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[1] The Tarawera Volcanic Complex comprises 11 rhyolite domes formed during five
major eruptions between 17,000 B.C. and A.D. 1886, the first four of which were
predominantly rhyolitic. The only historical event erupted about 2 km3 of basaltic tephra
fall (A.D. 1886). The youngest rhyolitic event erupted a tephra fall volume more than
2 times larger and covered a wider area northwest and southeast of the volcano
(�A.D. 1315 Kaharoa eruption). We have used the Kaharoa scenario to assess the tephra
fall hazard from a future rhyolitic eruption at Tarawera of a similar scale. The Plinian
phase of this eruption consisted of 11 discrete episodes of VEI 4. We have developed an
advection-diffusion model (TEPHRA) that allows for grain size-dependent diffusion
and particle density, a stratified atmosphere, particle diffusion time within the rising
plume, and settling velocities that include Reynolds number variations along the particle
fall. Simulations are run in parallel on multiple processors to allow a significant
implementation of the physical model and a fully probabilistic analysis of inputs and
outputs. TEPHRA is an example of a class of numerical models that take advantage of
new computational tools to forecast hazards as conditional probabilities far in advance
of future eruptions. Three different scenarios were investigated for a comprehensive tephra
fall hazard assessment: upper limit scenario, eruption range scenario, and multiple
eruption scenario. Hazard curves and probability maps show that the area east and
northeast of Tarawera would be the most affected by a Kaharoa-type eruption.
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1. Introduction

[2] Numerical models are increasingly important in geo-
logical hazard studies and risk assessments [e.g., Aloisi et al.,
2002; Barberi et al., 1990; Canuti et al., 2002; Glaze and
Self, 1991; Heffter and Stunder, 1993; Hill et al., 1998;
Hurst and Turner, 1999; Iverson et al., 1998; Searcy et al.,
1998;Wadge et al., 1998]. These models are used to quantify
assessments that are otherwise based on qualitative, some-
times disparate geological observations [e.g., Newhall and
Hoblitt, 2002]. Numerical simulations (1) augment direct
observations, (2) characterize better the variation and uncer-
tainty in geologic processes that often occur on long time-
scales compared with the timescales of human experience,
and (3) allow scientists to explore a much wider range of

geological processes than is possible to observe directly.
Therefore evaluating the range of possible outcomes of
geologic processes, such as earthquakes, volcanic eruptions,
and landslides, is best achieved using probabilistic tech-
niques that propagate uncertainty through the analysis
using stochastic simulations.
[3] This is certainly true in volcanology, a field in which

hazard assessments must strive to bound the range of
possible consequences of volcanic activity, drawing from
the geologic record, analogy, and understanding of the
physics of volcanic processes. Historically, volcanology
has advanced through description of volcanic processes
and their impacts (e.g., Vesuvius [Maulucci Vivolo, 1994];
Mount Pelee [Lacroix, 1904]; Nevado del Ruiz [Chung,
1991]). While extremely important, this approach is not
sufficient for mitigation of volcanic risks and numerical
simulations can be used to complement these direct obser-
vations. However, such an approach is computationally
expensive, because numerical models of geologic processes
are generally complex, and because a large number of
simulations is required to accurately replicate the range of
behaviors for natural phenomena, like volcanic eruptions.
Nevertheless, recent advances in parallel computing, such
as the development of the Message Passing Interface (MPI)
and the advent of inexpensive computer clusters [Sterling et
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al., 1999], now render this approach to geological hazard
assessment tractable.
[4] As a practical example, we describe the probabilistic

assessment of hazards related to dispersion and accumula-
tion of tephra fall, and, in particular, we present the tephra
fall hazard assessment for Tarawera volcano (New Zealand)
based on its most recent rhyolitic Plinian eruption (�A.D.
1315 Kaharoa eruption [e.g., Nairn et al., 2004]). Tarawera
has been one of New Zealand’s most destructive volcanoes
in recent times and it is famous for its basaltic Plinian
eruption in A.D. 1886, which buried seven villages and
killed about 150 people [Keam, 1988]. The �A.D. 1315
Kaharoa eruption represents the most recent rhyolitic event
in the whole Taupo Volcano Zone and produced a total
tephra fall volume nearly three times larger than the A.D.
1886 eruption, covering a wider area northwest and south-
east of the volcano [Nairn et al., 2004; Sahetapy-Engel,
2002]. We have decided to assess a ‘‘Kaharoa-type’’ sce-
nario to investigate the hypothetical consequences of a new
rhyolitic eruption of a similar scale. On the basis of the
frequency of past eruptions from this volcano complex, the
annual probability of an eruption from Tarawera with
volume exceeding 0.5 km3 is �10�3 yr�1 [Stirling and
Wilson, 2002], certainly a sufficiently high probability to
require assessment of eruption consequences [Woo, 2000].
[5] This tephra fall hazard assessment is achieved through

implementation of an advection-diffusion model (TEPHRA)

derived from the integration of several modeling approaches
and theories [Armienti et al., 1988; Bonadonna et al., 1998,
2002; Bursik et al., 1992a; Connor et al., 2001; Macedonio
et al., 1988; Suzuki, 1983]. TEPHRA is written for parallel
computation on a Beowulf cluster, a networked set of
personal computers running MPI. As such, TEPHRA is an
example of a class of numerical models that take advan-
tage of new computational tools to forecast hazards as
conditional probabilities far in advance of future eruptions.
That is, given that a scenario of volcanic activity takes
place, what is the expected range of tephra fall thicknesses
over a region of interest? What drives uncertainty in
hazard assessment? What eruptive conditions result in
hazardous tephra fall accumulations? Our goal is to
illustrate how numerical models, like TEPHRA, can help
resolve such questions and provide a basis for improved
hazard assessment.

2. Volcanological Setting

[6] Tarawera is a dome complex within the Okataina
Volcanic Centre, one of the five major calderas within the
Taupo Volcanic Zone, New Zealand (Figure 1). Tarawera
is made of 11 rhyolite domes and a combination of tephra
fall and flow deposits that formed during five major
eruptions [Cole, 1970; Nairn et al., 2004]: (1) A.D. 1886;
(2) Kaharoa, �A.D. 1315; (3) Waiohau, �12,000 B.P.;

Figure 1. Map of the North Island of New Zealand showing (a) main cities (black diamonds), important
populated towns (gray circles, Mk, Maketu; Mt, Matata; Ec, Edgecumbe; W, Whakatane; TT, Te Teko;
K, Kawerau), Tarawera Volcanic Complex (small gray triangle) and the Taupo Volcanic Zone (large
shaded triangle); (b) Tarawera Volcanic Complex (adapted from Nairn [1989] and Sahetapy-Engel
[2002]) with the main domes, old lava deposits and the A.D. 1886 eruptive fissure. The names of the
four lava domes produced during the �A.D. 1315 Kaharoa eruption are also shown (only Crater
Dome, Ruawahia Dome, and Wahanga Dome produced tephra fall [Sahetapy-Engel, 2002]). See color
version of this figure in the HTML.
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(4) Rerewhakaaitu, �15,000 B.P.; (5) eruption associated
with the Okareka Ash, �18,000 B.P.
[7] Kaharoa is the most recent rhyolitic eruption and it

has been intensely studied in the last 10 years [Leonard et
al., 2002; Lowe et al., 1998; Nairn, 1989; Nairn et al.,
2001, 2004; Sahetapy-Engel, 2002]. Duration of the whole
Kaharoa eruption is estimated at �4–5 years based on the
corresponding lava volumes and comparisons with extrusion
rates of observed dome-building eruptions [Nairn et al.,
2001]. However, this eruption consisted of three main
phases: (1) initial phreatomagmatic explosions, (2) Plinian
phase, and (3) dome extrusion [Nairn et al., 2004]. Our focus
is on the Plinian phase which consisted of a sequence of
11 Plinian eruptive episodes with volcano explosivity index
(VEI) 4, column heights between 16 and 26 km and
durations mostly between 2 and 6 hours (corresponding
to units A to L [Sahetapy-Engel, 2002]). Unit F is charac-
terized by the largest volume (minimum volume of 1 km3)
and highest plume (26 km) [Sahetapy-Engel, 2002]. These
11 Plinian eruptive episodes occurred from multiple vents,
most likely Crater Dome, Ruawahia Dome and Wahanga
Dome, Figure 1 [Nairn et al., 2001, 2004; Sahetapy-Engel,
2002]).

