Tag: ECE

Stories about Electrical and Computer Engineering.

Interview with Dr. Sarah Rajala ’74

Sage advice from Dr. Sarah Rajala: “Take ownership of your learning!”

Michigan Tech electrical engineering alumna Dr. Sarah Rajala is professor emeritus and former dean of engineering at Iowa State University. She’s an internationally-known leader in the field of engineering education—and a pioneering ground breaker for women in engineering. She serves as a role model for young women and is passionate about diversity of thought and culture, especially in a college environment.

This month we celebrate with Dr. Rajala—she was elected to the National Academy of Engineering, one of the highest professional recognitions in engineering.

Dr. Rajala, how did Michigan Tech prepare you as a leader in engineering education? Or simply as a leader?

Being the only female in my electrical engineering class, I experienced numerous gender biases. In the early 1970s, there was still much skepticism about whether ‘a girl could be an engineer’. My experiences laid a foundation for my commitment to creating a more inclusive culture in engineering and in engineering education, in general. 

You have kept busy, pushing the boundaries across your entire career. What advice do you have for mid-career people looking for their next challenges and opportunities?

First, take advantage of the opportunities that are offered, especially if they allow you to expand your boundaries. Don’t be shy about raising your hand and indicating your interest. Professional societies are great places to find new challenges and opportunities. Of course, it is also important to set your priorities and know when to say no. Also keep in mind that there is no single path that is right for everyone.  

Based on what you’ve learned as an educator, do you have one or two pieces of advice for a high school junior or senior?

We each learn new material in different ways. Don’t decide you dislike a subject because you don’t like the way the teacher presents the material. And don’t be afraid to ask questions or ask the teacher if she/he can present the topic differently. Alternatively, work with your fellow students or another teacher who can help you explore the topic in a different way. Search the internet. There are many good resources out there that can supplement what you are learning in class. Take ownership of your learning!

What qualities do students need to develop in themselves in order to become solvers of problems?

Start with the fundamentals. Be inquisitive. Write down what you know and try to start working the problem. If you are really stuck, ask for help. Show someone what you have done so far, then ask for a hint to help you get started.  You will learn more, if you can get started and work the rest out for yourself.

Where do you think engineering education will be 20 years from now?

I hope we are more inclusive! No matter how one learns, we should be able to adapt our instructional approaches to engage and motivate everyone. Technology will likely play a larger role in the learning process. There will be an increasing number of new subjects to learn. Students and educators will all need to adapt to new ways to teach and learn. 

Michigan Tech Alumna Sarah Rajala Elected to the National Academy of Engineering

Dr. Sarah Rajala

Sarah A. Rajala ’74, a Michigan Tech electrical engineering alumna, has been elected to the National Academy of Engineering. It is one of the highest professional distinctions accorded to an engineer. Dr. Rajala is honored for “innovations in engineering education: outcomes assessment, greater participation and retention of women in engineering, and an enhanced global community.” New members of the NAE will be formally inducted in October at the NAE’s annual meeting.

Rajala is an internationally-known leader in the field of engineering education and a ground breaker for women in engineering. She serves as a role model for young women and is passionate about diversity of thought and culture, especially in a college environment.

Originally from the Upper Peninsula of Michigan (Skandia), Rajala earned her bachelor’s degree in electrical engineering at Michigan Tech. She went on to earn masters and doctoral degrees at Rice University, and then embarked on primarily an academic career, working as a faculty member at North Carolina State University, Purdue University, and ultimately Iowa State University, where she served the engineering profession in a leadership role as the Dean of the College of Engineering until her recent retirement.

Rajala’s extensive professional leadership in the field of engineering education has included serving as president of the American Society for Engineering Education and chair of the Global Engineering Deans Council.

Across her career, in addition to working in a scholarly and teaching capacity as a professor of electrical engineering, Dr. Rajala also provided volunteer service in many professional and leadership roles. Her service roles to the societies for which she contributed culminated in important national leadership positions. These include serving as chair of the Engineering Accreditation Commission of ABET, the engineering accreditation body for engineering programs, and also as president of the American Society of Engineering Education (ASEE). 

