Tag: GMES

Stories about Geological and Mining Engineering and Sciences.

Award Results for Design Expo 2021

PPE Project

As we’ve come to expect, the judging for Design Expo 2021 was very close, but the official results are in. More than 1,000 students in Enterprise and Senior Design showcased their hard work on April 15 at Michigan Tech’s second-ever, fully virtual Design Expo.

Teams competed for cash awards totaling nearly $4,000. Judges for the event included corporate representatives, community members and Michigan Tech staff and faculty. The College of Engineering and the Pavlis Honors College announced the award winners below on April 15, just after the competition. Congratulations and a huge thanks to all the teams for a very successful Design Expo 2021.

Last but not least, to the distinguished judges who gave their time and talents to help make Design Expo a success, and to the faculty advisors who generously and richly support Enterprise and Senior Design—thank you for your phenomenal dedication to our students.

Please check out the Design Expo booklet and all the team videos.

ENTERPRISE AWARDS

(Based on video submissions)

  • First Place—Husky Game Development (Team 115) Advisor Scott Kuhl, (CC)
  • Second Place—Aerospace Enterprise (Team 106) Advisor L. Brad King, (ME-EM)
  • Third Place—Innovative Global Solutions (Team 116) Advisors Radheshyam Tewari (ME-EM) and Nathan Manser (GMES)
  • Honorable Mention—Consumer Product Manufacturing (Team 111) Advisor Tony Rogers (ChE)

SENIOR DESIGN AWARDS

(Based on video submissions)

  • First Place —Advanced PPE Filtration System (Team 240) Team Members: Matthew Johnson, Electrical Engineering; Bryce Hudson, Mary Repp, Carter Slunick, Mike Stinchcomb, Braeden Anex, Brandon Howard, Josh Albrecht, and Hannah Bekkala, Mechanical Engineering Advised by: Jaclyn Johnson and Aneet Narendranath, Mechanical Engineering-Engineering Mechanics Sponsored by: Stryker
  • Second Place—ITC Cell Signal Measurement Tool (Team 204) Team Members: Reed VandenBerg and Andrew Bratton, Electrical Engineering; Noah Guyette and Ben Kacynski, Computer Engineering Advised by: John Lukowski, Electrical and Computer Engineering Sponsored by: ITC Holdings Corp.
  • Third Place—Development of a Beta Brass Alloy for Co-Extrusion (Team 234) Team Members: Anna Isaacson, Sidney Feige, Lauren Bowling, and Maria Rochow, Materials Science and Engineering Advised by: Paul Sanders, Materials Science and Engineering Sponsored by: College of Engineering
  • Honorable Mention—EPS Ball Nut Degrees of Freedom Optimization (Team 236) Team Members: Brad Halonen, Rocket Hefferan, Luke Pietila, Peadar Richards, and David Rozinka, Mechanical Engineering Advised by: James DeClerck, Mechanical Engineering- Engineering Mechanics Sponsored by: Nexteer
  • Honorable Mention—Electric Tongue Jack Redesign (Team 230) Team Members: Jack Redesign and Brandon Tolsma, Mechanical Engineering; Collin Jandreski, Christian Fallon, Warren Falicki, and Andrew Keskimaki, Electrical Engineering Advised by: Trever Hassell, Electrical and Computer Engineering Sponsored by: Stromberg Carlson
  • Honorable Mention—Bone Access and Bone Analog Characterization (Team 212) Team Members: Sarah Hirsch, Mechanical Engineering; Elisabeth Miller and Christiana Strong, Biomedical Engineering; Morgan Duley, Electrical Engineering; Katelyn Ramthun, Biomedical Engineering Advised by: Hyeun Joong Yoon and Orhan Soykan, Biomedical Engineering Sponsored by: Stryker Interventional Spine Team
  • Honorable Mention—Blubber Only Implantable Satellite Tag Anchoring System (Team 221) Team Members: Quinn Murphy, Lidia Johnson, Joshua Robles, Katy Beesley, and Kyle Pike, Biomedical Engineering Advised by: Bruce Lee, Biomedical Engineering; Sponsored by: NOAA

DESIGN EXPO IMAGE CONTEST

(Based on image submitted by the team)

  • First Place—Blizzard Baja (Team 101): “Our current vehicle, Hornet, after a race.” Credit: Blizzard Baja team member
  • Second Place—WAAM Die Components (Team 237): “MIG welding robot printing a steel part.” Credit: Mike Groeneveld
  • Third Place—Aerospace Enterprise (Team 106): “Team photo, pre-Covid.” Credit: Aerospace Enterprise team member

DESIGN EXPO INNOVATION AWARDS

(Based on application)