3. TEPHRA

[8] TEPHRA consists of three main parts: (1) a physical
model that describes diffusion, transport and sedimentation
of volcanic particles [Armienti et al., 1988; Bonadonna et
al., 1998, 2002; Bursik et al., 1992a; Connor et al., 2001;
Suzuki, 1983]; (2) a probabilistic approach used to identify a
range of input parameters for the physical model (i.e.,
column height; eruption duration; grain size parameters;
wind profile) and to forecast a range of possible outcomes
(i.e., hazard curves and probability maps); (3) a computa-
tional approach that uses parallel processing methods to
speed up calculation and make fully probabilistic approaches
practical.

3.1. Physical Model

[9] Particle diffusion, advection, and sedimentation are
computed solving a mass conservation equation [Armienti
et al., 1988; Suzuki, 1983]. Particles of size fraction j are
released from a point source i along a volcanic plume. The
total mass M 0 (kg) of the eruption is

Mo ¼
XH
i¼0

Xfmax

j¼fmin

Mo
i;j; ð1Þ

where Mi,j
o (kg) is the total mass fraction of particles with

size j that fall from a point source i at a height zi, H is the
total height of the volcanic plume and fmin and fmax

indicate the minimum and maximum particle diameter,
respectively (with f = �log2d, where d is the particle
diameter in mm). The fraction of Mi,j

o (kg) that accumulates
on the ground at a certain point with coordinates (x, y) is mi,j

(x, y) (kg m�2), where

mi;j x; yð Þ ¼ M0
i;jfi;j x; yð Þ; ð2Þ

with fi,j(x, y) (m�2) a function, described in detail in the
following, that uses an advection-diffusion equation to
estimate the fraction of mass of a given particle size and

release height to fall around the point with coordinates
(x, y). Therefore the total mass M accumulated per unit
area (kg m�2) at a certain point on the ground (x, y) is

M x; yð Þ ¼
XH
i¼0

Xfmax

fmin

mi;j x; yð Þ; ð3Þ

which is the quantity of greatest interest in forecasting
volcanic hazards related to tephra fall. Thus the problem
reduces to understanding the function fi,j(x, y), which
controls the horizontal dispersion of particles, and Mi,j

0 ,
the source term.
[10] All the particles are released instantaneously

[Armienti et al., 1988; Bonadonna et al., 2002; Connor et
al., 2001; Hurst and Turner, 1999; Macedonio et al., 1988;
Suzuki, 1983] and are assumed to be spherical [Bonadonna
et al., 2002] with a settling velocity that varies according to
the particle Reynolds number [Bonadonna et al., 1998]. The
atmosphere is divided into horizontal layers each character-
ized by a uniform horizontal wind velocity and direction
[Armienti et al., 1988; Bonadonna et al., 2002; Hurst and
Turner, 1999; Macedonio et al., 1988]. Each point source i
is located in a horizontal layer, and particles released from
that point source are initially transported by the wind
specific for that layer, until they fall into a lower layer,
where they are affected by a different wind direction and
velocity. This process continues until the particles reach the
ground.
[11] For emission from an instantaneous point source, the

analytical solution of the mass conservation equation is a
Gaussian distribution of concentration in both the x and y
directions [Armienti et al., 1988; Bonadonna et al., 2002;
Connor et al., 2001; Hurst and Turner, 1999; Macedonio et
al., 1988; Suzuki, 1983]. Particles spread horizontally due to
the combined effects of turbulent eddy diffusion and gravity
spreading of the plume. They are also transported by the
wind for the time dtj spent in each layer of thickness dz, with
dtj = dz/vj, where vj is the particle settling velocity. After the
time dtj, the center of the Gaussian distribution is shifted in
the x � y plane by a distance dxj = wxdtj and dyj = wydtj on
the axes x and y, respectively, where wx and wy are the
horizontal components of the wind speed in that layer.
Particles falling from a point source i located at (xi, yi, zi)
reach the ground at the time ti,j, where

ti;j ¼
X
layers

dtj ¼
zi

vj
: ð4Þ

and vj is calculated using the analytic expressions from
Kunii and Levenspiel [1969] and modified by Bonadonna
and Phillips [2003].
[12] As a result, the analytical solution of the mass

conservation equation can be written as

fi;j x; yð Þ ¼ 1

2ps2i;j
exp �

x� xi;j
� �2þ y� yi;j

� �2

2s2i;j

8><
>:

9>=
>;; ð5Þ

where xi,j and yi,j are the coordinates of the center of the
bivariate Gaussian distribution (xi,j = xi +

P
layers dxj, yi,j =

yi +
P

layers dyj) and si,j
2 is the variance of the Gaussian
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distribution, which is controlled by atmospheric diffusion
and horizontal spreading of the plume [Suzuki, 1983].
3.1.1. Atmospheric Diffusion
[13] The parameter si,j

2 controls diffusion of particles in
the atmosphere. Effectively, the use of si,j

2 in equation (5)
lumps complex plume and atmospheric processes into a
single parameter. This greatly simplifies the model, making
it much easier to implement but also ignores processes that
can affect tephra fall dispersion. For example, the diffusion
coefficient is likely scale-dependent and varies with baro-
metric pressure in the atmosphere [e.g., Hanna et al., 1982].
Such factors are not considered in the model.
[14] Atmospheric turbulence is a second-order effect for

coarse particles, and several models for tephra fall dispersal
are based on the assumption that the atmospheric turbulence
is negligible [e.g., Bonadonna et al., 1998; Bursik et al.,
1992b; Sparks et al., 1992]. However, if the fall time of
particles is large, for example for ash-sized particles, atmo-
spheric turbulence may not be negligible [Bursik et al.,
1992a; Suzuki, 1983]. For small-particle fall times, ti,j, the
diffusion is linear (Fick’s law), and the variance si,j

2 is
[Suzuki, 1983]

s2i;j ¼ 4K ti;j þ t0i
� �

; ð6Þ

where K (m2 s�1) is a constant diffusion coefficient and t0i (s)
is the horizontal diffusion time in the vertical plume. The
horizontal diffusion coefficient, K, is considered isotropic
(K = Kx = Ky) [Armienti et al., 1988; Bonadonna et al.,
2002; Connor et al., 2001; Hurst and Turner, 1999; Suzuki,
1983]. The vertical diffusion coefficient is small above
500 m of altitude [Pasquill, 1974] and therefore is assumed
to be negligible. The horizontal diffusion time, t0i, accounts
for the change in width of the vertical plume as a function of
height, which is a very complex process [Ernst et al., 1996;
Woods, 1995]. Such a change in plume width simply adds to
the dispersion of tephra fall, and so can be expressed as t0i
[Suzuki, 1983]. Here, we approximate the radius, ri, of the
spreading plume at a given height, zi, with the relation
developed by Bonadonna and Phillips [2003] and based on
the combination of numerical studies [Morton et al., 1956]
and observations of plume expansion [Sparks and Wilson,
1982]: ri = 0.34zi. Thus, taking ri = 3sp = 3si,j, where sp is
the standard deviation of the Gaussian distribution of the
mass in the ascending plume [Sparks et al., 1997; Suzuki,
1983], and from equation (6) with ti,j = 0 we have

t0i ¼
0:0032z2i

K
: ð7Þ

When the particle fall time is of a scale of hours, the scale of
turbulent structures that carry particles increases with time
[Suzuki, 1983]. As an example, particles with diameter
<1 mm falling from a 30-km-high plume will have an
average fall time >1 hour (based on their particle settling
velocity). In this case the variance si,j