At Michigan Tech, Rajala is a member of the Electrical Engineering Academy, inaugural recipient of the Academy for Engineering Education Leadership, and a member of the President’s Council of Alumnae, among many other honors. 

“Dr. Rajala has been an influential person to many people across her career, including me. I am incredibly proud to hear of Dr. Rajala’s election into the National Academy of Engineering,” said Dean Janet Callahan.

“I first met Sarah many years ago at the annual meeting of the American Society for Engineering Education. Later, she reached out to me when she heard I had joined Michigan Tech as the College of Engineering’s next dean. She told me, ‘You will love Michigan Tech—it is a supportive community that truly fosters the principle of tenacity.’”

Now an Iowa State professor emeritus of electrical and computer engineering, Rajala continues to be an internationally known leader in engineering. She is a fellow of the American Association for the Advancement of Science, ABET, the American Society for Engineering Education (ASEE) and the Institute of Electrical and Electronic Engineers (IEEE). Rajala has also received numerous other top awards including national engineer of the year award by the American Association of Engineering Societies and the national Harriett B. Rigas Award from the IEEE honoring outstanding female faculty.

Read more

An Interview with Dr. Sarah Rajala

To Learn From and Celebrate: Academy for Engineering Education Leadership Established

Watch

Among her many honors, Dr. Sarah Rajala received the ABET Fellow Award in 2016. This video, created by ABET in her honor, details Dr. Rajala’s inspiring accomplishments.

Kanwal Rekhi Receives Michigan Tech’s Highest Honor: Melvin Calvin Medal of Distinction

Kanwal Rekhi talking with students at Michigan Tech’s Design Expo

Kanwal Rekhi, a visionary who routinely works to forward entrepreneurial skills and educational opportunities at Michigan Tech and around the world, received the Melvin Calvin Medal of Distinction during mid-year Commencement in December. The medal is awarded to individuals associated with Michigan Tech who, like its Nobel prize-winning namesake, have exhibited extraordinarily distinguished professional and personal accomplishments. Rekhi, who earned his master’s in electrical engineering from Michigan Tech in 1969, is managing director of Inventus Capital Partners in California.

The native of Punjab, in what was then British India (now Pakistan), earned a master’s in electrical engineering from Michigan Tech in 1969. In the more than half a century since his time on campus, MTU has never been far from Rekhi’s thoughts–and generosity.

After leaving Michigan Tech, Rekhi worked as an engineer and manager before becoming an entrepreneur. In 1982, he co-founded Excelan, a company that made Ethernet cards to connect PCs to the fledgling Internet. Excelean became the first Indian-owned company to go public in the U.S. In the early 90s, he became a venture capitalist investing in more than 50 startups and sitting on the board of directors of more than 20 companies.

In the past few decades, Rekhi has been a tireless supporter and benefactor to Michigan Tech. He developed and funded the Rekhi Innovation Challenge, a crowdfunding competition to help promote and support student innovation. He provided major funding for the Silicon Valley Experience, an immersive tour during spring break of San Francisco area companies that includes meetings with entrepreneurs and Michigan Tech alumni, and is a sponsor of the 14 Floors Entrepreneur Alumni Mentoring Sessions.

Additionally, every student who has walked the Michigan Tech campus in the past 15 years has passed the Kanwal and Ann Rekhi Computer Science Hall, dedicated in April of 2005.

The Melvin Calvin Medal of Distinction is bestowed on individuals associated with the University who have exhibited especially distinguished professional and personal accomplishments. It is named for 1931 Michigan Tech alumnus Melvin Calvin, who won the Nobel Prize in Chemistry for unraveling the biochemical secrets of photosynthesis. The series of biochemical reactions Calvin identified is known as the Calvin Cycle.

“Kanwal and his accomplishments epitomize the values we share as an institution. His passion for Michigan Tech is unparalleled and he is most deserving of this award.”

Rick Koubek, President, Michigan Technological University

While the Melvin Calvin Medal of Distinction is Michigan Tech’s highest honor, it is far from the first recognition the University has given Rekhi. He has received the Distinguished Alumni Award, the Board of Control Silver Medal, an honorary Doctorate in Business and Engineering, and was inducted into the Electrical Engineering Academy.

