998. She’s been a member of the faculty at Michigan Tech for the past 26 years, teaching structural engineering courses focusing on concrete and the design of concrete buildings and bridges. 

She has a passion for bridges, something that began when she was quite small. “Growing up, I once told my mom I loved bridges. After that, she started taking me to look at a different bridge each week. Michigan has such beautiful bridges!” 

“Bridges are structural art! A piece of art fully exposed to the elements. They involve so many people every day.”

Prof. Tess Ahlborn

As the former Director of the Center for Structural Durability within the Michigan Tech Transportation Institute, Ahlborn has worked with the MDOT (Michigan Department of Transportation) and USDOT (US Department of Transportation) to seek solutions to improve the resiliency of our nation’s transportation infrastructure. 

In 2020, Ahlborn was appointed to the American Concrete Institute Committee 318, placing her in the small group of people who establish the ACI structural concrete building code used around the world, a “Supreme Court” of concrete, if you will.

Did you know? Prof. Ahlborn is a world expert in remote sensing applications for bridge condition assessment.

“It also means her peers consider her to be one of the most knowledgeable and trustworthy among them,” says Materials Science and Engineering Professor Larry Sutter, a concrete expert in his own right, as well as associate dean of research and external relations in the College of Engineering.

After water, concrete is the most widely used substance on the planet. As a member of the committee, Ahlborn helps to chart the future of structural concrete—its safety, sustainability, technological advances and environmental impacts.

“We think of concrete almost as rock, but a big part of it is the steel,” Ahlborn said. “It’s a frame of steel bars encased in concrete. People the world over need to know, ‘How do I design with it?’ and ‘How does it behave?’ The code is based on over 100 years of research.”

Ahlborn knows the code inside and out. As a civil engineering student at Michigan Tech, she learned ACI Code 318 from civil engineering professor Bogue Sandberg, now a professor emeritus. “Over the years I have taught at least 1,500 students in the classroom about the 318 code requirements,” she said. 

As for her secrets to good teaching, she insists there aren’t any. “All you have to do is be fair and consistent and crack a joke once in a while,” said Ahlborn. 

She invites alumni to speak to her classes, and she regularly brings in current news articles relating to the course, not to mention chunks of concrete with stories to tell. All together, “it helps the students understand why what they are learning is important.” 

Ahlborn also serves as program director for all who seek a Michigan Tech online MS degree in Civil Engineering with a structural engineering focus. It’s a growing program, she says. “Most of our online graduate students are full-time working professionals taking one course per semester,” she says. “Every student’s program is tailored to their needs. They can obtain a full MSCE or a graduate certificate in, say, Structural Timber Design.  It’s a great avenue for professionals to enhance their careers.”

Each of these chunks of concrete has a story to tell, says Professor Ahlborn.

Prof. Ahlborn, how did you first get into engineering? What sparked your interest?

As a young kid, I was always fascinated by bridges.  It wasn’t until my high-school physics teacher asked me about my future plans. I was happy to report that I was applying to cosmetology schools, but I really liked bridges. After a few conversations, it was clear where I was heading: Civil Engineering. Soon enough, I jumped onto the structural engineering route and have loved working with bridges ever since!

Izzy and Charlie!

Hometown?

Growing up in an all-American family in Kawkawlin, Michigan, followed by the real growing up as a student at Michigan Tech, I had the opportunity to watch the Zilwaukee bridge construction and land a dream job in the Minneapolis area designing dams, hydropower facilities, and bridges. When the engineering market slowed down, I jumped at the chance to complete a PhD. My husband, Mark, and I were blessed with twins, Jess and Jake, and chose the Keweenaw as the best place to settle down. I’m happy to share that we are now the proud grandparents of Charlie and Rory!

What do you do for fun?

I truly enjoy the outdoors and living in the Keweenaw, a very special place. Izzy, our Great Pyrenees, brings joy to our lives everyday and I love gardening, especially when she’s not running through the garden!

Lift Bridge in Winter. Photo credit: Michael Prast

Michael, what first sparked your interest in engineering?

I’m originally from Holly, Michigan. I had a class in high school, Intro to Engineering, that went through some basics of the different engineering disciplines like electrical, computer modeling, and building. My favorite project was designing a balsa wood tower that was then compressed to failure. I really enjoyed it and my structure ended up being the most efficient in the class history comparing self weight to weight held. So I knew I wanted to do something with engineering and leaned towards buildings. I have been correct so far and love engineering a range of structures, mostly in heavy timber. 

How do you like to spend your spare time?

While my favorite is mountain biking, I love to hike, camp, hammock, kayak, and swim. I also have a passion for history. I’m part of the volunteer board for Painesdale Mine and Shaft and give tours of the Champion Mine shaft house, hoist house, and Captain’s office.

Emma, how did you decide upon engineering?