2 can be empirically
determined as [Suzuki, 1983]

s2i;j ¼
8C

5
ti;j þ t0i
� �2:5

; ð8Þ

where C is the apparent eddy diffusivity determined
empirically (C = 0.04 m2 s�1 [Suzuki, 1983]). Taking

ti,j = 0 in equation (8) and ri = 3si,j = 0.34zi as for
equation (7), we have that the horizontal diffusion time for
fine particles is

t0i ¼ 0:2z2i
� �2=5

: ð9Þ

Figures 2a and 2c show how t0i significantly affects the
total fall time of coarse particles more than the total fall
time of fine particles, i.e., (ti,j + t0i), because for fine
particles t0i � ti,j (Figures 2a and 2b). However, depending
on the value of K, the horizontal diffusion time of coarse
particles is typically smaller than the horizontal diffusion
time of fine particles for low heights (Figure 2b). In this
case, coarse and fine particles indicate particles with fall
time less than or greater than the fall time threshold
chosen as a transition between equations (6) and (8) (e.g.,
fall time threshold is 3600 s in Figure 2). Such a transition
is not well defined based on theory but can be determined
empirically.
[15] As a conclusion, once particles leave the bottom of

the turbulent current, they experience different types of
turbulent diffusion depending on their size. The linear
diffusion described by equation (6) strongly depends on
the choice of the diffusion coefficient, whereas the power
law diffusion described by equation (8) strongly depends on
the particle fall time and the horizontal diffusion time of the
ascending plume [Suzuki, 1983]. If the volcanic plume is
sufficiently high, some particles will experience a shift in
diffusion law during fall due to the decrease in fall time
(e.g., particles with diameter of 0.25 mm in Figure 2d).
Figure 2d also shows the strong power law dependence of
si,j
2 on time, which makes the total diffusion more signifi-

cant for fine particles.
[16] Linear diffusion and power law diffusion result in

different thinning trends, with linear diffusion typically
producing a thicker but narrower accumulation centered
along the dispersal axis (Figure 3). Linear diffusion resem-
bles power law diffusion in distal area only for very large
diffusion coefficients (e.g., K = 100,000 m2 s�1; Figure 3a).
The combination of the two diffusion laws results in a
break in slope in the thinning trend which occurs at a
greater distance from the eruptive vent the larger the fall
time threshold (i.e., the more particle fall trajectories are
described by linear diffusion; Figure 3b). This combination
results in a thick and narrow deposit in proximal areas and
a thinner but wider deposit in distal areas. The width of
the deposit and the maximum accumulation along the
dispersal axis both depend on the fall time threshold and
the choice of the diffusion coefficient (Figures 3c and 3d).
The differences in mass accumulation due to different fall
time thresholds and to different diffusion coefficients are
on the same scale (i.e., increments of 1 order of magnitude
of K and FTT approximately half and double, respectively,
the accumulation of tephra along the dispersal axis;
Figures 3c and 3d).
3.1.2. Mass Distribution
[17] The source term, Mi,j

o , represents the distribution of
mass as a function of particle size and height in the eruption
column. Several methods have been used to describe particle
distribution in the ascending volcanic plume [Armienti et
al., 1988; Bonadonna et al., 2002; Suzuki, 1983; Woods,
1988].
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[18] Here two different models are applied and compared:
(1) MDM1, a uniform mass distribution along the plume
(distribution 4 of Bonadonna et al. [2002]) and (2) MDM2,
a method similar to that of Armienti et al. [1988] in which
mass distribution is parameterized assuming a lognormal
distribution in the plume as a function of a geometrical
parameter, A. The parameter A controls the skewness of
particle distribution in the column, regardless of particle size
and terminal velocity. This model assumes that the column
is well mixed and that most particles reach into the upper
part of the column for A = >1. Therefore the probability
density function for particle distribution as a function of
height in the plume is

pz zið Þ ¼ exp�
lnHð Þ2

2A2

� �
AH

ffiffiffiffiffiffi
2p

p ; ð10Þ

where H > 0 and 0 < A 
 1. The source term, Mi,j
o , is then

calculated by assuming an eruption grain size distribution,
fF(f) [Suzuki, 1983]:

Mo
i;j ¼ pz zið ÞfF fð ÞMo: ð11Þ

3.1.3. Total Erupted Mass
[19] Given a plume height H (m), the total erupted mass

M 0 (kg) is derived from an empirical power law equation
[Carey and Sigurdsson, 1987]

Mo ¼ rdep
H

1670

� �4

G; ð12Þ

where rdep (kg m�3) is the density of the tephra fall deposit
and G (s) is the duration of the sustained phase of the
eruption.

3.2. Probabilistic Determination of Inputs

3.2.1. Plume Height
[20] Either an individual plume height H or a range of

plume heights can be input in TEPHRA according to the
type of eruptive scenario investigated and the type of
output result desired: (1) a single input value of H,
together with one wind profile, is used to compute isomass
maps; a single input value is also used with several wind
profiles to compute hazard curves and probability maps for
the worst-case eruptive episode considered (upper limit
scenario, ULS); (2) a range of input values of H is randomly
sampled for the computation of hazard curves and probabil-
ity maps that account for the variability of eruptive episodes
within a given range (eruption range scenario, ERS); and
(3) a whole set of input values of H is used for the
computation of cumulative probability maps, i.e., probabil-
ity maps computed for a scenario of long-lasting activity
(multiple eruption scenario, MES). In cases 2 and 3 any
probability function of H can be sampled. We have decided
to randomly sample a uniform set of values that range
between log (Hmin) � log (Hmax), where Hmin and Hmax are
the minimum and the maximum plume height observed
and/or considered possible, respectively. We have chosen a
logarithmic function of H to reflect a higher frequency of
low plumes. As an example the distribution of plume
height randomly sampled for a Kaharoa-type eruption is
shown (i.e., H = 14–26 km; Figure 4a). The minimum

Figure 2. Plots showing the variation for different particle sizes of (a) particle fall time in the
atmosphere (ti,j) (semilog plot); (b) horizontal diffusion time in the ascending plume (t0i) (linear plot);
(c) particle fall time in the atmosphere and horizontal diffusion time in the ascending plume (ti, j + t0i)
(semilog plot); (d) variance in equations (6) and (8) (si, j

2 ) (semilog plot). Calculations are done between
1 and 35 km (1 km step), with K = 1000 m2 s�1 and FTT = 3600 s. Note how the plume diffusion
time (t0i) mainly affects coarse particles (Figures 1a and 1c). Note also the step in si, j

2 values at 5–6 km
for 0.25-mm particles due to the shift of diffusion law (Figure 1d; equations (6) and (8)). See color
version of this figure in the HTML.
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height represents the boundary between sub-Plinian and
Plinian eruptions [Sparks et al., 1992] in agreement with
the Kaharoa-type events, whereas the maximum height is
from field data [Sahetapy-Engel, 2002].
3.2.2. Duration of Eruptive Episodes
[21] Together with the plume height H, the duration G of

individual eruptive episodes is used to determine the total
erupted mass (equation (12)). TEPHRA randomly samples
the duration among a given range of values observed or
considered possible. As an example, the distribution of the
eruptive episode duration randomly sampled for a Kaharoa-
type eruption is shown (i.e., 2–6 hours; Figure 4b).
3.2.3. Total Erupted Mass
[22] The distribution of plume height values described

above, associated with the randomly sampled distribution of
eruptive episode duration, results in a lognormal distribution
of the total erupted mass derived using equation (12)
(Figure 4c).
3.2.4. Total Grain Size Distribution
[23] A grain size distribution can be defined by expressing

the corresponding minimum and maximum particle diame-
ter, the median diameter (Mdf), the graphic standard
deviation (sf) and the graphic skewness (SkG) [Inman,
1952]. However, the total grain size distribution of
pyroclastic deposits is typically extremely difficult to
determine mainly due to the methodological problems

related to the integration of grain size analysis of single
samples and to the scarcity of data points. As a result, only a
few total grain size distributions are available [Carey and
Sigurdsson, 1982; Hildreth and Drake, 1992; Sparks et al.,
1981; Walker, 1980, 1981]. Given these uncertainties, we
can apply a probabilistic approach also for the determina-
tion of the grain size distribution parameters. As an
example, the total grain size distribution for the �A.D.
1305 Kaharoa eruption is not available. Therefore we have
considered the total grain size distributions of three large
eruptions from the Taupo Zone (i.e., Taupo, Waimihia and
Hatepe Plinians [Walker, 1980, 1981]; Figure 5) and, in our
probabilistic analysis, we have stochastically sampled Mdf
between �0.8 and 4f (Figure 5). We have not stochastically
sampled sf, because its variation for the three distributions
considered is very small (i.e., 2.3–2.9; Figure 5), and
therefore we fixed it at 2.5. We have also assumed a perfect
Gaussian distribution (i.e., SkG = 0).
3.2.5. Eruptive Vent
[24] The presence of multiple active vents is known for

several Plinian eruptions (e.g., Tolbachik volcano [Fedotov
et al., 1991]; Tarawera A.D. 1886 [Walker et al., 1984];
Kaharoa [Nairn et al., 2001]; Rabaul [Blong, 1994]) and
can significantly affect the patterns of tephra dispersal.
Some single-vent eruptions can also occur in volcanic
areas characterized by several possible future vents (e.g.,

