
Program semantics meets architecture:

What if we did not have branches?

Soner Onder
Department of Computer Science
Michigan Technological University

Prologue

Prologue
I am a dreamer. I dream a lot of things.

Prologue
I am a dreamer. I dream a lot of things.

Today, I ask the question:
What if we did not have branches?

Prologue
I am a dreamer. I dream a lot of things.

Pure speculation:

Today, I ask the question:
What if we did not have branches?

Prologue
I am a dreamer. I dream a lot of things.

Pure speculation:

… Daniel would be doing even better because he would stay in AI instead of
working in our merciless field where no good work can escape rejection.

Today, I ask the question:
What if we did not have branches?

Prologue
I am a dreamer. I dream a lot of things.

Pure speculation:

… Daniel would be doing even better because he would stay in AI instead of
working in our merciless field where no good work can escape rejection.

… TAGE predictor would still exist but it would be predicting something else.
(I am suspecting André came up with the name before he invented the predictor).

Today, I ask the question:
What if we did not have branches?

Prologue
I am a dreamer. I dream a lot of things.

Pure speculation:

… Daniel would be doing even better because he would stay in AI instead of
working in our merciless field where no good work can escape rejection.

… TAGE predictor would still exist but it would be predicting something else.
(I am suspecting André came up with the name before he invented the predictor).

… and … Yale would be lesser known …

Today, I ask the question:
What if we did not have branches?

Prologue
I am a dreamer. I dream a lot of things.

Pure speculation:

… Daniel would be doing even better because he would stay in AI instead of
working in our merciless field where no good work can escape rejection.

… TAGE predictor would still exist but it would be predicting something else.
(I am suspecting André came up with the name before he invented the predictor).

… and … Yale would be lesser known … for his work in branch prediction.

Today, I ask the question:
What if we did not have branches?

Prologue
I am a dreamer. I dream a lot of things.

Pure speculation:

… Daniel would be doing even better because he would stay in AI instead of
working in our merciless field where no good work can escape rejection.

… TAGE predictor would still exist but it would be predicting something else.
(I am suspecting André came up with the name before he invented the predictor).

… and … Yale would be lesser known … for his work in branch prediction.
Nevertheless, no lesser known!

Today, I ask the question:
What if we did not have branches?

Prologue

11

I am a dreamer. I dream a lot of things.

Pure speculation:

… Daniel would be doing even better because he would stay in AI instead of
working in our merciless field where no good work can escape rejection.

… TAGE predictor would still exist but it would be predicting something else.
(I am suspecting André came up with the name before he invented the predictor).

… and … Yale would be lesser known … for his work in branch prediction.
Nevertheless, no lesser known!

… as for me, I would still be giving this talk in honor of his 80-th birthday, except
there would be a slight variation in my talk’s title:

Today, I ask the question:
What if we did not have branches?

Prologue

12

I am a dreamer. I dream a lot of things.

Pure speculation:

… Daniel would be doing even better because he would stay in AI instead of
working in our merciless field where no good work can escape rejection.

… TAGE predictor would still exist but it would be predicting something else.
(I am suspecting André came up with the name before he invented the predictor).

… and … Yale would be lesser known … for his work in branch prediction.
Nevertheless, no lesser known!

… as for me, I would still be giving this talk in honor of his 80-th birthday, except
there would be a slight variation in my talk’s title:

Program semantics meets architecture: What if we had branches?

Today, I ask the question:
What if we did not have branches?

13

Is this a serious talk?

14

Is this a serious talk?

Possibly.

15

Is this a serious talk?

Possibly.

Are you going to be talking about predication?

16

Is this a serious talk?

Possibly.

Are you going to be talking about predication?

Nihil sub sole novum.

17

Is this a serious talk?

Possibly.

Are you going to be talking about predication?

Nihil sub sole novum.

Why are you giving this talk then?

18

Is this a serious talk?

Possibly.

Are you going to be talking about predication?

Nihil sub sole novum.

Why are you giving this talk then?

To give a new perspective.

19

Is this a serious talk?

Possibly.

Are you going to be talking about predication?

Nihil sub sole novum.

Why are you giving this talk then?

To give a new perspective.