SWE Celebrates Graduating Seniors and Scholarship Recipients

Michigan Tech’s section of the Society of Women Engineers (SWE) celebrated the end of the semester with a banquet sponsored by Oshkosh.

Graduating seniors recognized at the event are:

The section also awarded two $1,000 scholarships to our upper-division students. The scholarships were sponsored by Ruby & Associates Inc. and Deployed Technologies to recognize students for their contributions to the SWE section and the University community.

Scholarship recipients are:

By Gretchen Hein, Society of Women Engineers Advisor.

Tau Beta Pi Inducts 15 New Members at Michigan Tech

Congratulations to our Fall 2021 Tau Beta Pi Initiates! (Not pictured here: Andrew Scott and Dr. Mary Raber)

The College of Engineering recently inducted 14 students and one eminent engineer into the Michigan Tech chapter of Tau Beta Pi.

Tau Beta Pi is a nationally recognized engineering honor society and is the only one that recognizes all engineering professions. Students who join are the top 1/8th of their junior class, top 1/5th of their senior class, or the top 1/5th of graduate students who have completed 50% of their coursework. The society celebrates those who have distinguished scholarship and exemplary character, and members strive to maintain integrity and excellence in engineering.

Fall 2021 Initiates

Undergraduate Students: Dom Bianchi, Mechanical Engineering; Sean Bonner, Civil Engineering; Sam Breuer, Computer & Electrical Engineering; Sophia Brylinski, Materials Science & Engineering; Spencer Crawford, Computer Engineering; Jacqui Foreman, Chemical Engineering; Stephen Gillman, Computer Engineering; Michael Kilmer, Materials Science & Engineering; Emerald Mehler, Chemical Engineering; Ben Stier, Computer Engineering; Alex Stockman, Computer Engineering; and Jordan Zais, Biomedical Engineering

Graduate Students: Tonie Johnson, MS, Biomedical Engineering; and Andrew Scott, MS Electrical & Computer Engineering

Eminent Engineer

Mary Raber is Chair of Michigan Tech’s Department of Engineering Fundamentals

Dr. Mary Raber

Engineering Graduate Students Place in 2021 3MT

This year’s Three Minute Thesis competition organized by the Graduate Student Government (GSG) of Michigan Tech had great participation both in person at The Orpheum Theater and virtually over Facebook Live. Twenty-eight participants competed at the MUB Ballroom for a place in the finals, held at The Orpheum Theater on Nov. 4.

After a very close competition, Priyanka Kadav, a PhD student from the Department of Chemistry, won first place.

Kadav’s presentation was titled “Capture and Release (CaRe): A novel protein purification technique.” She will go on to represent Michigan Tech at the regional levels of the competition.

The runner-up was Emily Shaw, a PhD student from the Department of Civil, Environmental, and Geospatial Engineering, with a presentation titled “Toxicity in Fish Tissue: Redefining our Understandings by Quantifying Mixture Toxicity.”

Yue (Emily) Kang from the Department of Mathematical Sciences department won the People’s Choice award with her presentation, titled “Robust numerical solvers for flows in fractured porous media.”

Other finalists were:

Each presentation was scored by a panel of judges from diverse academic backgrounds. The judges for the finals were:

  • Wallace Southerland III, Vice President for Student Affairs and Dean of Students
  • Jim Baker, associate vice president for research administration
  • Marie Cleveland, a Michigan Tech alumna who was awarded the Alumni Association Outstanding Service Award in 2014

This year’s finals were also streamed live on GSG’s Facebook page and can be watched online.

GSG would also like to thank all the volunteers and The Orpheum Theater for making this event possible.

By Graduate Student Government.

Emily Shaw presenting at 3MT.
Emily Shaw presenting at 3MT.
Sunit Girdhar presenting at 3MT.
Sunit Girdhar presenting at 3MT.
Arman Tatar presenting at 3MT.
Arman Tatar presenting at 3MT.
Michael Maurer presenting at 3MT.
Michael Maurer presenting at 3MT.