Figure 3. Semilog plots showing the computed mass per unit area along the dispersal axis for tephra fall
described by (a) power law diffusion and linear diffusion with different coefficients, K (run 1 in Table 1);
(b) linear diffusion and power law diffusion for different fall time thresholds, FTT (run 2 in Table 1).
Plots of mass per unit area at a cross section taken 50 km from vent considering (c) power law diffusion
and linear diffusion with different K (run 3 in Table 1); (d) linear diffusion and power law diffusion for
different FTT (run 4 in Table 1). Diffusion of particles with fall times <FTT is described by a linear
law (equation (6)), whereas diffusion of particles with fall times >FTT is described by a power law
(equation (8)). 0 km in Figures 1c and 1d indicates the position of the dispersal axis.
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Auckland Volcanic Field [Rout et al., 1993]; Campi
Flegrei [Di Vito et al., 1999]; Mount Etna [Coltelli et
al., 1998]; Michoacàn-Guanajuto [Williams, 1950]). In our
hazard assessment we randomly sampled the three
Kaharoa main eruptive vents (Crater Dome, Ruawahia
Dome and Wahanga Dome; Figure 1).
3.2.6. Time Break Among Eruptive Episodes
[25] Given the uncertainties on the total duration of the

Kaharoa eruption and the time break between individual
eruptive episodes, we have decided to sample wind profiles
stochastically to compute MES probability maps so that the
final convergence value of probability at each grid point is
independent from the time break.
3.2.7. Wind Data
[26] Wind profiles can be deterministically chosen to

calibrate the model and therefore to compile isomass maps

for specific eruptive events. Wind profiles can be also
randomly sampled for probabilistic assessment of tephra
dispersal. The wind field used by TEPHRA is stratified
every 1 km. For the Tarawera assessment we have used
3 years of gridded zonal and meridional wind fields from
the National Centers for Environmental Prediction Reanal-
ysis project [Kalnay et al., 1996]. The North Island of New
Zealand is in the midlatitudes (�35�–41�S, New Zealand
Geodetic Datum 2000); therefore winds usually blow to the
east (Figure 6), and the tropopause heights are �10 km
during the winter and 15 km during the summer. Our data
(1996–1998) also show a significant change in mean wind
direction at relatively high altitudes (>25 km above sea
level), where winds start blowing mainly to the north
(Figure 6a). The direction that winds blow toward (i.e.,
provenance +180� in Figure 6a) varies between about
�110� and 180�, and the wind velocity varies between
about 2 and 40 m s�1 (Figure 6b). A detailed analysis of the
1996–1998 wind data shows that 86% of wind profiles
have at least 15 levels of wind blowing between 0� and
180�, whereas only 3% have at least 15 levels of wind
blowing between 180� and 360� (Figure 7a). Wind is more
likely to blow between 180� and 360� during the austral
spring-summer (i.e., September through March; Figure 7b).
A frequency analysis of wind direction can give good
insights and constrains on the occurrence time of past
eruption by comparison with observed tephra dispersal.

4. Calibration and Validation

[27] A series of sensitivity tests were carried out to
determine the best values of empirical parameters, such as
the diffusion coefficient (m2 s�1), K, the fall time threshold
(s), FTT, the mass distribution model, MDM, and the mass
distribution parameter, A. The best fit is determined by
calculating the minimum value of the misfit function (mf )
keeping two parameters fixed at a time and varying the

Figure 4. Frequency plots showing output results for
(a) plume heights stochastically sampled between log(14 km)
and log(26 km) (bin is 200 m); (b) eruptive episode duration
stochastically sampled between 2 and 6 hours (bin is
0.1 hour); (c) total erupted mass determined from the
combination of plume heights and eruption duration above
(equation (12)) (bin is 2.00 E + 10 kg).

Figure 5. Cumulative plot showing the total grain size
distribution of the Waimihia Plinian (white), Hatepe Plinian
(black) and Taupo Plinian (gray) from Walker [1980, 1981].
Given that all original grain size distributions are truncated
at 3f, the grain size trend beyond 3f is extrapolated based
on a lognormal distribution. Resulting Mdf are �0.8, 0.6
and 4f, respectively. Resulting sf are 2.3, 2.3, and 2.9,
respectively.
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third. The misfit function for each ground point with
coordinates (x, y) is expressed as

mf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
N

Mobs �Mcomp

� �2
N � 1

vuut
; ð13Þ

where N is the number of data andMobs (kg m
�2) andMcomp

(kg m�2) are the observed and computed mass accumula-
tion per unit area, respectively [Bonadonna et al., 2002].

4.1. Kaharoa F (Run 5 in Table 1)

[28] Given the age of the �A.D. 1315 Kaharoa eruption,
a complete data set is not available to calibrate the model
thoroughly before hazard curves and maps are computed

(i.e., good mass/area data, wind data, total erupted mass,
total grain size distribution). Nonetheless, we carried out
sensitivity tests on the Kaharoa unit F that show a best fit
for K = 10 m2 s�1, FTT = 288 s (i.e., 0.08 hours) and mass
distribution model 2 with A = 1 (number of samples is 61;
mass/area range is 10–450 kg m�2; mf = 88.79 kg m�2;
Figure 8).
[29] Wind profile was chosen with a direction in agree-

ment with the main axis of dispersal of the unit F (135�N).
Maximum wind speed (27 m s�1) and column height
(26 km) were calculated using the method by Carey and
Sparks [1986] [Sahetapy-Engel, 2002]. Total erupted mass
(1.1 � 1012 kg) was calculated using the method by Pyle
[1989] [Sahetapy-Engel, 2002]. Particle density was varied
between 1000 and 2350 kg m�3 [Sahetapy-Engel, 2002].
Total grain size distribution was averaged between the
Taupo, Waimihia, and Hatepe Plinian [Walker, 1980, 1981]
(Figure 5).
[30] The misfit function is an estimate of the global

agreement between observed and computed data, and so
comparisons between observations and model results were
also made at individual locations. Figure 8d shows the
comparison between observed and computed accumulation
mass (kg m�2) for the ‘‘best fit’’ values of K, FTT, MDM
and A. Computed data typically overestimates the observed
data. This can be explained by the fact that the deposit was
actually sampled more than 700 years after it was deposited

Figure 6. Plots showing (a) mean wind direction (prove-
nance + 180�) and (b) mean wind velocity averaged every
km over 3 years of wind profiles sampled 4 times a day
(0000, 0600, 1200, and 1800 LT) from 1 January 1996
through 31 December 1998. The standard deviation
determined for each level is also shown. These are gridded
zonal and meridional wind fields from the National Centers
for Environmental Prediction Reanalysis project [Kalnay et
al., 1996]. Data at 17 pressure levels (1000, 925, 850, 700,
600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, and
10 hPa) were interpolated linearly to 30 geopotential height
levels at 1-km intervals. Values at each height level
represent the average wind velocity of the four grid points
surrounding the volcano.

Figure 7. Plots showing (a) the percentage of wind
profiles characterized by �15 levels with direction of
provenance between 0� and 90�, 90� and 180�, 180� and
270� and 270� and 360�, respectively (degrees are from the
north); (b) the percentage of such wind profiles distributed
among each month. Percentages are calculated out of the
total wind sample analyzed (i.e., 1996–1998; Figure 6).
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iñ
o
-S
o
u
th
er
n
O
sc
il
la
ti
o
n
p
h
en
o
m
en
o
n
).
D
u
r
is

th
e
d
u
ra
ti
o
n
o
f
th
e
er
u
p
ti
v
e
ep
is
o
d
e.

D
ep
o
si
t
th
re
sh
o
ld

is
th
e
h
az
ar
d
o
u
s
th
re
sh
o
ld

u
se
d
to

co
m
p
il
e

p
ro
b
ab
il
it
y
m
ap
s.

b
O
b
se
rv
ed

d
at
a.

B03203 BONADONNA ET AL.: PROBABILISTIC MODELING OF TEPHRA

9 of 21

B03203



[Sahetapy-Engel, 2002]. Figure 9 also shows a good qual-
itative agreement between observed and computed values
but it also highlights how the quantitative comparison is
limited to the medial deposit as distal data are not available.