So, let’s start with the question:

Why do we need to use branches in implementing the semantics of our programs?

Turing completeness

Turing completeness

Corrado Böhm, professor emeritus at the
University of Rome "La Sapienza", left us on
October 23, 2017 at the age of 94.

He has been an exceptionally talented and
creative researcher: his results have deeply
influenced the development of theoretical
computer science.

In their seminal paper :

Flow Diagrams, Turing Machines And Languages With Only Two Formation Rules,
Communications of the ACM (CACM), Volume 9 Issue 5, May 1966 (*),

Corrado Böhm and his student Giuseppe Jacopini proved that sequencing, selection
and iteration are sufficient to simulate any Turing machine.

Turing completeness

Corrado Böhm, professor emeritus at the
University of Rome "La Sapienza", left us on
October 23, 2017 at the age of 94.

He has been an exceptionally talented and
creative researcher: his results have deeply
influenced the development of theoretical
computer science.

In their seminal paper :

Flow Diagrams, Turing Machines And Languages With Only Two Formation Rules,
Communications of the ACM (CACM), Volume 9 Issue 5, May 1966 (*),

Corrado Böhm and his student Giuseppe Jacopini proved that sequencing, selection
and iteration are sufficient to simulate any Turing machine.

(*) One of two references in Dijkstra’s Go To Statement Considered Harmful paper.

Turing completeness

Go To Statement Considered Harmful, Communications of the
ACM (CACM), Volume 11 Issue 3, March 1968.

Edsger Wybe Dijkstra:

Guiseppe Jacopini seems to have proved the (logical) superfluousness of the go to
statement. The exercise to translate an arbitrary flow diagram more or less mechanically
into a jump-less one, however, is not to be recommended. Then the resulting flow diagram
cannot be expected to be more transparent than the original one.(*)

(*) I highlighted the text

Turing completeness

Turing completeness

Question:
Eliminating Go To statements through structured programming does not eliminate
branches. We still need to implement structured constructs using branches at the
low-level, right?

Turing completeness

Question:
Eliminating Go To statements through structured programming does not eliminate
branches. We still need to implement structured constructs using branches at the
low-level, right?

Answer:
No, we do not need branches even at the low-level, if we forgo controlling

instructions and concentrate only on data values. We only need gating and recursion.

Turing completeness

In the rest of the talk, I’ll show that we can efficiently implement:

1. Sequencing in a data-driven manner
2. Selection using gating functions
3. Iteration through recursion

All without branches!

Furthermore, we will end-up with a “more transparent” program than the original
program!

Question:
Eliminating Go To statements through structured programming does not eliminate
branches. We still need to implement structured constructs using branches at the
low-level, right?

Answer:
No, we do not need branches even at the low-level, if we forgo controlling

instructions and concentrate only on data values. We only need gating and recursion.

Revisiting control-dependence – if-then-else

Revisiting control-dependence – if-then-else

It is well-known that branch instructions implement control-dependencies. They can
be converted to data-dependencies through if-conversion (predication).

Formally:
An instruction j is control-dependent on i if the execution of j is controlled by i.

Revisiting control-dependence – if-then-else

i: If a < b then
j: k = 5

else
k: k = 10

= k

The code

Selection is
implemented
in the fetch
unit by
changing PC.

It is well-known that branch instructions implement control-dependencies. They can
be converted to data-dependencies through if-conversion (predication).

Formally:
An instruction j is control-dependent on i if the execution of j is controlled by i.

Revisiting control-dependence – if-then-else

i: If a < b then
j: k = 5

else
k: k = 10

= k

The code

Selection is
implemented
in the fetch
unit by
changing PC.

T : P = a < b
P : k = 5

┐P : k = 10
= k

If-converted code

Selection is
implemented
by controlling
writes using
predicates.

It is well-known that branch instructions implement control-dependencies. They can
be converted to data-dependencies through if-conversion (predication).

Formally:
An instruction j is control-dependent on i if the execution of j is controlled by i.

Revisiting control-dependence – if-then-else

i: If a < b then
j: k = 5

else
k: k = 10

= k

The code

Selection is
implemented
in the fetch
unit by
changing PC.