  • First Place—Consumer Product Manufacturing Enterprise, Shareable Air project (Team 101) Advised by: Tony Rogers, (ChE)
  • Second Place—ITC Cell Signal Measurement Tool (Team 204) Advised by: John Lukowski (ECE) 
  • Third Place—Hospital Washer Autosampler Implementation (Team 218) Advised by: Sang Yoon Han and Houda Hatoum (BioMed)

DESIGN EXPO PEOPLE’S CHOICE AWARD

(Based on receiving most text-in voting during Design Expo)

ENTERPRISE STUDENT AWARDS

  • Rookie Award—Jack Block, CFO – Supermileage Systems Enterprise
  • Innovative Solutions—Cody Rorick, Alternative Energy Enterprise
  • Outstanding Enterprise Leadership—Andy Lambert, CEO – Supermileage Systems Enterprise and Daniel Prada, Spark Ignition (SI)
  • Team Lead—Clean Snowmobile Enterprise

ENTERPRISE FACULTY/STAFF AWARDS

  • Behind the Scenes Award—Kelly Steelman, Associate Professor and Interim Chair, Dept. of Cognitive and Learning Sciences, nominated by Built World Enterprise.

Joe Kraft ’02 Takes the Helm at MineMax

Michigan Tech Geological Engineering Alumnus Joe Kraft ’02 is the new CEO of Minemax, a software and consulting firm with offices in Denver and Perth.

Joe Kraft, a Michigan Tech geological engineering alumnus, is the new chief executive officer of Minemax.

“Designed for mining people, by mining people,” Minemax specializes in mine planning and scheduling solutions and software, and has offices in both in Denver, Colorado, and Perth, in Australia.

Kraft earned his bachelor’s degree in Geological Engineering from the Department of Geological and Mining Engineering and Sciences (GMES) in 2002. As a student, Kraft was in the Army Research Officer Training Corps, commissioned as a 2nd Lieutenant at graduation.

Following graduation he served as the leader of a 29-person mechanized combat engineer platoon for a year in Iraq. He earned the bronze star medal and other honors for his combat leadership actions.

Kraft’s service in the Army culminated as the aide to the Deputy Commanding General, where he was responsible for the security, logistics, scheduling, staff and administrative requirements for a General Officer of the 7th Infantry Division, rising to the rank of Captain. 

Kraft went on to gain more than 15 years of experience in mine planning and mine operations, including time spent working at Freeport-McMoRan Copper & Gold and Cliffs Natural Resources before joining Minemax as a Senior Mining Engineer in January 2014.

Not long after joining the company, Kraft was appointed as Minemax’s General Manager-Americas. For five years Kraft managed all aspects of software sales and services for the company’s North and South American markets. Now, as Minemax CEO, he will lead Minemax worldwide.

“I am extremely confident in Joe’s ability to take Minemax to the next level,“ explained Jim Butler, Minemax founder and former CEO. “Joe is very competent, has deep knowledge of mine planning and understands our customer’s businesses. He has the respect of staff, customers and affiliate companies. I am sure all stakeholders in Minemax will benefit from his leadership.“

Says Kraft, “It really is a great privilege to be able to lead an established company which has such an exceptionally talented and loyal staff. As a former military officer, I learned early on how powerful a cohesive team can be, and I look forward to the many great things we will accomplish in the years to come.”

According to the company, Minemax solutions—which includes strategic and operational mine planning software and consulting—cover the whole spectrum of strategic and operational mine planning, and help mining companies achieve production requirements, maximize resource utilization and optimize business value.

Apart from the occasional wilderness adventure, Kraft spends time with his two young boys who keep him busy in any spare moments he might have outside his tight professional schedule.

“I am so very blessed to have a small, wonderful family,” he says. “My two young boys are keen little adventurers themselves. My wife is also a dedicated professional in her field. We have adapted to many changes over the past years to balance life and career.”

Paleomagnetism: Deciphering the Early History of the Earth

Rock samples in Smirnov’s lab are 2-3 billion years old.

Although it makes up about seven-eighths of the Earth’s history, the Precambrian time period is far from figured out. Key questions remain unanswered.

The Precambrian—the first four billion years of Earth history—was a time of many critical transitions in Earth systems, including oxygenation of the atmosphere and emergence of life. But many of these processes, and the links between them, are poorly understood.

Data can be obtained from fossil magnetism—some rocks record the Earth’s magnetic field that existed at the time of their formation. However, for very old rocks (billions of years old) the conventional methods of obtaining fossil magnetism do not work well.

Professor Aleksey Smirnov, Chair of the Department of Geological and Mining Engineering and Sciences

Michigan Tech Professor of Geophysics, Aleksey Smirnov, seeks to substantially increase the amount of reliable data on the Precambrian field. Smirnov investigates the fossil magnetism of well-dated igneous rocks from around the globe using new and experimental processes to help fill in the blanks. His work on the early magnetic field history is supported by several National Science Foundation grants including a National Science Foundation CAREER award.