4.2. Ruapehu (Run 6 in Table 1)

[31] In order to assess the stability of our model, sensi-
tivity tests were also carried out on a well-studied eruption
from a different volcano in New Zealand: the 17 June 1996
andesitic sub-Plinian eruption of Ruapehu. This eruption
produced at least 5 � 109 kg of tephra fall [Bonadonna and
Houghton, 2005]. The plume was bent over by a strong
SSW wind and reached a maximum height of 8.5 km above
sea level [Prata and Grant, 2001]. The corresponding
tephra fall deposit was sampled and studied in detail [e.g.,
Cronin et al., 1998; B. F. Houghton et al., The 17 June 1996
eruption of Ruapehu volcano, New Zealand: The anatomy
of a wind-advected subplinian fall deposit, submitted to
Bulletin of Volcanology, 2004, hereinafter referred to as
Houghton et al., submitted manuscript, 2004]. Sensitivity
tests carried out on the Ruapehu data set show a best fit for
K = 1 m2 s�1, FTT = 180 s (i.e., 0.05 hours) and mass
distribution model 2 with A = 1 (Figures 10a–10c). These
best fit values are very similar to the best fit values obtained
from the Kaharoa tests (runs 5 in Table 1). However,
computed data show better agreement with observed data

(number of samples is 114; mass/area range is 0.0002–
400 kg m�2; mf = 40.59 kg m�2; Figure 10). It is also
interesting to notice that a variation of 6 orders of magni-
tude of K only results in a misfit variation of 3%, and
variations of 1 order of magnitude of FTT and A result in a
misfit variation of 0.5% (Figures 10a–10c), showing that
the algorithm is very stable.
[32] Figure 11 shows a qualitative comparison between

the Ruapehu deposit computed with the best fit values and
the isomass map compiled by Houghton et al. (submitted
manuscript, 2004). Computed deposit beyond the first
10 km from vent shows good agreement with the observed
deposit. The Ruapehu plume was pulsating and also bent
over by a strong wind and, as a result the deposit shows a
complicated sinuosity that cannot be accurately reproduced
by a simple Gaussian model (Houghton et al., submitted
manuscript, 2004). In addition, TEPHRA cannot reproduce
accurately the proximal sedimentation from bent-over
plumes, which are typically characterized by a very steep
thinning.
[33] Hurst and Turner [1999] also investigated the

17 June 1996 eruption of Ruapehu using an advection-
diffusion model (i.e., ASHFALL) based on the Armienti et
al. [1988] and Macedonio et al. [1988] theories and
models. Their best fit diffusion coefficient (6000 m2 s�1)
is significantly larger than the best fit values determined for

Figure 8. Plots showing the misfit function (mf; equation (13)) applied to the data set from the unit F of
the Kaharoa eruption [Sahetapy-Engel, 2002] and calculated for (a) MDM1 (star; secondary axis) and
MDM2 with different values of A (diamonds; primary axis), (b) fall time threshold, FTT and (c) diffusion
coefficient, K. Minimum values of mf, i.e., best fit values, are shown in gray. (d) Log plots showing the
comparison between observed data and data computed with best fit values (i.e., MDM2 with A = 1;
FTT = 288 s; K = 10 m2 s�1).
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TEPHRA, mainly because ASHFALL does not account for
the particle diffusion time in the plume and for the power
law diffusion (see Discussion). Similarly to TEPHRA,
ASHFALL does not reproduce the steep thinning in prox-
imal areas and the pronounced sinuosity shown by the
Ruapehu deposit. However, a quantitative comparison
between the two models is difficult because their calibra-
tion is based on a different data set of the same deposit [i.e.,
Cronin et al., 1998] and only a qualitative two-dimensional
(2-D) comparison similar to Figure 11.

5. Probabilistic Analysis of Outputs: Hazard
Assessment

[34] In our hazard assessment we have analyzed three
different eruptive scenarios based on the �A.D. 1315
Kaharoa eruption: upper limit scenario (ULS), eruption
range scenario (ERS), and multiple eruption scenario
(MES). These scenarios were used to compile hazard curves
and probability maps. ERS hazard curves and probability

maps were computed stochastically sampling 1000 different
eruptions (i.e., Mdf, column height, eruptive vent, eruption
duration, wind profile), whereas MES probability maps
were computed using 1000 sets of 10 different eruptions
stochastically sampled. ULS hazard curves and probability
maps were computed running 1000 eruptions with the
highest plume and the longest duration. For this scenario,
only Mdf, the eruptive vent and the wind profile are
sampled stochastically. Sensitivity tests for probabilistic
analysis based on the Monte Carlo approach show that 1000
runs give a good convergence [Bonadonna et al., 2002].

5.1. Hazard Curves

[35] Hazard curves considered here indicate the probabil-
ity of exceeding certain values of accumulation of mass per
unit area at a particular location [Hill et al., 1998; Stirling
and Wilson, 2002]. Hazard curves can be computed con-
sidering a set of eruptive episodes and a set of wind profiles.

5.2. Probability Maps

[36] Probability maps show the probability of reaching a
given mass accumulation per unit area in a particular
location given different sets of conditions. Different types
of probability maps can be compiled depending on the
specific assessment required (e.g., assessment for a specific
locality; assessment for a specific area; assessment for
different eruptive scenarios). For our assessment we have
compiled the following.
[37] Upper limit scenario maps show the probability distri-

bution of reaching a particular mass loading around the
volcano given one eruptive episode and several wind profiles
and therefore contour: P[M(x, y) > threshold j eruption],
where all eruption parameters are specified deterministi-
cally. This is useful to determine the upper limit value on
tephra fall accumulation if the parameters are specified for
the largest eruption considered in the scenario.
[38] Eruption range scenario maps show the probability

distribution of a particular mass loading around the volcano
based on the statistical distribution of possible eruptive
episodes and wind profiles both sampled randomly. These
maps contour: P[M(x, y) > threshold j eruption], where all
eruption parameters and wind profiles, are both sampled
stochastically. The resulting map provides a fully probabi-
listic hazard assessment for the investigated activity scenario.
[39] Multiple-eruption scenario maps show the probability

distribution of reaching a particular mass loading around the
volcano given a long-lasting activity scenario (i.e., many
eruptive episodes with different magnitudes) and several
wind profiles contouring: P[ M ( x, y) > threshold j scenario].
These maps are important to assess tephra fall accumulation
from multiple-phase eruptions, such as the �A.D. 1315
Kaharoa eruption, and long-lasti ng eruptions, such as the
1995–1999 eruption of Montserrat [e.g., Kokelaar, 2002;
Sparks and Young, 2002]. These computed probability
maps assume continuous tephra fall accumulation with
no erosion between eruptive episodes and are calculated
using Monte Carlo simulations based on a random sam-
pling of wind profiles [Bonadonna et al., 2002].

5.3. Hazardous Deposit Thresholds

[40] In our tephra fall hazard assessment for Tarawera we
have considered hazardous deposit thresholds derived from

Figure 9. Comparison between isomass maps for the
�A.D. 1315 Kaharoa eruption (unit F) compiled from field
data [Sahetapy-Engel, 2002] and the deposit computed with
best fit values. The color scale is also shown (isomass
contours were computed with the same interval used in the
field data map). Some key cities (diamonds) and Tarawera
(triangle) are shown. See color version of this figure in the
HTML.
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observations made on hazardous effects in New Zealand
(D. Johnston, personal communication, 2004) and for a
1000 kg m�3 deposit density [Sahetapy-Engel, 2002]:
10 kg m�2 (i.e., �1 cm; damage to agriculture), 150 kg m�2

(i.e., �15 cm; minimum loading for roof collapse),
700 kg m�2 (i.e., �70 cm; roof collapse for all buildings).
However, hazard curves are also compiled to provide a
general accumulation forecast at given localities indepen-
dently from arbitrary hazard thresholds.

6. Hazard Assessment

6.1. Hazard Curves (Runs 7 and 8 in Table 1)

[41] Hazard curves were computed for six crucial key
cities and towns: Wellington, Taupo, Tauranga, Maketu,
Rotorua, Kawerau (Figure 1). The ULS hazard curves
show >10% probability of reaching a tephra fall accumu-
lation of 10 kg m�2 for Maketu, Kawerau and Rotorua,
between 1 and 4% for Tauranga and Taupo and �0.1%
for Wellington, which is characterized by very low tephra
fall accumulation for all eruptive conditions considered in
this assessment (Figure 12). The ERS hazard curves do
not diverge significantly from the ULS hazard curves but
show <2% probability of reaching a tephra fall accumu-
lation of 10 kg m�2 in all localities considered except
Kawerau and Rotorua (30% and 8%, respectively). All
cities and town considered show �0.1% probability of

reaching the minimum threshold for roof collapse (i.e.,
150 kg m�2) (Figure 12).