Bo Chen: What’s next, NEXTCAR?

Bo Chen shares her knowledge on Husky Bites, a free, interactive webinar this Monday, November 15 at 6 pm ET. Learn something new in just 20 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Bo Chen is a Professor of Mechanical Engineering and Electrical Engineering at Michigan Tech. She’s been a visiting Professor at Argonne National Laboratory, and was named ASME Fellow in 2020.

What’s next, NEXTCAR? What are you doing for supper this Monday night 11/15 at 6 pm ET? Grab a bite with Dean Janet Callahan and Bo Chen, Professor of Mechanical Engineering and Electrical Engineering at Michigan Tech.

During Husky Bites, Prof. Chen and one of her former students, alum Dr. Joe Oncken, will share how engineers go about designing and creating the crucial elements of an all-electric vehicle ecosystem. Oncken earned his PhD at Michigan Tech—he’s now a postdoctoral researcher at Idaho National Lab.

Chen and her research team at Michigan Tech envision an all-electric future. They develop advanced control algorithms to build the nation’s electric vehicle charging infrastructure and highly efficient hybrid electric vehicles, integrating with advanced sensing technologies that allow for predictive control in real time. These technologies enable the kind of vehicle-to-vehicle and vehicle-to-infrastructure communication that will reduce our nation’s energy consumption. 

Drs. Chen and Oncken among the fleet, outside at the APSRC.

Throughout her career Chen has made major contributions in the field of embedded systems, developing cutting-edge applications for hybrid-electric and electric autonomous systems. 

One of Chen’s courses at Michigan Tech, Model-based Embedded Control System Design, is regularly in high demand, not only by ME students but also EE students. “This is a testament to her teaching ability and the importance of the topic,” says ME-EM department chair Bill Predebon.

Chen’s Intelligent Mechatronics and Embedded Systems Lab is located on the 5th floor of the ME-EM building. But she spends a good deal of time working on NEXTCAR research at the Advanced Power Systems Research Center (APSRC), located a few miles from campus near the Houghton Memorial Airport.

“Vehicles that are both connected and automated—two paradigm-shifting technologies—will soon become vital for the improvement of safety, mobility, and efficiency of our transportation systems.”

Bo Chen

In 2016 the Department of Energy’s Advanced Research Projects-Energy (ARPA-E) awarded $2.5M to Michigan Tech for NEXTCAR research. The project—led by ME-EM Professor Jeff Naber as PI and Co-PIs Chen, Darrell Robinette, Mahdi Shahbakhti, and Kuilin Zhang—developed and demonstrated their energy reduction technologies using a fleet of eight Gen II Chevy Volt plug-in-hybrid vehicles (aka PHEVs).

The team tested the fleet on a 24-mile test loop to showcase energy optimization, forecasting, and controls—including vehicle-to-vehicle communications.

“The rich information provided by connectivity—and the capability of on-board intelligent controls—are shifting the old way (reactive and isolated vehicle/powertrain control) to the new way (predictive, cooperative, and integrated vehicle dynamics and powertrain control),” Chen explains.

Michigan Tech’s NEXTCAR research delivers direct implementation of engineering solutions, tested within the realities of on-road conditions.

Oncken is a hands-on engineer, but not all of his graduate research at Michigan Tech was done under the hood of a hybrid-electric vehicle. In an effort to maximize fuel efficiency in the fleet’s Chevy Volts, he worked with Chen where the car’s digital and mechanical parts meet—powertrain control. He looked at future driving conditions, such as changing traffic lights, and modified the vehicle’s powertrain operation to use the minimum amount of fuel.

Working in Chen’s lab, Oncken used Simulink software to develop a model, specifically looking at predictive controller design. That means when a traffic signal turns red, a self-driving vehicle not only knows to stop, but also gets directions on the best way to slow down and minimize fuel use. 

Oncken would simulate this in the Simulink model, embed the program into the Chevy Volt, then test it using five upgraded traffic signals in Houghton that rely on dedicated short-range communication (DSRC) to talk directly to the car’s programming.

By the end of the NEXTCAR project, the Michigan Tech team had achieved a 21 percent reduction in energy consumption.