“Deciphering the early history of our planet, the early history of its geomagnetic field, represents one of the great challenges in Earth science,” says Smirnov. “Available data are scarce, and key questions remain unanswered. For instance we still don’t know how and when the Earth’s geomagnetic field began.”

Smirnov and former student Danford Moore
drill rock samples in the Zebra Hill region, Pilbara Craton, Western Australia.

“How did the geomagnetic field evolve at early stages? How did it interact with the biosphere, and other Earth system components—these are all largely unanswered questions. There is also disagreement on the age of the solid inner core, ranging between 0.5 and 2.5 billion years,” note Smirnov.

Scientists largely believe the Earth’s intrinsic magnetic field is generated and maintained by convective flow in the Earth’s fluid outer core, called the geodynamo.

Smirnov’s research has broad implications for Earth science including a better understanding of the workings and age of the geodynamo.

“Crystallization of the inner core may have resulted in a dramatic increase of the geomagnetic field strength preceded by a period of an unusually weak and unstable field,” he explains. “If we observe this behavior in the paleomagnetic record, we will have a much better estimate of the inner core age and hence a better constrained thermal history of our planet.”

Knowing the strength and stability of the early geomagnetic field is also crucial to understanding the causative links between the magnetic field and modulating the evolution of atmosphere and biosphere,” notes Smirnov.

An illustration of the Earth’s magnetic field. Credit NASA.

Today, the Earth’s magnetic field protects the atmosphere and life from solar and cosmic radiation. “Before the inner core formation, the geodynamo could have produced a much weaker and less stable magnetic field. An attendant weaker magnetic shielding would allow a much stronger effect of solar radiation on life evolution and atmospheric chemistry.”

Both graduate and undergraduate students work with Smirnov to conduct research, logging hours in his Earth and Environmental Magnetism Lab, traveling the world to collect specimens.

The Earth and Environmental Magnetism Lab at Michigan Tech: If you drop a metal object on the floor there, the shielding properties of the room can be lost.

“The primary (useful) magnetizations recorded by ancient rocks are usually very weak and are often superimposed by later (parasitic, secondary) magnetizations,” Smirnov explains. “In order to get to the primary magnetization, we have to remove the secondary magnetizations by incremental heatings of the samples in our specialized paleomagnetic furnaces. The heatings must be done in a zero magnetic field environment. This is one reason why we have the shielded room, which was specially built for our paleomagnetic lab. There are other shielded rooms around the country, but ours is the only one at Michigan Tech,” he notes.

“The second reason for having our instruments in the shielded room is that the magnetizations we measure are weak and our instruments are so sensitive that the Earth’s magnetic field can interfere with our measurements. In fact, in addition to the shielded room, each instrument inside has an additional magnetic shielding.”

Note that the shielded room was built before I came, by my predecessors Profs Jimmy Diehl and Sue Beske-Diehl.

Students in this photo (some now graduates) are performing liquid helium transfer into one of our cryogenic magnetometers. “We need to constantly keep the sensors at a very cold temperature (only a very few degrees above the absolute zero temperature) to provide their ultra-sensitivity,” says GMES professor and chair, Aleksey Smirnov. “It is based on the principle of superconductivity.”

On one month-long trip to the Pilbara Craton in northwest Western Australia, Smirnov and a student gathered 900 samples of well preserved, 2.7 to 3.5 billion year old Precambrian rocks. 

Smirnov stepped into the role of chair of the Department of Geological and Mining Engineering and Sciences last fall, but that won’t keep him too far from his research. “Any interested student should feel free to get in touch to learn more about research positions,” he says.

Investigations in Smirnov’s lab are not limited to the ancient field. Other interests include the application of magnetic methods for hydrocarbon exploration, magnetic mineralogy, magnetism of meteorites, biomagnetism, and plate tectonics.

Learn more

Aleksey Smirnov is the new Chair of Geological and Mining Engineering and Sciences

Clues To Earth’s Ancient Core

Dean’s Teaching Showcase: Jeremy Shannon

Jeremy Shannon
Jeremy Shannon

The College of Engineering has selected Jeremy Shannon, principal lecturer in the Department of Geological and Mining Engineering and Sciences (GMES), for this week’s Deans’ Teaching Showcase. Dean Janet Callahan selected him for teaching excellence in a field course.

Shannon joined GMES as a lecturer in 2007. He teaches a variety of courses throughout the year including Understanding the Earth (GE2000), a large course that is taken by many non-major students. Department Chair Aleksey Smirnov (GMES) says “Dr. Shannon provides a vital contribution to GMES undergraduate instruction and advising. He is an outstanding instructor and an impactful and trusted mentor.”