6.2. Probability Maps (Runs 9–11 in Table 1)

[42] In the case of a 26-km-high plume (ULS maps;
run 9) and of a plume ranging between 14 and 26 km
(ERS maps; run 10), Rotorua and the main populated
towns northeast of Tarawera would be likely to receive
enough tephra fall to cause damage to vegetation (30–
70% and 5–40%, respectively; Figure 13). Plumes in this
height range are not likely to cause roof collapse beyond
the volcano (probability <1%).
[43] In the case of a multiphase eruption characterized by

10 eruptive episodes with plumes ranging between 14 and
26 km (MES maps; run 11), the main populated towns
northeast of the volcano are very likely to receive enough
tephra fall to cause damage to vegetation (90–100%;
Figure 14a), and some could also experience collapse of
the weakest buildings (e.g., Kawerau and Te Teko, 5–40%;
Figure 14b). Rotorua and Maketu (north and northwest of
the volcano) are also likely to experience damage to vege-
tation (50–80%; Figure 14a).

6.3. Seasonal Variations and Climate Fluctuations
(Runs 12–17 in Table 1)

[44] The 1996–1998 wind data show that winds up to
25 km above sea level in the North Island of New

Figure 10. Plots showing the misfit function (mf; equation (13)) applied to the data set from the
Ruapehu eruption (Houghton et al., submitted manuscript, 2004) and calculated for (a) MDM1 (star;
secondary axis) and MDM2 with different values of A (diamonds; primary axis), (b) fall time threshold,
FTT, and (c) diffusion coefficient, K. Minimum values of the mf, i.e., best fit values, are shown in gray.
(d) Log plots showing the comparison between observed data and data computed with best fit values (i.e.,
MDM2 with A = 1; FTT = 180 s; K = 1 m2 s�1).
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Zealand typically blow to the northeast-east-southeast
(Figures 6a and 7a). Winds are more likely to blow to
the northwest-west-southwest during the austral spring-
summer than during the austral winter (Figure 7b).
The ULS probability maps computed for a threshold
of 10 kg m�2, both for the austral winter (June–
August; run 12) and the austral spring-summer (September–
March; run 13) do not diverge significantly (Figures 15a
and 15b). However, if Tarawera produces a 26-km-high
plume, Rotorua is more likely to experience damage to
vegetation during the summer than during the winter
(about 55% and 12%, respectively; Figures 15a and 15b).
The probability of reaching 10 kg m�2 does not vary
significantly in different seasons for the populated towns
north and northeast of the volcano (10–70%; Figures 15a
and 15b).
[45] As also mentioned above, the New Zealand is

located in the midlatitudes, and therefore is not signifi-
cantly affected by ‘‘El Niño Southern Oscillation
(ENSO) phenomenon’’, the major systematic global cli-
mate fluctuation that occurs at the time of an ocean
warming event. However, in order to have a comprehen-
sive wind analysis, we have chosen 3 years characterized
by the main climate conditions: January 1996 to March
1997 (neutral conditions); April 1997 to May 1998
(strong El Niño); after May 1998 (La Niña). ULS
probability maps computed using only wind data from
1996 (i.e., neutral conditions) and wind data only from
1997 to 1998 (i.e., ENSO conditions) do not show
significant differences (runs 14 and 15; Figures 15c
and 15d). As a conclusion, the winter times are the
times when the area west and northwest of Tarawera

would be affected the least by a Kaharoa-type eruption,
regardless of ENSO phenomenon.

7. Discussion

[46] TEPHRA was born to fulfill the need for (1) imple-
mentation of existing physical models for hazard assess-
ment of tephra fall accumulation [Bonadonna et al., 2002;
Connor et al., 2001], (2) probabilistic determination of input
and output parameters, and (3) improvement of the compu-
tational time. Numerical models used for hazard assess-
ments of natural phenomena are typically conceptually
straightforward [Barberi et al., 1990; Bonadonna et al.,
2002; Connor et al., 2001; Hill et al., 1998; Hurst and
Turner, 1999], but the application of the algorithm is made
onerous by the need to execute the same calculations for
several grid points (hazard map resolution) and to run
numerous simulations in order to capture uncertainties in
the hazard estimates (hazard map reliability). As an exam-
ple, probability maps computed running 200 Monte Carlo
simulations on a 450 Pentium III for a MES scenario of
three years of activity at the Soufrière Hills Volcano
(Montserrat, WI) would require up to 70 hours [Bonadonna
et al., 2002]. These long computing times are not ideal
when dealing with hazard assessments required during
volcanic crises. As a result, depending on the machine
available, map resolution and reliability are often decreased
to obtain shorter computational times. Finally, also the
algorithm and the initial assumptions are often simplified
to speed up the calculations (e.g., assumption of constant
atmospheric density and therefore constant particle settling
velocity [Armienti et al., 1988; Barberi et al., 1990;

Figure 11. Comparison between isomass maps for the Ruapehu eruption (Houghton et al., submitted
manuscript, 2004) and the deposit computed with best fit values. Tephra fall accumulation is in kg m�2.
The color scale is also shown (isomass contours were computed with the same interval used in the field
data map). See color version of this figure in the HTML.
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Bonadonna et al., 2002; Macedonio et al., 1988]; assump-
tion of uniform wind field [Connor et al., 2001; Hill et al.,
1998]; assumption of a single particle diffusion law
[Armienti et al., 1988; Barberi et al., 1990; Bonadonna et
al., 2002; Connor et al., 2001; Hill et al., 1998; Macedonio
et al., 1988]).

7.1. Parallelization of the Algorithm

[47] Parallelization of the algorithm represents the most
efficient way to increase computing speed and therefore
allowing for the implementation of the physical model and a
fully probabilistic analysis of inputs and outputs. As a
result, TEPHRA was designed for parallel computation on
a Beowulf cluster, which usually consists of off-the-shelf

personal computers connected by Ethernet, running Linux
operating system, and the Message Passing Interface for
parallel work. Geoscientific problems can be made parallel
at a number of levels. The use of TEPHRA for hazard
assessment can be defined as embarrassingly parallel
because the same calculations are performed independently
for a large number of input parameters and for a large
number of grid points. Computation is greatly accelerated
by dividing the grid points among several different com-
puters and simultaneously performing the calculations on
each. Since the solution at one grid point does not depend
on the solution at any other grid point, this grid decom-
position is straightforward. This type of parallel code is
called a single program-multiple data model (SPMD),

Figure 12. Hazard curves computed for the upper limit scenario (thick lines) and the eruption range
scenario (dashed lines) for key cities and towns (in Figure 1): (a) Maketu, (b) Kawerau, (c) Tauranga,
(d) Taupo, (e) Wellington, and (f) Rotorua. Hazard curves show the probability of exceeding a given
accumulation of tephra (kg m�2).
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because multiple instances of the same computer code run
on multiple processors. In a well-implemented SPMD
problem, computational speed scales with the number of
nodes used.

7.2. Implementation of the Physical Model

[48] TEPHRA results from the combination of different
theories and modeling approaches, representing a first step
toward the integration of two main classes of tephra fall
dispersal models developed during the last two decades:
(1) advection-diffusion models [Armienti et al., 1988;
Bonadonna et al., 2002; Connor et al., 2001; Glaze and
Self, 1991; Hurst and Turner, 1999; Macedonio et al.,

1988; Suzuki, 1983] and (2) models describing large-eddy
sedimentation from plume margins combined with gravity-
driven intrusion of the volcanic current at the neutral
buoyancy level [Bonadonna and Phillips, 2003; Bursik
et al., 1992a, 1992b; Ernst et al., 1996; Koyaguchi and
Ohno, 2001; Sparks et al., 1992].
[49] Hazard assessments are typically done using

advection-diffusion models, which are mostly empirical
but are designed to compile mass/area and probability maps
[Barberi et al., 1990; Bonadonna et al., 2002; Hill et al.,
1998; Hurst and Turner, 1999]. The models from the
second class are based on classic plume theory and have

Figure 13. Probability maps run for (a) upper limit
scenario and (b) eruption range scenario. Contours are
spaced every 10% probability of reaching the threshold of
damage to vegetation (i.e., 10 kg m�2). The 5% contour is
also shown (thick solid line). The map for 150 and
700 kg m�2 thresholds are not shown as they only show
probability <1% for the populated areas around the
volcano. Key cities and towns are indicated with circles,
and the Tarawera Volcanic Complex is indicated with a
triangle. See color version of this figure in the HTML.