I was born and raised in Madison, Wisconsin. For a long time I thought I wanted to be an architect, but then, during my senior year in high school, I took classes in Physics and Calculus. I absolutely loved them! After that, structural engineering felt like the perfect middle ground between architecture, and math and physics.

Tidepooling on the Oregon Coast. Photo credit: Emma Beachy

Hobbies?

My hobbies mostly revolve around the outdoors. Living in Oregon now, I’m lucky that I can drive a short ways and get to the Pacific coast (I love looking for tide pools) or to the mountains (I also love hiking and backpacking). At home, I really enjoy cooking. Lately I’ve been trying out some vegetarian recipes, trying out some new and interesting ingredients. 

Tech Students Take Home the Prizes

screen shot of certificate during the Zoom ceremony for NASA's Watts on the Moon Challenge
A Michigan Tech was a Grand Prize Winner of NASAs Watts on the Moon Challenge!

ME-EM Assistant Professor Paul van Susante’s Planetary Surface Technology Development Lab won $100K as a Grand Prize Winner of the NASA Watts on the Moon Challenge. Sixty teams submitted original design concepts aimed at meeting future needs for robust and flexible technologies to power human and robotic outposts on the Moon. Read more here

SAE Autodrive Challenge. NASA’s Watts on the Moon Challenge. US Department of Energy Solar Desalination Prize. And more. In this past challenging year—Michigan Tech students and faculty excelled. 

ME-EM Assistant Professor Sajjad Bigham and students in his Energy-X Lab were among eight teams (out of 162) selected as semi-finalists in the US Department of Energy Solar Desalination Prize. Their team, “Solar Desalt: Sorption-Based ZLD Technology” will receive $350K in funding to advance their research using solar-thermal energy to purify water with very high salt content, in the competition’s three-year, second phase. The team integrates standard multiple-effect desalination system (MED) technology with a high temperature desorption process and a low-temperature crystallization process in order to achieve zero liquid discharge (ZLD). Read more here.

Students and advisor stand in the lab around a small table displaying their crystal award plaque.
NASA’s Artemis Award, in Planet Surface Technology Development Lab. Congratulations!

Prof. Van Susante’s Planet Surface Technology Development Lab took home another top honor, the Artemis Award, in NASA’s Breakthrough, Innovative and Game-changing (BIG) Idea Challenge. Their design, a rover called “T-REX” (short for Tethered permanently shadowed Region EXplorer) deploys a lightweight, superconducting cable to keep other lunar rovers powered and provide wireless communication as they operate in the extreme environments of the moon’s frigid, lightless craters. Read more here.

The winning team! Left to right, MMET students Andrew Ward, Jake Lehmann, John Kurburski, and Alexander Provoast

Michigan Tech students in the Department of Manufacturing and Mechanical Engineering Technology were declared the Overall Champions of the 2021 National Fluid Fluid Power Association Vehicle Challenge, a national competition hosted by Norgren, a world leader in motion control and fluid technology based in Littleton, Colorado. The contest, dubbed “Hydraulics Meets the Bicycle,” combines human-powered vehicles along with fluid power and consists of three races—sprint, endurance, and efficiency. Senior Lecturer David Wanless advised the team, and MMET Lecturer Kevin Johnson contributed to their understanding of pneumatic and hydraulic circuits in his fluid power class. Read more here.

Two Michigan Tech teams, part of the student-run Built World Enterprise, captured First and Second place at the Airport Cooperative Research Program’s University Design Competition, a contest hosted by the National Academy of Sciences/Transportation Research Board. The teams are advised by CEGE Department Chair Prof. Audra Morse. Read more here.

Michigan Tech’s Wave Tank, located in the Department of Mechanical Engineering-Engineering Mechanics

Students in the SENSE Enterprise team at Michigan Tech, advised by Great Lakes Research Center Director Prof. Andrew Barnard, ECE Associate Professor Tim Havens, along with another team of students advised by ME-EM Professor Gordon Parker, were all selected to compete in the US Department of Energy’s 2022 Marine Energy Collegiate Competition. The students will use the Michigan Tech Wave Tank for this work. Read more here.

The four-year SAE Autodrive Challenge wrapped up on June 14 with Michigan Tech’s Prometheus Borealis team bringing home the second most trophies and earning 3rd place overall. Teams from University of Toronto and University of Waterloo earned first and second overall, making Michigan Tech’s team first among all the US contenders. ECE Assistant Professor Jeremy Bos and ME-EM Assistant Professor Darrell Robinette serve as advisors to the team. Next Up: SAE International and General Motors (GM) announced 10 collegiate teams selected to compete in AutoDrive Challenge II. Michigan Tech was on the list. Read more here.

Michigan Tech’s SAE Autodrive Challenge team will soon need a bigger display case!

Know of any more Michigan Tech student awards or engineering competitions? Email engineering@mtu.edu. We want to help share the good news!