One of Shannon’s favorite courses is Field Geophysics (GE3900), a summer, a five-credit course required for Geological Engineering, Geology, and Applied Geophysics majors. Most geoscience programs only require a field geology course, so this class provides an extremely unique, hands-on experience for GMES students. The five-week-long class is set up like a consulting job with weekly projects. Each project uses a different geophysical technique, or a combination thereof, with specified goals. As one student put it, “Jeremy had an innate ability to connect with us all, especially on field trips. He utilized more field visits than any other professor I had at Tech. This gave me real-life scenarios and examples to help cement concepts I had learned in the classroom.”

A typical week involves fieldwork, the reduction, interpretation and modeling of data, and a final written report or oral presentation. Shannon worked for a few years in environmental consulting and likes that he can share with students his own experiences that mimic the format of this class, especially the report writing. This class offers one of the best opportunities in the GMES curriculum for practice in scientific writing, an invaluable skill that will translate directly for students that either choose employment or decide on graduate school. A recent alumnus observed that Shannon made sure the students also “focused on the hard work that occurred back in the classroom completing the reports to improve students’ report writing skills. Jeremy had very high standards for the reports. His resolve in consistent writing and proper formatting for all reports significantly influenced my use of proper documentation, even today.”

Shannon is an MTU alumnus and took the Field Geophysics class as an undergraduate in the summer of 1992. He was honored to take over the class in 2007 from his former professor and mentor Dr. Jimmy Diehl, who taught it for 25 years. He has continued and built upon this legacy to deliver a unique field experience to GMES students. In particular, Shannon has proactively worked to upgrade the geophysical equipment which is typically expensive. Over the last several years, with the help of departmental, alumni, and C2E2 funding, new seismic refraction and ground-penetrating radar systems were purchased. Other equipment includes magnetometers, electrical resistivity meters, electromagnetic instruments, and one precious gravity meter. And he makes using the equipment fun. Another student said, “Jeremy helps students to see the joy in fieldwork. He makes it exciting to see seismic waves be recorded by a geophone, or he encourages us to be patient in aligning the gravimeter.”

The class projects typically target objects or structures within tens of meters below the surface. The projects include determining depth to bedrock and water table, mapping contacts between different rock types, or locating buried metallic and non-metallic objects on the site of a Calumet & Hecla stamp mill in Lake Linden. About five years ago, Shannon collaborated with the Michigan DNR and had the class perform geophysical surveys to delineate a buried bedrock valley near McLain State Park. There is no definite surface expression of the valley as it is filled with glacial till, but a gravity survey showed that the ~3 km wide and 200 meters deep valley trends to the north through a portion of the park. The absence of bedrock near the surface where the valley is located is precisely the location where significant beach erosion is taking place. These results became part of the decision-making process, which resulted in the recent restructuring of the park layout.

Dean Callahan summarizes: “Shannon’s dedication to continually improve the field course provides a unique learning environment for our students in which they develop skills that they will use throughout their careers. He is very deserving of this recognition.”

Shannon will be recognized at an end-of-term luncheon with other showcase members, and is also a candidate for the CTL Instructional Award Series (to be determined this summer), recognizing introductory or large-class teaching, innovative or outside the classroom teaching methods, or work in curriculum and assessment.

Written by Aleksey Smirnov, Chair of Geological and Mining Engineering and Sciences.

Simon Carn: Sniffing Volcanoes from Space

Lava Lake on Mount Nyiragongo, an active stratovolcano in the Democratic Republic of Congo. Photo credit: Simon Carn

Simon Carn and Bill Rose generously shared their knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

What are you doing for supper this Monday night 2/15 at 6 ET? Grab a bite with Dean Janet Callahan and Volcanologist Simon Carn, Professor, Geological and Mining Engineering and Sciences (GMES).

Also joining in will be GMES Research Professor Bill Rose, one of the first in volcanology to embrace satellite data to study volcanic emissions and is a well-recognized leader in the field. 

Professor Simon Carn in the field at Kilauea volcano (Hawaii) in 2018 (with lava in the background).

Prof. Carn studies carbon dioxide and sulfur dioxide emissions from volcanoes, using remote sensing via satellite.

His goal: improved monitoring of volcanic eruptions, human health risks and climate processes—one volcanic breath at a time.

“Volcanology—the study of volcanoes—is a truly multidisciplinary endeavor that encompasses numerous fields including geology, physics, chemistry, material science and social science,” says Carn.  

Carn applies remote sensing data to understand the environmental impacts of volcanic eruption clouds, volcanic degassing, and human created pollution, too.

“Sulfur dioxide, SO2, plays an important role in the atmosphere,” he says. “SO2 can cause negative climate forcing. It also impacts cloud microphysics.” 

Professor Bill Rose

Many individual particles make up a cloud, so small they exist on the microscale. A cloud’s individual microstructure determines its behavior, whether it can produce rain or snow, for instance, or affect the Earth’s radiation balance.