Figure 14. Multiple eruption scenario maps computed for
a deposit threshold of (a) 10 kg m�2 (damage to vegetation)
and (b) 150 kg m�2 (minimum loading for roof collapse).
The map for a 700 kg m�2 threshold is not shown, as it only
indicates probability <5% for most of the populated areas
around the volcano. Contours are spaced every 10%
probability of reaching a given threshold. The 5% contour
is also shown (thick solid line). Key cities and towns are
indicated with circles, and the Tarawera Volcanic Complex
is indicated with a triangle. See color version of this figure
in the HTML.
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mainly focused on thoroughly describing the tephra fall
dynamics but have not been used to compile 2-D maps and
probability assessments due to the more complex theory
involved. Eventually these two classes should merge, and
TEPHRA can be identified as a first step toward this
direction. As an example, TEPHRA describes an instanta-
neous release of particles from the eruptive source, typical
of advection-diffusion models [e.g., Armienti et al., 1988],
implemented by the horizontal diffusion time, t0i, that
accounts for the change in width of the plume as a
function of height (equations (7) and (9)), derived from
classic plume theory [Morton et al., 1956]. This results in
smaller atmospheric diffusion coefficients (e.g., diffusion
coefficient of 1–10 m2 s�1), given that diffusion coeffi-
cients in advection-diffusion models typically account also
for the horizontal diffusion of the plume (e.g., diffusion

coefficient of 3000 m2 s�1, Vesuvius [Macedonio et al.,
1988]; 6000 m2 s�1, Ruapehu [Hurst and Turner, 1999],
and 2700 m2 s�1, Montserrat [Bonadonna et al., 2002]).
The use of the horizontal diffusion time also results in a
best fit for the plume mass distribution which is charac-
terized by a lognormal distribution with most particles
concentrated at the top. A uniform plume mass distribution
gave better results for an advection-diffusion model which
did not account for the horizontal diffusion time [i.e.,
Bonadonna et al., 2002]. TEPHRA also better describes
tephra fall accounting for the variation of particle Reynolds
number along the particle trajectory.
[50] TEPHRA is one of the first dispersal models to

account for the variation of diffusion law with particle size:
(1) linear diffusion for coarse particles and (2) power law
diffusion for fine particles. Diffusion is thought to be

Figure 15. Upper limit scenario maps computed sampling wind data (a) from June through August
(austral winter; winds mainly blowing between 0� and 180�, see Figure 7b); (b) from September to March
(austral spring-summer; when winds also blow between 180� and 360�, see Figure 7b); (c) for the year
1996 (neutral conditions); and (d) from 1997 through 1998 (years characterized by El Niño-Southern
Oscillation phenomenon). Contours are spaced every 10% probability of reaching the threshold for
damage to vegetation (i.e., 10 kg m�2). The 5% contour is also shown (thick solid line). Key cities and
towns are indicated with circles, and the Tarawera Volcanic Complex is indicated with a triangle. See
color version of this figure in the HTML.
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particularly significant for settling of ash-sized particles
[Suzuki, 1983; Bursik et al., 1992a] and sensitivity tests
show that the two diffusion laws result in different thinning
trends (Figure 3). Very large values of diffusion coefficients
could be used to simulate diffusion in distal areas (e.g., K =
100,000 m2 s�1), but they would not be consistent with
diffusion coefficients typically observed for both small- and
large-scale phenomena (e.g., 0–10,000 m2 s�1 [Pasquill,
1974]) or with values typically used in advection-diffusion
models (see above). The combination of two diffusion laws
represents a more consistent model to describe diffusion of
both small and large particles and results in a thinning break
in slope. Thinning breaks in slope are commonly observed
in tephra fall deposits [Carey and Sigurdsson, 1986;
Fierstein and Hildreth, 1992; Scasso et al., 1994; Sparks
et al., 1981] and are typically due to the variation of particle
Reynolds number and particle aggregation [Bonadonna
and Phillips, 2003]. However, thinning breaks in slope
due to a variation of diffusion laws are feasible and could
explain some discrepancies observed in computed and
observed deposit thinning [Bonadonna and Phillips,
2003]. The cut off for diffusion law decoupling is not yet
well characterized and can be only determined empirically
(e.g., 180 s for the Ruapehu deposit; Figure 10).

7.3. Probabilistic Analysis

[51] Parallelization of the code not only allows the
implementation of the model but also allows a fully
probabilistic approach to tephra fall hazard. A stochastic
sampling is used to identify input parameters for the
physical model (i.e., column height; eruption duration;
mass distribution parameter; grain size distribution; erup-
tive vent; wind profile). This is important because some-
times different eruptive scenarios need to be investigated
but also because often these parameters are not well
known but can be sampled from probability density
functions. Therefore the more simulations are done the
better the full range of possible outcomes is understood.
This kind of Monte Carlo approach is very similar to the
ensemble forecast technique commonly used in weather
and climate forecast to deal with the uncertainties of
models and/or perturbed initial conditions [Houtekamer
and Lefaivre, 1997; Palmer, 2000]. Ensemble forecasting
based on multiple integrations of the governing equations
from perturbed or different initial conditions is inherently
parallel because the exact same computations are performed
many times using different input data.
[52] The tephra fall hazard assessment of Tarawera

represents a typical situation: Tarawera did not produce
several historical eruptions and therefore the data available
for model calibration and for the identification of input
parameters and eruptive scenarios are not very accurate.
Furthermore, Tarawera is characterized by multiple eruptive
vents and most eruptions from this volcano are characterized
by multiple eruptive phases (e.g., �A.D. 1315 Kaharoa
eruption; A.D. 1886 eruption).
[53] A probabilistic approach is also used to forecast a

range of possible outcomes (i.e., hazard curves and proba-
bility maps), so that the probability of exceeding certain
hazardous tephra fall accumulations can be investigated for
different eruptive scenarios and a wide area around the
eruptive vent (Figures 12–15). The calculation of tephra fall

accumulation on a grid is also inherently parallel because
the exact same computations are performed many times for
different grid points.

7.4. Importance of Wind Analysis

[54] TEPHRA describes the particle transport at discrete
atmospheric levels (e.g., 1 km) accounting for settling
velocity variations (based on particle Reynolds number
variation) and wind variations (i.e., direction and velocity).
The accuracy of the resulting hazard assessment is strictly
related to the accuracy and number of wind profiles used
and weather fluctuations analyzed. The detailed gridded
zonal and meridional wind fields downloaded from the
NCEP Reanalysis project allowed a full hazard assessment
including specific seasonal assessments (Figures 15a and
15b) and assessments for particular climate conditions (e.g.,
ENSO phenomenon; Figures 15c and 15d).
[55] A good statistical study of wind profiles also helps

constrain the occurrence time of a given eruption. As an
example, given that the five Kaharoa units dispersed to the
north and NW were produced consecutively and by plumes
lower than 25 km (i.e., units H to L; plume height between
16 and 24 km [Sahetapy-Engel, 2002]), it is likely that these
units were produced during the same austral spring-summer.
This timescale of a few days to a few weeks for the Plinian
phase of the Kaharoa eruption also agrees with the field
observation that each unit is topped with very fine ash,
possibly corresponding to the latest phase of each episode,
and there is no evident sign of erosion between units. Units
A–G were dispersed to the SE, and therefore it is more
difficult to estimate the corresponding occurrence time,
given that winds are equally likely to blow to the SE during
the whole year (Figure 7). Our probabilistic analysis for the
ENSO phenomenon also indicates that the unusual wind
conditions that produced the Kaharoa tephra fall dispersal
cannot be explained as en effect of El Niño or La Niña
climate fluctuations (Figure 15d). Therefore, on the basis of
purely tephra fall dispersal considerations, we can conclude
the whole Kaharoa eruption could have occurred during an
austral spring-summer or at least five consecutive units are
very likely to have occurred during the same austral spring-
summer. However, magma chamber dynamics and volcanic
edifice geometry should also be considered in order to
assess magma chamber recharging times and the times
required to establish eruptive conditions [Melnik, 2000;
Pinel and Jaupart, 2003].