Michigan Tech Students Form New Chapter of SASE

Civil engineering student Isaac Fong is the founding president of Michigan Tech SASE.

When Isaac Fong arrived at Michigan Tech as a student in 2019, he took note of the professional societies on campus with cultural identities: The National Society of Black Engineers (NSBE); Society of Hispanic Professional Engineers (SHPE); Society of Women Engineers (SWE); and American Indian Science and Engineering Society (AISES).

None existed, yet, for students of Asian heritage. But that was about to change.

“Some friends at other schools encouraged me to start a Michigan Tech chapter of the Society of Asian Scientists and Engineers (SASE). I started asking around my circles to find people who might want to join an interest group for SASE. I found a staff member who was willing to advise the chapter, and then a faculty member,” Fong says. “From there on, we found enough members, and SASE just took off.”

SASE was officially approved through Michigan Tech’s office of Student Leadership and Involvement in March, 2021.

Founded in 2007, SASE is the national go-to organization for talent and leadership development in science, engineering and technology. It’s also a community where students representing all of the pan Asian cultures connect and support each other.

“Any student at Michigan Tech is welcome to join SASE,” Fong says. “Faculty members can be honorary, non-voting members of SASE, too.”

The SASE logo, which features a blue gear combined with a green beaker.

Fiona Chow, a third year student in the College of Business, is a founding member of SASE.

“Growing up, I wasn’t surrounded by many other Asian individuals, other than family. So the opportunity to be a part of a supportive, relatable community is really appealing to me. In SASE we will help each other advance, both professionally and personally,” adds Chow.

“Isaac reached out, asking if I would be interested in joining and helping get SASE on its feet,” says Michigan Tech student Fiona Chow.

She looks forward to possibly attending the SASE national convention and regional conferences in the future. “These events will not only be a great networking opportunity but also a huge learning opportunity.”

“Our first meeting at Michigan Tech was a Zoom meeting with a handful of people,’ she adds. “The engagement and the excitement to be in one space, and to be starting something new, was so exciting and fantastic. I left the meeting filled with anticipation, for getting to know these people more, developing career skills with them, and seeing how the club will grow.”

Liz Fujita, academic advisor and outreach specialist in Michigan Tech’s Department of Electrical and Computer Engineering, serves as co-advisor of SASE. She’s also a Michigan Tech alumna. “I was so excited to hear about the formation of this group,” she says. “It’s one that I wish had been here when I was in college.” Fujita earned two bachelor degrees at Michigan Tech in 2012, Mathematical Science and Social Sciences.

“SASE is open to all students who are interested in the success of professional networking, development, and community among Asian and Asian American students,” says chapter co-advisor Liz Fujita.

SASE’s goal this fall is to have at least one event per month, adds Fujita. “We’ll host guest speakers, internal resume workshops, and social events, including events in partnership with other affinity-based organizations on campus.”

In the meantime, SASE members formed a summer book club, reading two books: Minor Feelings, by Cathy Park Hong and Interior Chinatown, by Charles Yu.

“When I was a student in college, I enjoyed being in various student organizations,” says Distinguished Professor Zhanping You, Michigan Tech SASE co-advisor. “As a faculty member, it has been my great interest to support them.”

Zhanping You, a Distinguished Professor of Transportation Engineering in the Department of Civil, Environmental and Geospatial Engineering, serves as the other Michigan Tech SASE co-advisor. “After years of service in various professional groups at Michigan Tech, I believe an organization of Asian students involved in science and engineering is really needed,” he says. “I am very happy to help the start of this new chapter of SASE.”

Dean of the College of Engineering, Janet Callahan, affirms her support of Dr. Zhanping You, Liz Fujita, and SASE. “This will provide a way for our students to connect, and build—and keep building upon these connections,” she says, adding: “And, I am reading Interior Chinatown, by Charles Yu, this summer, in support of SASE and their summer reading project!”

Within the Michigan Tech new chapter of SASE, an Asian Pacific Islander Desi American (APIDA) relations committee will work to amplify APIDA voices on campus and educate others through planned events. For students and working professionals alike, Fong says he hopes SASE activities and efforts will help educate and support students.

“We were all first supported and educated by others,” Fong says. “Now, through SASE, we have the chance to give back.”

Want to learn more about SASE? Contact Michigan Tech SASE co-advisor Liz Fujita.

ISAAC FONG

President, Michigan Tech SASE
Major: Civil Engineering
Hometown: Canton, Michigan (Metro Detroit)
Campus Involvement: Husky Swim Club, ASCE, Success Center ExSEL Peer Mentor, RA
Summer 2021: LEAPS Project Engineer Intern at Barton Malow
How did you first get interested in STEM?
“I grew up playing with Lego sets. I was obsessed with airports and subway systems from a young age. I didn’t really consider a career in STEM until late in high school, when I learned how I could incorporate buildings and infrastructure into my career. Classes in physics, calculus, and humanities all helped pique my interest in civil engineering.”