All in a day’s work for Dr. Joe Oncken
Dr. Chen with her graduate students at Pictured Rocks National Lakeshore

Now, with new funding from ARPA-E for NEXTCAR II, the team shifts to a broader application of vehicles with level 4 and 5 of autonomy. They will seek to reduce energy consumption by 30 percent this time in the hybrid Chrysler Pacifica and further apply the savings to the RAM 1500 and the Chevy Bolt—while also considering level 4 and 5 automation to gain efficiencies. 

Naber and Chen, along with Grant Ovist, Jeremy Bos, Darrell Robinette, Basha Dudekula and several more graduate students now work together on NEXTCAR II with another round of funding worth $4.5M. They’ll maintain vehicles in multiple locations, both on the Michigan Tech campus and at American Center for Mobility (ACM) for road testing. ACM is a partner in the project, along with Stellantis and GM.

Prof. Chen, how did you first get into engineering? What sparked your interest?

I was attracted by the power of automation and controls. It is currently affecting every aspect of our lives. I want to make contributions specifically to advance the automation technologies.

In her spare time, Dr. Chen likes to work out and travel. Here she’s in Horseshoe Bend, Arizona

Hometown, family?

I was raised in Shaoxing, Zhejiang province in China. I lived in Davis, California for 8 years while earning my PhD at the University of California-Davis. My daughter loves snowboarding and lives in New Jersey.

Dr. Oncken, where did you grow up?

I grew up with my parents and two sisters in Grand Forks, North Dakota. I earned my BS in Mechanical Engineering at the University of North Dakota in 2016. I came to Michigan Tech to earn my PhD soon after, and graduated in 2020.

How did you first get into engineering? What sparked your interest?

There wasn’t any one moment that made me decide to get into engineering. It was more of a process throughout my childhood. Growing up, I was always interested in how things work. My dad is very mechanically inclined so he was alway fixing things around the house and woodworking, so that launched my interest as a young kid. At that time he worked for John Deere, so I got to spend time sitting in tractors and combines, something that will spark any 5 year old’s interest in mechanical things. 

In high school, I also worked for a John Deere dealer. Another job I had involved the technical side (lighting, sound, and set building) of theater and concert productions. While these may seem like two different worlds, they both gave me a behind-the-scenes look at how machinery and large technical systems operate. Together they made me want to pursue a career where I’d be the one designing how things work. 

Finally, living in a university town, there were lots of opportunities to tour the University of North Dakota’s engineering school and see what students got to work on, opportunities that cemented my desire to go into engineering myself.

Joe, out on the Tech Trails.

Any hobbies? Pets?

My main hobby is anything outdoors. I spend my free time mountain biking in the summer, skiing in the winter—and hiking when I’m not doing one of the previous two things.

I also really enjoy cooking and wood working. I don’t currently have any pets, but I did grow up with dogs. I will have a dog of my own sooner rather than later!

Read More

Power Grid, Powertrain and the Models that Connect ThemMichigan Tech Automotive Energy Efficiency Research Receives Federal Award of $2.8 Million from US Department of Energy

Sunit Girdhar, Steven Whitaker Receive 2021 INCE Awards

Two Michigan Tech graduate students were honored by The Institute of Noise Control Engineering (INCE) at their annual honors and awards ceremony recognizing outstanding service, research and activity in noise control.

Sunit Girdhar,
Sunit Girdhar

Sunit Girdhar, doctoral student in mechanical engineering-engineering mechanics, won both the inaugural INCE Student Scholarship and the Martin Hirschorn IAC Prize – Student Project.

Steven Whitaker, an electrical and computer engineering graduate student, received the 2021 Leo Beranek Student Medal for Excellence in Noise Control for Deep recurrent network for tracking an anthropogenic acoustics source in shallow water using a single sensor.

Dana Lodico, INCE-USA vice president, Honors and Awards Committee, applauded the winners. “This year’s winners should be incredibly proud of their achievements in noise control,” said Lodico. “Entries for INCE-USA Honors and Awards were very competitive, and we look forward to seeing how each winner continues to advance the noise control industry in their careers.” 