7.5. Model Caveats

[56] TEPHRA represents a great extension of the existing
advection-diffusion models of tephra fall dispersal. How-
ever, there are still some parameters and processes that
need to be investigated and studied in more detail. First
of all, advection-diffusion models are typically character-
ized by particle release at time 0 and therefore do not
account for wind profile variations with time that can
significantly affect long-lasting eruptions. An important
implementation of advection-diffusion models in the
frame of forecasting tephra fall dispersal for hazard
assessment would be including the time factor for the
simulation of tephra fall.
[57] Second, aggregation processes and particle shape

effects were not accounted for in our assessment because
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no corresponding data are available for the Kaharoa eruption.
A reliable parameterization that can describe aggregation
processes during tephra fall even when direct observations
are not available would help describe tephra fall features also
from those volcanoes that do not erupt very frequently and
therefore do not provide detailed information of their erup-
tive processes. A simple parameterization of the effect of
particle shape on particle settling velocity would also sig-
nificantly improve the description of tephra fall dispersal. As
an example, Riley et al. [2003] showed that the diameters of
ash particles from three different distal tephra fall deposits
are 10–120% larger than ideal spheres at the same terminal
velocities. Unfortunately, modeling settling velocities with-
out the assumption of spherical shape is still very complex
[Chhabra et al., 1999].
[58] Third, both plume mass distribution models tested

(i.e., uniform and lognormal) are independent of the particle
settling velocity within the plume and the plume vertical
velocity. A more thorough model is needed to describe the
plume dynamics.
[59] Finally, reliable data sets from powerful eruptions are

needed to calibrate advection-diffusion models more accu-
rately. Our calibration was based on one very good data set
from a weak sub-Plinian plume (i.e., Ruapehu) and one
poorer data set from a strong Plinian plume (i.e., Kaharoa,
unit F). In order to have more reliable models for tephra fall
dispersal that can provide reliable hazard assessments, we
need more data sets complete with direct observations of
tephra fall processes and accurate data processing.

8. Conclusions

[60] A new advection-diffusion model, TEPHRA, was
developed from the combination of several theories and
modeling approaches to provide an efficient and reliable
tool for hazard assessment of tephra fall. After a careful
analysis of the model, we can conclude make the following
conclusions:
[61] 1. The main implementations of TEPHRA are

(1) parallelization of the advection-diffusion code, (2) fully
probabilistic assessment of input and output parameters,
and (3) a more robust physical model.
[62] 2. Parallel modeling is the ideal computational

approach for hazard assessment as, given the short com-
puting times, it increases the hazard map resolution and
reliability because calculations can be done on more points
and because the physical models can be based on a more
robust algorithm.
[63] 3. The short computing times that characterize par-

allel modeling also allow a fully probabilistic assessment
based on (1) a stochastic sampling of input parameters and
(2) a probabilistic analysis of possible outcomes.
[64] 4. A fully probabilistic approach to hazard assess-

ment is necessary to deal with input uncertainties and
different activity scenarios (i.e., Monte Carlo approach).
[65] 5. The main implementations of the physical model

are (1) particle settling velocities that account for Reynolds
number variations along the particle trajectory, (2) hori-
zontal diffusion time in the volcanic plume, and (3) grain
size-dependent diffusion law.
[66] 4. Linear and power law diffusion result in different

thinning trends, with linear diffusion typically producing

thicker but narrower deposits along the dispersal axis. The
combination of the two diffusion laws results in a thinning
break in slope.
[67] A combination of observations from the �A.D. 1315

Kaharoa eruption and model simulations enabled us to
evaluate probabilistically the accumulations and effects of
tephra fall produced by a Kaharoa-type eruption. On the
basis of our assessment we can conclude the following
conclusions:
[68] Because of the prevailing winds below 25 km above

sea level blowing between north and south with main
direction to the east, the areas NW, west, and south of
Tarawera are likely to receive little tephra fall from a
Kaharoa-type eruption. Therefore key cities such as Ham-
ilton, Auckland, and Wellington are relatively safe from
hazardous tephra fall from Tarawera.
[69] 2. The most affected localities are some key towns

that lie NE of Tarawera, which are likely to experience
damage to vegetation in all scenario considered and also
partial collapse of buildings for the MES case.
[70] 3. Detailed wind analysis shows that the dispersal of

tephra fall from Tarawera is not significantly affected by El
Niño or La Niña fluctuations, whereas it is slightly affected
by seasonal variations, with the area immediately west of
the volcano being more likely to receive tephra fall during
the austral spring-summer.
[71] 4. On the basis of purely tephra fall dispersal con-

siderations, the whole Kaharoa eruption might have oc-
curred during an austral spring-summer or at least five
consecutive units are very likely to have occurred during
the same austral spring-summer.

Notation

Dimensions of each term are given in brackets: L, length; T,
time; M, mass.

A dimensionless parameter that controls the shape
of the mass distribution function within the
eruptive plume; equation (10).

C apparent eddy diffusivity empirically determined
(C = 0.04 m2 s�1 [Suzuki, 1983]) [L T�1];
equation (8).

d particle diameter [L].
fi,j(x, y) function of mass accumulation on the ground

around a point with coordinates (x, y) (Gaussian
distribution) [L�2]; equation (5).

fF(f) function of total grain size distribution of the
eruptive plume; equation (11).

FTT fall time threshold [T]; diffusion of particles
with fall times <FTT is described by a linear law
(equation (6)), whereas diffusion of particles
with fall times >FTT is described by a power
law (equation (8)).

H total plume height [L]; equation (12).
Hmax maximum total plume height observed and/or

considered possible [L].
Hmin minimum total plume height observed and/or

considered possible [L].
i indices of point sources along the eruptive

plume.
j indices of particle size.
K horizontal atmospheric diffusion coefficient

(K = Kx = Ky) [L
2 T�1]; equation (6).
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Kx x component (horizontal) of the diffusion
coefficient [L2 T�1].

Ky y component (horizontal) of the diffusion
coefficient [L2 T�1].

Kz z component (vertical) of the diffusion coeffi-
cient [L2 T�1].

M(x, y) total mass accumulated on the ground around a
point of coordinates (x, y) [M L�2]; equation (3).

Mi,j
o total erupted mass of a given grain ize fraction j

released from a point source i along the erupting
plume [M]; equation (1).

Mo total erupted mass [M]; equations (1) and (12).
Mcomp computed mass accumulation per unit area

[M L�2].
Mobs observed mass accumulation per unit area

[M L�2].
mi,j(x, y) mass per unit area of a given grain size fraction j

released from a point source i and accumulated
on the ground around a point of coordinates
(x, y) [M L�2]; equation (2).

Mdf median diameter (grain size parameter) [Inman,
1952].

MDM mass distribution model: (1) uniform distribu-
tion along the eruptive plume (i.e., distribution 4
of Bonadonna et al. [2002]) and (2) lognormal
distribution along the eruptive plume controlled
by the parameter A.

mf misfit function [M L�2]; equation (13).
N number of data points; equation (13).
P conditional probability.

pz(zi) probability density function of mass distribution
within the eruptive plume; equation (10).

ri plume radius at a given height zi [L].
SkG graphic skewness (grain size parameter) [Inman,

1952].
ti,j fall time of a particle of size j released from a

point source i along the eruptive plume [T];
equation (4).

t0i horizontal diffusion time in the volcanic plume
at a point source i [T].

TR hazardous tephra accumulation threshold
[M L�2].

vj particle terminal velocity of a particle of size j in
the atmosphere [M L�1].

wx component of the wind speed along the x axis
[L T�1].

wy component of the wind speed along the y axis
[L T�1].

(x, y) coordinates of a point on the ground.
(xi, yi, zi) coordinates of a point source i along the eruptive

plume from where particles are released.
xi,j x coordinate of the center of the Gaussian

distribution of mass on ground of particles of
size j and released from a point i along the
eruptive plume (xi,j = xi +

P
layersdxj) [L];

equation (5).
yi,j y coordinate of the center of the Gaussian

distribution of mass on ground of particles of
size j and released from a point i along the
eruptive plume (yi,j = yi +

P
layersdyj) [L];

equation (5).

zi height of a point source i along the eruptive
plume [L].

G duration of the Plinian discharge [T];
equation (12).

dtj time spent by a particle of size j within each
atmospheric layer [T].

dxj wind transport of a particle of size j along the
x axis within an atmospheric layer (dxj = wxdtj)
[L]; equation (5).

dyj wind transport of a particle of size j along the
y axis within an atmospheric layer (dyj = wydtj)
[L]; equation (5).

dz thickness of each atmospheric layer [L].
rdep density of tephra fall deposit [M L�3].
sf graphic standard deviation (grain size parameter)

[Inman, 1952].
si,j
2 variance of the Gaussian mass distribution on

the ground of particles of size j released from a
point source i [L2]; equations (6) and (8).

sp standard deviation of the Gaussian distribution
of the mass in the ascending plume [L];
equation (7).

f granulometric unit: f = �log2(10
3d), where d is

the particle diameter in m.
fmax maximum particle diameter.
fmin minimum particle diameter.
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