T : P = a < b
P : k = 5

┐P : k = 10
= k

If-converted code

Selection is
implemented
by controlling
writes using
predicates.

k = 5
t = 10
P = a < b
k = cmov ┐p, t

= k

Conditional move

Selection is
implemented
by controlling
whether
cmov writes.

It is well-known that branch instructions implement control-dependencies. They can
be converted to data-dependencies through if-conversion (predication).

Formally:
An instruction j is control-dependent on i if the execution of j is controlled by i.

Revisiting control-dependence – if-then-else

i: If a < b then
j: k = 5

else
k: k = 10

= k

The code

Selection is
implemented
in the fetch
unit by
changing PC.

T : P = a < b
P : k = 5

┐P : k = 10
= k

If-converted code

Selection is
implemented
by controlling
writes using
predicates.

k = 5
t = 10
P = a < b
k = cmov ┐p, t

= k

Conditional move

Selection is
implemented
by controlling
whether
cmov writes.

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2

Gating

Selection is
implemented
by a MUX at
the ALU
inputs.

It is well-known that branch instructions implement control-dependencies. They can
be converted to data-dependencies through if-conversion (predication).

Formally:
An instruction j is control-dependent on i if the execution of j is controlled by i.

Revisiting control-dependence – if-then-else

i: If a < b then
j: k = 5

else
k: k = 10

= k

The code

Selection is
implemented
in the fetch
unit by
changing PC.

T : P = a < b
P : k = 5

┐P : k = 10
= k

If-converted code

Selection is
implemented
by controlling
writes using
predicates.

k = 5
t = 10
P = a < b
k = cmov ┐p, t

= k

Conditional move

Selection is
implemented
by controlling
whether
cmov writes.

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2

Gating

Selection is
implemented
by a MUX at
the ALU
inputs.

It is well-known that branch instructions implement control-dependencies. They can
be converted to data-dependencies through if-conversion (predication).

Formally:
An instruction j is control-dependent on i if the execution of j is controlled by i.

Both paths are fetched and executed.

Executing both paths

p

x = 5 x = 10

= x

TF
p

x = 5

x = 10

= x

TF

…
…
…
…
…
…
…
…Frequent path

(a)

(b)

Revisiting control-dependence - Gating

Revisiting control-dependence - Gating

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2

Gating
In eliminating branches through
if-conversion, regardless of the
type of the conversion, the ability
to point to the instruction whose
result will be used is lost.

T : P = a < b
P : k = 5

┐P : k = 10
= k

If-converted code

As a result, instructions providing the value for each path must be unconditionally
executed, in anticipation that its value might be needed.

Revisiting control-dependence - Gating

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2

Gating
In eliminating branches through
if-conversion, regardless of the
type of the conversion, the ability
to point to the instruction whose
result will be used is lost.

T : P = a < b
P : k = 5

┐P : k = 10
= k

If-converted code

Corollary:
1. Branch instructions route data through memory by selecting instructions. Only

the fetched (i.e., selected) instruction can update memory. The word selection in
Böhm and Jacopini’s paper must be understood as selecting among data values
(even though that is not exactly what they had shown).

2. Predication controls who can update memory, i.e., who should write, but it
cannot select instructions.

3. Gating selects among data values, i.e., who should be read, but it cannot select
instructions – (is that true?)

As a result, instructions providing the value for each path must be unconditionally
executed, in anticipation that its value might be needed.

Executing in “Reverse”

Executing in “Reverse”

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2 + …

This code is in single-assignment form, i.e., every
variable is assigned only once.

Executing in “Reverse”

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2 + …

This code is in single-assignment form, i.e., every
variable is assigned only once.

Instead of thinking each of the statements as assignments to memory locations, if we think
of them to be single instruction functions, the variable name becomes the name of the
function, and a reference to the name becomes an instruction pointer. Hence we obtain:

Executing in “Reverse”

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2 + …

This code is in single-assignment form, i.e., every
variable is assigned only once.

Instead of thinking each of the statements as assignments to memory locations, if we think
of them to be single instruction functions, the variable name becomes the name of the
function, and a reference to the name becomes an instruction pointer. Hence we obtain:

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }

Executing in “Reverse”

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2 + …

This code is in single-assignment form, i.e., every
variable is assigned only once.