“During Husky Bites I’ll discuss volcanic eruptions and their climate impacts, he says. “I’ll describe the satellite imagery techniques, and talk about the unique things we can measure from space.”

Carn was a leading scientist in an effort to apply sensors on NASA satellites, forming what is called the Afternoon Constellation or ‘A-Train’ to Earth observations. “The A-Train is a coordinated group of satellites in a polar orbit, crossing the equator within seconds to minutes of each other,” he explains. “This allows for near-simultaneous observations.”

Volcanic glow in Ambrym, volcanic island in Malampa Province in the archipelago of Vanuatu. Photo credit: Simon Carn

The amount of geophysical data collected from space—and the ground—has increased exponentially over the past few years,” he says. “Our computational capacity to process the data and construct numerical models of volcanic processes has also increased. As a result, our understanding of the potential impacts of volcanoes has significantly advanced.”

That said, “Accurate prediction of volcanic eruptions is a significant challenge, and will remain so until we can increase the number of global volcanoes that are intensively monitored.”

Carn is the principal investigator on a project funded by NASA, “Tracking Volcanic Gases from Magma Reservoir to the Atmosphere: Identifying Precursors, and Optimizing Models and Satellite Observations for Future Major Eruptions.”

He is a member of the International Association of Volcanology and Chemistry of the Earth’s Interior, and the American Geophysical Union. He served on a National Academy of Sciences Committee on Improving Understanding of Volcanic Eruptions.

Here’s another look at Ambrym. Photo credit: Simon Carn

Carn has taught, lectured and supervised students at Michigan Tech since 2008 and around the world since 1994 at the International Volcanological Field School in Russia, Cambridge University, the Philippines Institute of Volcanology and Seismology and at international workshops in France, Italy, Iceland, Indonesia, Singapore and Costa Rica.

“After finishing my PhD in the UK, I worked on the island of Montserrat (West Indies) for several months monitoring the active Soufriere Hills volcano. This got me interested in the use of remote sensing techniques for monitoring volcanic gas emissions. I then moved to the US for a postdoc at NASA Goddard Space Flight Center, using satellite data to measure volcanic emissions.

Dr. Carn during a research trip to Vanuatu in 2014. The Republic of Vanuatu is an island nation in the South Pacific Ocean, home to several active volcanoes.

While there, I started collaborating with the Michigan Tech volcanology group, including Dr. Bill Rose.”

Rose, a research professor in the Department of Geological and Mining Engineering and Sciences at Michigan Tech, was once the department chair, from 1991-98.

 “Houghton, where Michigan Tech is located, is really an important place for copper in the world,” he says. There is a strong relationship between the copper mines here and volcanoes. We live on black rocks that go through the city and campus, some jutting up over the ground. Those rocks, basalt, are big lava flows, the result of a massive volcanic eruption, a giant Iceland-style event.”

“Arguably, Michigan Tech owes its beginning to volcanic activity, which is ultimately responsible for the area’s rich copper deposits and the development of mining in the Keweenaw,” he says.

“I was very much aware of the volcanic context when I arrived in Houghton as a young professor,” adds Rose. “I had a dual major in geography and geology, but the chance to work in an engineering department sounded good to me. It gave me a chance to go outside, working hands-on in the field.”

Rose did everything he could to get his students to places where they could be immersed in science. For many geology graduates, those trips were the highlight of their Michigan Tech education.

“This is a view of our helicopter landing in the crater at El Chichon, Mexico,” says Prof. Bill Rose. “Simon asked me to share this image and talk about it during Husky Bites.”

“I always took students with me on trips,” says Rose. “That was my priority. After all, the best geoscientists have seen the most rocks. We went all over the world, looking at volcanoes, doing research, and going to meetings,” he says. “I usually took more students with me than I had money for.”

“Back in the late 1980s, this photo was taken in the field in Guatemala (note the chicken!). I was talking to a witness from and eruption in 1929, and showing him photos I had of that event,” says Rose.

Not all students could afford to travel, however. So when Bill (partially) retired in 2011, he decided to do something about that. “My dream was to create a quarter-million- dollar fund for student travel,” he says. He launched the Geoscience Student Travel Endowment Fund with a personal donation of $100,000.

Students take part in one of the hundreds of field studies led by Dr. Bill Rose.

In 2004 Rose started the Peace Corps Master’s International Program at Michigan Tech, now  a graduate degree in Mitigation of Geological Natural Hazards, a program with strong connections with Central American countries and Indonesia. He also developed Keweenaw Geoheritage, in hopes of broadening geological knowledge of the region and of Earth science in general.

His work during his 50 years at Michigan Tech includes volcanic gas and ash emission studies, including potential aircraft hazards from volcanic clouds.

Prof. Rose, what accomplishment are you most proud of?

“My students. I treasure the time I have spent with them. I am laid back. I have been able to work with wonderful students every day of my 45 years at Michigan Tech, thousands of students. My style with these fine people is to give them hardly any orders. I encouraged them to follow their nose and network with each other.”