Read more about the awards on the INCE website.

Innovators in Industry: Future of Autonomous Vehicles and Mobility

Michigan Tech is excited to launch Innovators in Industry: a project connecting students with MTU alumni who are industry experts, leaders, and influencers.

The initial three-part series kicks off on Monday, October 25 at 7 pm with a session titled, “The Future of Autonomous Vehicles and Mobility.”

Featured alumni for the session will be Sean Kelley ‘86 of the Mannik & Smith Group, Inc., an engineering and environmental sciences consulting firm; Mark Rakoski ‘95, of Mitsubishi Electric Automotive America Inc.; and Birgit Sorgenfrei ’91 of Ford Motor Company.

Janet Callahan, Dean of the College of Engineering, will host the first session. Jeremy Bos, assistant professor of Electrical and Computer Engineering (and also an alum) will serve as co-moderator. Bos earned a BS in Electrical Engineering at Michigan Tech in 2000 and a PhD in Electrical Engineering and Optics in 2012. He serves as advisor to Michigan Tech students taking part in the SAE AutoDrive Challenge.

The featured alumni will make short presentations with time for Q&A from the audience. All Michigan Tech students, faculty, and staff are invited to join the Zoom session.

During the session Sorgenfrei, Kelley, and Rakoski will discuss the future of autonomous automobiles and their design, and the design of the infrastructure with which those automobiles will need to communicate.

If the three alums could each go back in time, what would they have strived to learn while at Michigan Tech? They’ll share those insights with us, and provide valuable advice for students—those due to graduate soon, and in the next few years.

“Cars are some of the most complicated things out there, more complicated than jets or commercial aircraft. They’re basically really smart computers that move and let people get inside them.”

Sean Kelley

Sean Kelley is senior vice president and principal with the Mannik & Smith Group, Inc., a 370-person engineering and environmental sciences consulting firm with 15 offices in Michigan, Ohio and West Virginia. He earned a BS in Civil Engineering at Michigan Tech, and an MBA at Eastern Michigan University. He’s a registered Professional Engineer in both Michigan and Ohio.

Sean Kelley (’86 Civil Engineering), Mannik & Smith Group, Inc.

Kelley has led the development of infrastructure for closed-system test facilities to advance smart mobility technology, including three of the most significant facilities in the Midwest: University of Michigan’s Mcity in Ann Arbor; the American Center for Mobility located 30 minutes west of Detroit and the Transportation Research Center located at Honda’s North American test center in Central Ohio.  

He’s a recognized leader in the engineering consulting industry in Michigan. His focus on both the public and private sectors allows him to understand and appreciate the challenges associated with creating and maintaining a well-functioning and sustainable infrastructure to support a high quality of life for everyone. Kelley is often a featured speaker at conferences related to transportation and smart mobility. He has two grown children—Morgan and Aaron—who share his passion for learning and helping to advance humanity and a healthier planet.  

“Today there seems to be a huge disruption in the deeply embedded culture of the automotive industry: in order to get a common platform for smart mobility, there really has to be a lot more sharing and working together.”

Mark Rakoski

Mark Rakoski is VP, Advanced Engineering at Mitsubishi Electric. He joined the company in 1996 as an application engineer, soon after earning his BS in Mechanical Engineering at Michigan Tech. Over the course of his career, he has served the company in various capacities, including as senior account manager for Fiat Chrysler Automobiles (FCA) and director and executive director for both the FCA and Ford accounts. 

Mark Rakoski (Mechanical Engineering ’95), Mitsubishi Electric

In his current position Rakoski is responsible for leading product development engineering teams for vehicle connectivity, autonomous sharing and electric solutions, and Mobility-as-a-Service—with specific focus on infotainment and advanced driver-assistance systems (ADAS). 

In 2020, Rakoski was appointed to the Mitsubishi Electric Mobility Ventures (MEMO Ventures) Board. MEMO Ventures explores and funds ideas to create new business opportunities for the company’s Automotive Equipment Group (AEG) in the rapidly evolving mobility sector.