FIONA CHOW

Founding Member, Michigan Tech SASE
Major: Management Information Systems
Campus Involvement: SENSE Enterprise (“Cool people. Cool projects. Cool advisors,” notes Chow.)
Hometown: Eagan, Minnesota (Twin Cities area)
Summer 2021: Data Engineer Intern at Polaris Inc.
How did you first get interested in STEM?
“It all began in third grade when I switched to a STEM elementary school with opportunities to explore various areas, from engineering to computer science. I started college majoring in Software Engineering and just recently switched to Management Information Systems. It’s a better fit and combination of things I am passionate about—combining people and technology.”

Two Engineering Students Awarded DoD SMART Scholarships

Apply, Award Phase, Employment, Degree Pursuit, Retain

The Graduate School is pleased to announce the Department of Defense (DoD) Science, Mathematics, and Research for Transformation (SMART) Scholarship awardees.

• Lauren Mancewicz, doctoral graduate student in environmental engineering, is a scholarship awardee. Mancewicz’s current research focuses on using a numerical variable-density groundwater flow and transport model to investigate the impacts of sea-level rise on island hydrology and freshwater resources.

• Casey Majhor, doctoral graduate student in electrical engineering, is a scholarship awardee. Majhor’s research focuses on improving and implementing autonomous ground vehicles and robotics. As a DoD SMART Scholar, Majhor plans to contribute to DoD project focus areas such as combat vehicle robotics and manned-unmanned teaming vehicle systems.

The Graduate School is proud of these students for their outstanding scholarship. These awards highlight the quality of students at Michigan Tech, the innovative work they have accomplished, the potential for leadership and impact in science and engineering that the country recognizes in these students, and the incredible role that faculty play in students’ academic success.

The DoD SMART Scholarship is part of the National Defense Education Program and its benefits include full tuition and education-related expenses payment, a stipend of $25,000-$38,000 per year, summer internships ranging from 8 to 12 weeks, health insurance, a miscellaneous allowance of $1,200 per year, mentorship at one of the DoD sponsoring facilities, and employment placement at a DoD facility upon degree completion.

By the Graduate School.

Tau Beta Pi Honor Society at Michigan Tech initiates 39 new members

Each chapter of Tau Beta Pi has its own bent statue. On campus at Michigan Tech campus it is located between Rekhi Hall and the Van Pelt and Opie Library.

The College of Engineering inducted 38 students and one eminent engineer into the Michigan Tech Michigan Beta chapter of Tau Beta Pi this academic year.

A nationally-recognized engineering honor society, Tau Beta Pi is the only one that recognizes all engineering professions. Members are selected from the top eighth of their junior class, top fifth of their senior class, or the top fifth of graduate students who have completed 50 percent of their coursework.

Tau Beta Pi celebrates those who have distinguished scholarship and exemplary character and members strive to maintain integrity and excellence in engineering. The honor is nationally recognized in both academic and professional settings. Alumni embody the principle of TBP: “Integrity and Excellence in Engineering.”

The new Tau Beta Pi logo in blue, with Tau Beta Pi symbol, "the bent" which resembles an old watch winding key.

Fall 2020 Initiates:

Undergraduate students
Evan DeLosh, Mechanical Engineering
Nolan Pickett, Mechanical Engineering
Ben Holladay, Electrical Engineering
Jacob Stewart, Civil Engineering
Malina Gallmeyer, Environmental Engineering
Caleigh Dunn, Biomedical Engineering
Mikalah Klippenstein, Electrical Engineering
Savannah Page, Biomedical Engineering
Katie Smith, Chemical Engineering
Cole Alpers, Mechanical Engineering
Ben Pokorny, Mechanical Engineering
Kyrie LeMahieu, Mechanical Engineering
Anna Hildebrandt, Materials Science & Engineering

Graduate students
Shankara Varma Ponnurangam, Mechanical Engineering
Koami Soulemane Hayibo, Electrical Engineering
Kaled Bentaher, Chemical Engineering
Nicholas Hendrickson, Mechanical Engineering

Spring 2021 Initiates:

Undergraduate students
Anders Carlson, Mechanical Engineering
Brian Geiger, Mechanical Engineering
Emily Street, Mining Engineering
Jacob Lindhorst, Mechanical Engineering
John Benz, Mechanical Engineering
John Hettinger, Computer Engineering
Joshua King, Materials Science & Engineering
Laurel Schmidt, Mechanical Engineering & Theatre Technology
Matthew Fooy, Chemical Engineering
Matthew Gauthier, Mechanical Engineering
Max Pleyte, Biomedical Engineering
Nick McCole, Engineering
Nick Niemi, Biomedical Engineering
Tom Morrison, Chemical Engineering
Zach Darkowski, Mechanical Engineering