Last winter Dr. Carn and his kids built a ‘snowcano’ in their yard!
Prof. Rose and then graduate student Taryn Lopez, now Assistant Research Professor at University of Alaska Fairbanks Geophysical Institute.

Professor Carn, when was the moment you knew volcanology was for you?

“The first active volcano I encountered was Arenal in Costa Rica during my travels after finishing high school. However, I think the point that I first seriously considered volcanology as a career was during my MS degree in Clermont-Ferrand, France. The first field trip was to Italy to see the spectacular active volcanoes Etna, Stromboli and Vesuvius.”

Simon Carn on Yasur volcano, Vanuatu in August 2014. “We were measuring the volcanic gas emissions from Yasur, one of the biggest sources of volcanic gas on Earth.We were specifically interested in measuring the emissions of carbon dioxide from the volcano, to improve estimates of global volcanic CO2 emissions”

What do you like most about volcanology?

“Studying volcanoes is undeniably exciting and exotic. We are lucky to visit some spectacular locations for fieldwork and conferences. New eruptions can occur at any time, so there’s always something new and exciting to study. We are also fortunate in that it is relatively easy to justify studying volcanoes (e.g., to funding agencies), given their potentially significant impacts on climate, the environment and society.”

Q: Tell us about this photo of your grandfather. Was he a volcanologist, too?

“My grandfather (John Gale) at Vesuvius in 1943.”

“My grandfather is standing at the foot of Mt. Vesuvius. He wasn’t a volcanologist, though he was a high school science teacher and a conservationist. The photo of Vesuvius was always one of his favorites, from a time when photographs were quite rare, and he often showed it to me in my youth.”

Michigan Tech Announces New Online Graduate Certificates in Engineering

Michigan Technological University is a public research university founded in 1885. Our campus in Michigan’s Upper Peninsula overlooks the Keweenaw Waterway and is just a few miles from Lake Superior.

Ready to propel your career forward in 2021? Michigan Technological University’s College of Engineering now offers 16 new online graduate certificate programs. Interested in taking a course soon? Spring 2021 instruction begins on Monday, January 11.

“One of our goals at Michigan Tech has been to expand online learning opportunities for engineers, to help them meet new challenges and opportunities with stronger knowledge and skills,” says Dr. Janet Callahan, Dean of the College of Engineering.

The certificates are offered by four departments within the College of Engineering at Michigan Tech: Civil and Environmental Engineering, Mechanical Engineering-Engineering Mechanics, Biomedical Engineering, and Geological and Mining Engineering and Sciences. Several more engineering departments will join the effort in the near future.

“We have many more certificates in the works,” Callahan says. “We expect to have a total of 30 new online graduate certificates—including more than 90 courses online—by Fall 2021.

Dean Janet Callahan stands in front of the summer gardens on campus at Michigan Tech
Janet Callahan, Dean of the College of Engineering, Michigan Technological University

Students can sign up for a single course without committing to a certificate. “The courses are accessible and flexible to accommodate a busy schedule,” Callahan explains.

“These are the same robust courses taken by our doctorate and masters candidates, taught directly by highly regarded faculty, with outstanding opportunities to create connections,” she adds. “We invite working professionals to join these courses, and bring their own experiences to bear, as well as their challenges as part of the discussion.”

All courses will be taught online—many of them synchronously offered—with regularly-scheduled class meeting times. 

Obtaining certification from Michigan Tech in sought-after industry skills is a great way to accelerate and advance a career in technology, Callahan says. Students take a cluster of three courses to earn a certificate. “It’s a three-step approach for a deeper dive into the subject area that results in a credential.” 

Michigan Tech was founded in 1885. The University is accredited by the Higher Learning Commission and widely respected by fast-paced industries, including automotive development, infrastructure, manufacturing, and aerospace. The College of Engineering fosters excellence in education and research, with 17 undergraduate and 29 graduate engineering programs across nine departments.


Work full time or live far from campus? You can still learn from the world-class engineering faculty at Michigan Tech.

Michigan Tech faculty are accessible, offering an open door learning experience for students.

“We have a strong, collegial learning community, both online and on campus,” notes Callahan. “We’re also known for tenacity. Our faculty and graduates know how to deliver and confidently lean into any challenge.”

Michigan Tech’s reputation is based on those core strengths, Callahan says. “A certificate credential from Michigan Tech will be respected across many industries, particularly in the manufacturing sectors of the Midwest—and around the world. Michigan Tech engineering alumni are working in leadership positions across the United States and in 88 different countries.”

“Remember those ‘aha’ moments you had, back in your undergrad days, your backpack days, when things suddenly came together? It’s exciting, invigorating and fun to learn something new.”