Rakoski is also responsible for Silicon Valley new ventures team management, contract negotiations, marketing and global strategic accounts management. He resides in South Lyon, Michigan. 

“The auto industry has been assisting our customers while behind the wheel for years, starting with the introduction of cruise control in 1948. Working in Driver Assist Technology is exciting, as the technologies leading to self-driving vehicles are available to customers now to increase safety and convenience.”

Birgit Sorgenfrei (EE ’91) Ford Motor Company
Birgit Sorgenfrei (Electrical Engineering ’91) Ford Motor Company

Birgit Sorgenfrei is currently a Driver Assist Technology Applications Lead at Ford Motor Company. She was previously Electrical Lead for Lincoln & Ford Programs, as well as a systems manager responsible for Autonomous Vehicle integration and advanced features for electrified vehicles. Her more than 20-year career at Ford includes research on sensors for electrical power assist steering systems, component and system radio design, vehicle planning, hybrid battery software delivery, fuel cell technology development, and the introduction of StartStop Technology to North America. Previously, she worked for General Electric, Johnson Controls Inc., IBM, General Motors, and internationally for Schlumberger Industries in France, the University of Hanover in Germany, and Ford Motor Company in England and Germany. Sorgenfrei earned her BS in Electrical Engineering at Michigan Tech in 1991, graduating summa cum laude. She then earned a MSEE degree from MIT, and later an MBA from the University of Michigan.


Other upcoming sessions of Innovators in Industry include:

Monday, November 1 – The Computing Revolution (hosted by the College of Computing)

Monday, November 8 – Entrepreneurship: Startups & Venture Capital (hosted by the College of Business)

All sessions will begin at 7 p.m. on Zoom.

The series is organized by the Office of Advancement and Alumni Engagement, Innovators in Industry aims to give students direct access to industry leaders to help shape their paths. Future plans for the Innovators in Industry series include in-person sessions and on-location visits for students to industry hubs.

Then There Were Three: Stratus Nanosatellite Launch for MTU’s Aerospace Enterprise

Michigan Tech’s students designed Auris. It has been selected for launch by the University Nanosatellite Program, sponsored by AFRL.

The Aerospace Enterprise, under the direction of Dr. Brad King, is launching satellites as well as student careers. At the University Nanosatellite Program, sponsored by the Air Force Research Lab (AFRL) in August, ten students from the Enterprise team presented their latest satellite application, Auris, to judges from several space-related agencies.

The challenge for the competition was to develop a satellite mission that is relevant to both industry and the military. Students conceived of the idea for Auris, a ‘listening satellite,’ through discussions with Enterprise alumni working in industry and their interest in monitoring communication from other satellites to estimate bandwidth utilization.

Dr. L. Brad King, Richard and Elizabeth Henes Endowed Professor (Space Systems), Mechanical Engineering-Engineering Mechanics

“Ten university teams were in attendance and of the teams, we were among three of the schools to be selected to move forward. We now move on to ‘Phase B’ of the program and have a guaranteed launch opportunity with substantial funding to complete the design and integration of our spacecraft,” says Matthew Sietsema, Chief Engineer for the Aerospace Enterprise.

As a result of this award, the Aerospace Enterprise will soon have three satellites in space. Stratus, a climate monitoring satellite that determines cloud height and cloud top winds, was set for a March 2021 launch date. However, it was delayed due to the pandemic and is planned for launch in 2022. Oculus, an imaging target for ground-based cameras for the Department of Defense, was launched in June 2019.

“The Enterprise has remained on the same trajectory and has been very successful by all measures,” remarks King. “Students do a great job managing themselves and the leadership to replace themselves as they graduate and new members move up. It’s a challenge to juggle more than one satellite, but our students have remained focused and hard working while managing several projects and it’s a testament to their tenacity.”

Creating real-world, hands-on learning opportunities for around 100 students per semester, the Enterprise serves as a stepping stone for many as they launch their careers.

“Our students, even if they aren’t in leadership roles, do well securing positions in the aerospace industry. We tend to perform well because we offer a three-year, long-term program, which allows our students to maintain the situational knowledge required to solve complex problems.”

—Dr. Brad King