Graduate Students
Aiden Truettner, Chemical Engineering
Iuliia Tcibulnikova, Geological & Mining Engineering & Sciences
Rajat Gadhave, Mechanical Engineering
Ranit Karmakar, Electrical & Computer Engineering
Sreekanth Pengadath, Mechanical Engineering
Fnu Vinay Prakash, Electrical & Computer Engineering

Professor Tony Rogers, Michigan Tech

Eminent Engineer
Dr. Tony Rogers, Department of Chemical Engineering

Above and Below the Mackinac Bridge: Kim Nowack and Amy Trahey

Mackinac Bridge Steeplejack. Photo by Tim Burke, MDOT

Amy Trahey and Kim Nowack generously shared their knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

These two extraordinary fellow civil engineers and friends who each know the Mackinac Bridge, aka Mighty Mac—one of the world’s leading suspension bridges—like the back of their hand. Together they explain just what it takes to properly care for such a huge gem, the single greatest asset of the state of Michigan.

Kim Nowack is executive secretary of the Mackinac Bridge Authority. Amy Trahey is president and founder of Great Lakes Engineering Group. Both are graduates of Michigan Tech, too: Nowack earned her BS in civil engineering in 1985, and Trahey earned hers in 1994.

Michigan’s Mackinac Bridge at Sunset

Nowack is ultimately responsible for its safety, operation and maintenance. Putting it mildly, Nowack has vast experience and familiarity with the Mackinac bridge, nearly 20 years worth, and then some.

Prior to her tenure at the bridge, Nowack held several positions with the Michigan Department of Transportation (MDOT), including stints as a general engineer with the department’s construction division in Kalamazoo; project design, construction and assistant resident engineer in St. Ignace; and delivery engineer at MDOT’s Newberry Transportation Service Center (TSC).

Kim Nowack

In 2002, she became chief engineer for the Mackinac Bridge Authority, and was appointed to the position of Executive Secretary/CEO of the Mackinac Bridge in 2019. She is the first woman to hold either of these positions in the Bridge Authority’s 60-plus year history.

Nowack frequently gives presentations about the bridge to fellow engineers, aspiring engineering students, and middle and high school students interested in the STEM fields. Recently in recognition of that effort, Nowack received the 2021 Felix A. Anderson Image Award from the American Council of Engineering Companies (ACEC) of Michigan, noting her contributions to enhancing the image of the engineering profession. 

Joining in will be Audra Morse, professor and chair of Michigan Tech’s Department of Civil and Environmental Engineering. Morse is also a Fellow of ASCE, The American Society of Civil Engineers.

“I’m thrilled to have been selected for the Anderson award,” she said. “It’s amazing to be the first female honored this way. It’s been so rewarding to be an ambassador for the bridge and the civil engineering profession throughout my years at the Mackinac Bridge Authority.”

Trahey nominated Nowack for the award. “Kim is the epitome of why civil engineering is so awesome,” she said. “Kim has been an inspiration to me personally as a fellow civil engineer and to many others in the industry, too.”

At age 28, Trahey founded Great Lakes Engineering Group (GLEG), a civil engineering consulting firm. GLEG’s core business: everything bridges. The firm has been successful in providing bridge design, bridge inspection, and bridge construction engineering services for state and local governmental agencies as well as private clients. Trahey has worked on some of the largest and most complex bridges in the state of Michigan including I‐75 over the Rouge River, the Belle Isle Bridge, the Gross Ile Bridge, the International Bridge, and the Houghton-Hancock Lift Bridge.

In 2012 Trahey, along with other engineers and divers at Great Lakes Engineering Group, performed their first underwater safety and structural inspection of the Mackinac Bridge. 

Amy Trahey

“This opportunity was a defining moment in my career,” she said. “It brought my journey full circle and provided a true sense of fulfillment. If you can dream it…you can do it!”

In 2017 Trahey earned her SPRAT certification (Society of Professional Rope Access Technicians), which means she can use ropes to inspect difficult to access bridges and climb bridges. “It was the most physically and mentally challenging training I have experienced to date,” she says.

In 2019 Governor Gretchen Whitmer appointed Trahey to the Mackinac Bridge Authority. Amy is now vice chair of the Mackinac Bridge Authority and chair of the Finance Committee—a responsibility that Trahey takes very seriously, and enjoys even more.

“A bridge is a structure that spans obstacles, providing safe passage over something that is otherwise difficult or impossible to cross. It’s a soaring metaphor that captures my spirit.” she says. “I try to see obstacles not as obstacles, but as opportunities to solve problems and connect people. “To me, the Mackinac bridge is not only an iconic structure that resonates with all Michiganders—it proves that engineering has no limits, and it’s all about connecting people.”