Dean Janet Callahan, Michigan Tech


“Registration doesn’t take long,” she adds. “We have simplified the graduate application process for working professionals. You can apply online for free.”

Interested in taking a course soon? Spring 2021 instruction begins on Monday, January 11.

Need more time to plan? Consider Fall 2021. Instruction begins on Monday, August 30, 2021.

New! Michigan Tech online graduate engineering certificates and courses, with more to come!

  • Aerodynamics
  • Computational Fluid Dynamics
  • Dynamic Systems
  • Geoinformatics
  • Medical Devices and Technologies
  • Natural Hazards and Disaster Risk Reduction
  • Quality Engineering
  • Resilient Water Infrastructure
  • Structural Engineering: Advanced Analysis
  • Structural Engineering: Bridge Analysis and Design
  • Structural Engineering: Building Design
  • Structural Engineering: Hazard Analysis
  • Structural Engineering: Timber Building Design
  • Pavement Design & Construction
  • Vehicle Dynamics
  • Water Resources Modeling

Learn about all graduate programs at Michigan Tech, both online and on campus, at mtu.edu/gradschool.

Graduate School Announces Fall 2020 Award Recipients

Auroral activity

The Graduate School announces the recipients of the Doctoral Finishing Fellowships, KCP Future Faculty/GEM Associate Fellowship, and CGS/ProQuest Distinguished Dissertation Nominees. Congratulations to all nominees and recipients.

The following are award recipients in engineering graduate programs:

CGS/ProQuest Distinguished Dissertation Nominees:

Doctoral Finishing Fellowship Award:

Profiles of current recipients can be found online.

Simplicity On the Other Side of Complexity: Todd Stone at Michigan Tech Thursday (Today)

Geologic Schematic of Arena Energy’s First Drill Well in the Gulf of Mexico.

Todd Stone, co-founder and managing director of geology at Arena Energy, will visit Michigan Tech today, Thursday, Sept. 17, 2020 to deliver the First-Year Engineering Lecture to Michigan Tech’s incoming engineering majors.

Todd Stone is an engineer, explorer, conservationist, and entrepreneur. He is a Michigan Tech alumnus (Geological Engineering ’85), and a distinguished member of Michigan Tech’s College of Engineering Advisory Board.

Stone is on campus today to deliver the annual First-Year Engineering Lecture, “Simplicity On the Other Side of Complexity,” on Thursday, September 17 at 6 pm. Registered attendees will be provided a zoom link to attend the lecture remotely. Please register for the Zoom session at mtu.edu/ef.

“At Michigan Tech you are going to learn how to learn; learn how to solve difficult technical problems logically. And that is going to change your world.” – Todd Stone ’85

“We have a tradition at Tech of having a first-year lecture that helps students see how their technological education can help make a difference in the world,” says Janet Callahan, Dean of the College of Engineering. “Usually the event is held at the Rozsa Center to a packed house, with every seat taken. We can’t do that this year, of course, due to the pandemic. Instead, Todd will present his lecture on Zoom, to an audience of 800-plus students. With Zoom, though, we have room for more, so please join us. Everyone is welcome.”

Stone’s lecture will outline how he learned to work smart in school and throughout his career. He plans to highlight something he feels is top priority: Learning how to learn.

When Stone arrived at Michigan Tech nearly 40 years ago, he says, “It was the best and most mature decision of my young life. At first it was not difficult for me to work hard. My folks raised me that way; it was difficult for me to work smart.”

Todd Stone majored in Geological Engineering at Michigan Tech.

More About Todd Stone

Since co-founding Arena Energy in 1999, Todd Stone has focused on opportunity generation and management of the company’s opportunity-generating staff and systems. Stone is also responsible for maintaining, managing and high-grading the company’s robust prospect inventory, and is part of a eight-person geological group that has drilled over 300 wells. Before co-founding Arena, he was a key member of Newfield Exploration’s offshore acquisition and development team. Stone began his career with Tenneco Oil Company and later served as a geological engineer at Amerada Hess Corporation. He earned his B.S. in geological engineering from Michigan Technological University in 1985.

Interested in joining the Michigan Tech First Year Engineering lecture via Zoom? It will take place Thursday, September 17, 2020 at 6 pm, followed by Q&A. Please register for the Zoom session at mtu.edu/ef.

Tips and Tricks from Three Chairs and Dean

Embarking soon on your college career? Or, still pondering embarking? Then this is for you. A free, interactive Zoom short course , “Tips and Tricks from Three Chairs and a Dean,” starts this Tuesday (July 7).

“We’ve added an extra chair, so now it is technically “Tips and Tricks from Four Chairs and a Dean,” says Janet Callahan, dean of the College of Engineering at Michigan Technological University. “We’ve created this short course for future college students. Both precollege students, and anyone who might be still be just considering going to college,” Callahan. “We want to give students leg up, and so we’re going to show all the tips and tricks we wish someone had shown us, back when we were starting out. That includes helpful strategies to use with your science and engineering coursework, as well as physics, chemistry, and math.”