An avid diver, Amy Trahey inspects Michigan bridges as part of her profession.

Amy, how did you first get involved in engineering. What sparked your interest?

I was born and raised in Lansing, Michigan and lived in the Upper Peninsula for 4 years while attending college at Michigan Tech. I knew I wanted to be a civil/structural engineer, after the years driving to the U.P. over the Mackinac Bridge, seen in all its glory when we would take the ferry rides to Mackinac Island, as well. Chicago also inspired me with its movable bridges along the Chicago River and its soaring buildings. I feel grateful and fortunate to have found my passion (bridges) so early in my career. As a result I have realized my goal to climb to the top, and dive to the bottom of many of Michigan’s most iconic bridges. From the Houghton‐Hancock lift bridge and the Zilwaukee bridge to the International Bridge in Sault Ste. Marie, the Blue Water Bridges, and the gem of the state of Michigan–the Mackinac Bridge.

The Trahey Family

Family and hobbies?

Rialato Bridge, Venice, Italy one of the oldest bridges over the Grand Canal, in a City that has over 600 bridges!

I’ve been married to my husband, Brian for 22 years and we have 2 sons, Ty and Quinn. We live in Grand Ledge, and share a family cottage on Drummond Island in the Upper Peninsula. I like to hike, ski, dive, bike, travel, and practice yoga and meditation. I also serve on the Michigan Department of Education, Special Education Advisory Committee, a committee that is near and dear to my heart and advocates for the rights of students with disabilities such as my son, Quinn, who is Autistic. In 2012 Quinn started planning family trips to iconic locations across the world. Seeing the world through his unique lens is inspiring and we are grateful for his perspective. He has quite literally, opened up our world. 

Kim on the tower!

Kim, how did you first get involved in engineering? What sparked your interest? 

My high school teachers lead me into engineering based on my abilities in high school.  I’m so thankful I had forward looking teachers that thought females should pursue whatever they were interested in.  I didn’t know what kind of engineering to go into, but was coached that I had an aptitude to go down the engineering path. I wanted to find a career that used my knowledge and skills to their maximum advantage. And my Mother was very supportive for me to reach as high as I could in life (my father died when I was 11). 

Kim with her daughter, Angela: “Good times!”

Family and hobbies?

I grew up in Grand Rapids and now live in Ignace, close to the bridge. I’m an avid reader, in several book groups. I knit, and I’m in a quilt group, too. I have a daughter, Angela, and two toddler granddaughters. I love spending time with them as much as possible. One of my best memories is with Angela. She was my little cheerleader and traveled with me to Houghton when I taught at summer youth programs. I will never forget her sitting in the lecture hall with the students and giving me a thumbs up before my show when she knew I was nervous. 

Play Mackinac Bridge drone footage video
Preview image for Mackinac Bridge drone footage video

Mackinac Bridge drone footage

MDOT photographer Tim Burke recently assisted a Japanese production company shooting a documentary about one of the Mackinac Bridge Authority’s steeplejacks. Here is some of the footage shot using a drone.

Michigan Tech’s NSBE Student Chapter Will Reach 1,850 Detroit Middle and High School Students (Virtually!) During their 10th Annual Alternative Spring Break

Andi Smith is leading Alternative Spring Break 2021 for Michigan Tech Chemical Engineering student

Eleven members of Michigan Technological University’s student chapter of the National Society of Black Engineers (NSBE) Pre-College Initiative (PCI) plan to present to EVERY science class at Chandler Park Academy in Detroit—a total of 74 classes and 1850 students—during their 10th Annual Alternative Spring Break in Detroit from March 8-10. 

Their mission is twofold: encourage more students to go to college, and increase the diversity of those entering the STEM (Science, Technology, Engineering, Math) career pipeline.

NSBE Pre-College Initiative 2021 Alternative Spring Break will be virtual this year.

The following NSBE students are participating:

Andi Smith – Chemical Engineering
Jasmine Ngene – Electrical Engineering
Jalen Vaughn – Computer Engineering
Kylynn Hodges – Computer Science 
George Ochieze – Mechatronics
Catherine Rono- Biological Science
Christiana Strong – Biomedical Engineering
Trent Johnson – Computer Engineering
Meghan Tidwell – Civil Engineering
Oluwatoyin Areo – Chemical Engineering
Kazeem Kareem – Statistics

The NSBE classroom presentations are designed to engage and inspire diverse students to learn about and consider careers in engineering and science by interacting with role models from their home town (most of the participating NSBE students are from the Detroit area).

Their effort is designed to address our country’s need for an increased number and greater diversity of students skilled in STEM (math, science, technology, and engineering). This outreach is encouraged by the NSBE Professional Pre-College Initiative (PCI) program which supports and encourages K-12 participation in STEM. 

At Michigan Tech, NSBE student chapter outreach is funded by General Motors and the Department of Civil & Environmental Engineering. Effort is coordinated by members of the NSBE student chapter, with assistance from Joan Chadde, director of the Michigan Tech Center for Science and Environmental Outreach.

High school students are informed of scholarships available to attend Michigan Tech’s Summer Youth Programs, as well high school STEM internship opportunities at Michigan Tech.

For more information about the Michigan Tech NSBE student chapter’s Alternative Spring Break, contact Joan Chadde, Director, Center for Science & Environmental Outreach, Michigan Technological University, email jchadde@mtu.edu or call 906-369-1121.

Happy Engineer’s Week 2021!

Let’s imagine a better tomorrow. Join us!

This week, we’re celebrating National Engineers Week (Feb. 21-28). Everyone’s invited to special events on campus sponsored by Tau Beta Pi, the Engineering Honor Society student chapter at Michigan Tech.

Founded by the National Society of Professional Engineers in 1951, Eweek is celebrated each February around the time of George Washington’s birthday, February 22, because Washington is considered by many to be the first U.S. engineer.

At Michigan Tech, the week is celebrated with special events on campus all hosted by student organizations. Everyone is welcome! Please feel free to stop by and check out Eweek events as your schedule allows:

Monday, Feb. 22
Brainteasers—give your brain a mini-workout, courtesy of Michigan Tech’s Systems Engineering Association (SEA), 11am-2pm in the Dow Lobby.

Some founders of SEA, Michigan Tech’s relatively new Systems Engineering Association.

Tuesday, Feb. 23
Build with Built World Enterprise, 6-7 PM
Online, Zoom: https://michigantech.zoom.us/j/88350890241

Built World Enterprise at Michigan Tech

Wednesday, Feb. 24
Michigan Tech Engineering Alumni Panel, hosted by Tau Beta Pi
4-6 PMOnline, Zoom: https://michigantech.zoom.us/j/89023074247
Submit your questions in advance: https://docs.google.com/forms/d/e/1FAIpQLSdFvHtUjVrpO_iMmrQWel78S7D2BXjCNhROo4CoYLwSbJA5nw/viewform?usp=sf_link

Julia Zayan
Julia Zayan ’15, General Motors (Chemical Engineering)
Rebecca Mick
Rebecca Mick ’09, Amcor (Chemical Engineering)
Quinn Horn
Quinn Horn ’93, ’95, ’98, Exponent Consulting (Materials Science and Engineering)

Thursday, February 25
Metal foundry in a box with Materials United, 3-5 PMB, on campus, outside, between the M&M Engineering Building and Douglas Houghton Hall.

Foundry in a Box. Make something small, come pick it up later, after it cools!

Nationwide, Eweek is a formal coalition of more than 70 engineering, education, and cultural societies, and more than 50 corporations and government agencies. This year’s theme: Imagining Tomorrow. Dedicated to raising public awareness of engineers’ positive contributions to quality of life, Eweek promotes recognition among parents, teachers, and students of the importance of a technical education and a high level of math, science, and technology literacy.

One important goal: to motivate youth to pursue engineering careers in order to provide a diverse and vigorous engineering workforce.

Due to the pandemic, some E-Week events won’t be possible this year. One thing we’ll greatly miss is the traditional Michigan Tech E-Week cake, offered to all on campus by the Department of Engineering Fundamentals. The cake will be back, though: We look forward to E-Week 2022!

Russ Alger: Snow 101

Russ Alger and Tony Kunnari generously shared their knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

Snowy crop circle of some sort? No, it’s part of the test course at Michigan Tech’s Keweenaw Research Center.

What are you doing for supper this Monday night 2/8 at 6 ET? Grab a bite with Dean Janet Callahan and Russ Alger, Director of the Institute of Snow Research at Michigan Tech.

Russ Alger: “Growing up in the Copper Country helped to make me like snow for sure.”

Alger knows about snow. He’s one of the world’s top go-to guys on cold climate roads and driving, with 45 years of experience and counting. During Husky Bites, he’ll talk about the natural properties of snow as well as some of the ways that snow can be used for engineering purposes.

Also joining in will be Toby Kunnari, Test Course Manager at the Keweenaw Research Center. The KRC’s test course is spread out over 1,000 acres just a few miles away from campus at Michigan Tech.

Ever since earning his BS and MS in civil engineering Michigan Tech, Alger has been working with vehicles and terrains. If there’s a way to alter strength and friction parameters on the surface of a terrain to enhance mobility, Alger can make it happen.

Whether it involves mobility in snow, or the development of pavements made entirely from snow, Alger and other Michigan Tech engineers and scientists at the Institute of Snow Research are ready to tackle the problem. They are also experts in winter maintenance of roads and runways—both anti-icing and deicing.

A tank makes its way through a custom test course at Michigan Tech’s Keweenaw Research Center.