The first Tips and Tricks session began on Tuesday, July 7 via Zoom at 6pm EST. If you missed it, no problem. Feel free to join the group during any point along the way. Catch recordings at mtu.edu/huskybites if you happen to miss one.

Each session will run for about 20 minutes, plus time for Q&A each Tuesday in July. The next is July 14, then July 21, and July 28. You can register here.

The series kicked off with Dean Janet Callahan and Brett Hamlin, interim chair of the Department of Engineering Fundamentals (July 7 – Tips and Tricks from Three, no, Four Chairs and a Dean).

Next up is John Gierke, past chair of the Department of Geological and Mining Engineering and Sciences (July 14 – Reverse Engineering: How Faculty Prepare Exam Problems).

Then comes Glen Archer, interim chair of the Department of Electrical and Computer Engineering (July 21 – Tips for the TI-89).

Last but not least is Audra Morse, chair of the Department of Civil and Environmental Engineering (July 28 – Two Triangles Don’t Make a Right).

“Even some middle school students, eighth grade and up, will find it helpful and useful,” adds Callahan. “Absolutely everyone is welcome. After each session, we’ll devote time to Q&A, too. I really hope you can join us, and please invite a friend!”

Get the full scoop and register at mtu.edu/huskybites.

Aleksey Smirnov is the new Chair of Geological and Mining Engineering and Sciences

Aleksey Smirnov is the new chair of the Department of Geological and Mining Engineering and Sciences at Michigan Tech

The College of Engineering at Michigan Technological University is pleased to announce that Aleksey Smirnov has accepted the position of chair of the Department of Geological and Mining Engineering and Sciences, beginning July 1, 2020.

Smirnov joined Michigan Tech as an assistant professor of geophysics in 2007, teaching undergraduate and graduate courses in Plate Tectonics and Global Geophysics, Planetary Geology and Geophysics, and Fundamentals of Applied and Environmental Geophysics. 

His research interests include the long-term evolution of the Earth’s magnetic field and its geological and geodynamical implications. Deciphering the early history of our planet—including the early history of its geomagnetic field—represents one of the great challenges in Earth science.

Smirnov seeks to substantially increase the amount of reliable data on the Precambrian field by applying new experimental approaches to investigate the fossil magnetism of well-dated igneous rocks around the globe. He also investigates geodynamics and global plate tectonics, magnetism of rocks, minerals, and synthetic materials, environmental magnetism, and develops new techniques and instruments for paleomagnetic and rock magnetic research. His work on the early magnetic field history has been supported by several NSF grants including a 2012 CAREER award. 

“I am delighted that Dr. Smirnov will be Chair of GMES and looking forward to him joining the leadership team of the college,” states Dean Janet Callahan. “His experience as a faculty member and long-term perspective of the department will be something he can strongly leverage as he works to grow the research profile of the department and student enrollment.”

Professor John Gierke led the department as chair for two terms, or six years. “We are grateful for Dr. Gierke’s leadership,” says Callahan. He is also a tremendous teacher and researcher, and is looking forward to giving both his full attention once again.”

After receiving his BS in Geophysics from Saint-Petersburg State University (Russia) in 1987, and his PhD in Geophysics from the University of Rochester in 2002, Smirnov conducted postdoctoral studies at the University of Rochester, and at Yale University. At Michigan Tech, he is also affiliated with the Department of Physics.

What first brought you to Michigan Tech?

Our University has been renowned for its geophysical research, including my own field of paleomagnetism, for many years. The opportunity for collaboration with such an accomplished academic community played an important role in my decision. In addition, Michigan’s Upper Peninsula and the surrounding regions have a rich geologic history with some of the oldest rocks on Earth. This makes it a prime geological location to study the evolution of the early Earth’s geomagnetic field, which is one of my main research interests. After 13 fruitful years at Michigan Tech, I know I made the right choice. 

What do you enjoy most about your research and teaching?

I have established a robust research program that involves worldwide collaborations and has yielded some important results. However, the most enjoyable part of both my scientific research and classroom teaching at Michigan Tech has been my interaction with students. My research activities provide excellent opportunities for student research and academic instruction, and I have been able to work together with very talented graduate and undergraduate students. 

What are you hoping to accomplish as chair?

I envision a vibrant and diverse department that is nationally and internationally recognized for its excellence in education and research. I intend to assure our position as a proactive, efficient, and respected participant in the efforts of both the College and the University as we strive towards our shared strategic goals, including student enrollment, research, diversity, and external recognition.

Our department has evolved over time to meet the needs of our ever-changing world, but it has been and remains an integral part of Michigan Tech since its foundation in 1885. As chair, I will be honored to uphold this legacy of excellence and distinction into the future.