“The unique weather conditions on Michigan’s Keweenaw Peninsula, coupled with our large array of equipment and facilities, makes the Institute the right place to bring your research questions,” he says.

Alger studies the deformation of soil and snow particles under vehicle loads. He has characterized these terrains using standard physical property measurement techniques as well as through the use of bevameters, automated penetrometers, calorimeters, high speed imaging, and a number of other methods to extract data in harsh environments. (He’ll explain his toolbox during Husky Bites).

Alger holds a patent on a method he invented to “manufacture” snow pavements by mechanically altering the internal snow properties and developing high strengths in the snow pack.

Between 1994 and 2016 Alger took six trips to Antarctica, as part of a team that successfully scouted and created the first trail to the South Pole, needed as an alternative to flying in supplies. Every crevasse they discovered in the route had to be exposed and filled so tracked vehicles could safely pass over.

Alger took this image during one of his research trips to the South Pole. Pictured above: project leader John Wright works on the snow bridge above a crevasse nicknamed “Mongo”. The South Pole traverse team discovered the crevasse, and later filled it with snow. Mongo measured 32 feet wide, 82 feet deep with a snow bridge 25 foot deep.

During his last trip to Antarctica in 2016 Alger went to make one snow road better—a fifteen-mile stretch from Scott Base (New Zealand’s research center) to the Pegasus runway, where supplies and people arrive in cargo jets.

He used a special groomer he and his colleagues developed at the KRC. Called a snow paver, it has the near-magical ability to turn snow into solid roadway.

“The paver works by first chewing up the snow with a miller drum, which smashes the ice crystals so they will stick together,” Alger explains. “Then comes a vibrating compactor, to get all the air out of the snow. That action compresses it enough to make a pavement.”

At Michigan Tech Alger also invented a product called SafeLane, an epoxy-aggregate mixture that is applied to roads, bridge decks, walkways and parking lots to improve traction and safety during hazardous winter conditions. Now marketed by Cargill, the product is widely used.

It’s busy season at the Institute of Snow Research, but Alger took time from his hectic schedule to answer a few questions for us in advance of Husky Bites.

Have any snow questions of your own? Alger will answer questions live via Zoom on Monday Feb. 8 during his session. Join early at 5:45 for some extra conversation, or stay after for the Q&A.

Q: Are there any best practices for preparing roadways in winter?

A: Road supervisors and crews rely heavily on the weather forecast. Air temp, pavement temp, temperature trends, precipitation rates and total amounts, wind, time of day, and more all play into the decision making process. For example, if it is going to be below 15 degrees F, it is likely that crews would consider adding something like calcium chloride to the mix since it is better at colder temps. They might just use sodium chloride above that temp since it works well and is much cheaper. The amount of deicer needed also increases as temperature decreases and there is a point where it doesn’t pay to use deicer at all except for maybe as a “kicker” for sand applications.

Imagine doing your job on a snowmobile! That’s a pretty typical day for Russ Alger, director of Michigan Tech’s Institute for Snow Research.

Here in the UP, combining salt and stamp sands seems to work pretty well to help us get around amid all the snowfall. In most of Houghton County, stamp sand is used. It’s abundant, and the County owns some stamp sand property. On top of that, stamp sand is actually a pretty good ‘grit’ for this purpose. The grain size is right to result in traction, which is the purpose of sand. It isn’t too dusty, and most importantly, it is crushed rock, so it is angular. That means it has sharp edges that help it dig into icy pavements and grip tires.

The addition of a small amount of deicer helps the stamp sand piles from freezing up. It also helps the sand particles melt into the surface of the road and stick, making a layer that acts like a piece of sandpaper. This is a pretty effective way to increase grip of tires on the surface, which is the end goal of this operation.

Russ Alger knows snow. Join us at Husky Bites to learn from one of the world’s top experts.

Q: When did you first get into engineering? What sparked your interest?

A: I became interested in engineering at a very young age and have always loved my job and profession. My father, George Alger, was a civil engineering professor at Michigan Tech for many years. His expertise was in ice-covered rivers and cold regions engineering in general. Growing up in Dollar Bay and working with him on outdoor projects, as well as being an outdoorsman myself, pointed me down that path at a young age. In 1976, my Dad, along with Michigan Tech civil engineering professors Ralph Hodek and Henry Sanford established a new curriculum at Michigan Tech, Cold Regions Engineering. I started with them that very first year. Growing up in the Copper Country helped to make me like snow for sure.

Q: Hometown, hobbies, family?

A: I have lived outside of Dollar Bay, Michigan for most of my life. I love being outdoors and especially love hunting, fishing and cooking outside. I live with my wife and one of my sons—and enjoy doing things with all of my sons, daughters and grandchildren.

Read More

Snow Going for Road-Building Engineers in Antarctica