Instead of thinking each of the statements as assignments to memory locations, if we think
of them to be single instruction functions, the variable name becomes the name of the
function, and a reference to the name becomes an instruction pointer. Hence we obtain:

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }

Evaluating the value of 𝑘𝑘2

Executing in “Reverse”

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2 + …

This code is in single-assignment form, i.e., every
variable is assigned only once.

Instead of thinking each of the statements as assignments to memory locations, if we think
of them to be single instruction functions, the variable name becomes the name of the
function, and a reference to the name becomes an instruction pointer. Hence we obtain:

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }

Evaluating the value of 𝑘𝑘2

Executing in “Reverse”

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2 + …

This code is in single-assignment form, i.e., every
variable is assigned only once.

Instead of thinking each of the statements as assignments to memory locations, if we think
of them to be single instruction functions, the variable name becomes the name of the
function, and a reference to the name becomes an instruction pointer. Hence we obtain:

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }

Evaluating the value of 𝑘𝑘2

Executing in “Reverse”

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2 + …

This code is in single-assignment form, i.e., every
variable is assigned only once.

Instead of thinking each of the statements as assignments to memory locations, if we think
of them to be single instruction functions, the variable name becomes the name of the
function, and a reference to the name becomes an instruction pointer. Hence we obtain:

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }

Evaluating the value of 𝑘𝑘2

Executing in “Reverse”

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2 + …

This code is in single-assignment form, i.e., every
variable is assigned only once.

Instead of thinking each of the statements as assignments to memory locations, if we think
of them to be single instruction functions, the variable name becomes the name of the
function, and a reference to the name becomes an instruction pointer. Hence we obtain:

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }

Evaluating the value of 𝑘𝑘2

T

Executing in “Reverse”

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2 + …

This code is in single-assignment form, i.e., every
variable is assigned only once.

Instead of thinking each of the statements as assignments to memory locations, if we think
of them to be single instruction functions, the variable name becomes the name of the
function, and a reference to the name becomes an instruction pointer. Hence we obtain:

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }

Evaluating the value of 𝑘𝑘2

T

Executing in “Reverse”

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2 + …

This code is in single-assignment form, i.e., every
variable is assigned only once.

Instead of thinking each of the statements as assignments to memory locations, if we think
of them to be single instruction functions, the variable name becomes the name of the
function, and a reference to the name becomes an instruction pointer. Hence we obtain:

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }

Evaluating the value of 𝑘𝑘2

T 5

Executing in “Reverse”

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2 + …

This code is in single-assignment form, i.e., every
variable is assigned only once.

Instead of thinking each of the statements as assignments to memory locations, if we think
of them to be single instruction functions, the variable name becomes the name of the
function, and a reference to the name becomes an instruction pointer. Hence we obtain:

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }5

Executing in “Reverse”

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2 + …

This code is in single-assignment form, i.e., every
variable is assigned only once.

Instead of thinking each of the statements as assignments to memory locations, if we think
of them to be single instruction functions, the variable name becomes the name of the
function, and a reference to the name becomes an instruction pointer. Hence we obtain:

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }

This is a functional program and the
execution you witnessed is Lazy
evaluation!

Only the necessary path has been
fetched and executed, and there are
no branches, only “function calls”.

5

Two function calls per instruction

=𝑘𝑘2 + …

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

E/F Value Instruction

Two function calls per instruction

=𝑘𝑘2 + …

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

E/F Value Instruction

Two function calls per instruction

=𝑘𝑘2 + …

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }

Evaluating the value of 𝑘𝑘2

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

E/F Value Instruction

Two function calls per instruction

=𝑘𝑘2 + …

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }

Evaluating the value of 𝑘𝑘2

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

E/F Value Instruction

Two function calls per instruction

=𝑘𝑘2 + …

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }

Evaluating the value of 𝑘𝑘2

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

E/F Value Instruction

Two function calls per instruction

=𝑘𝑘2 + …

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }

Evaluating the value of 𝑘𝑘2

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

E/F Value Instruction

1 1

Two function calls per instruction

=𝑘𝑘2 + …

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }

Evaluating the value of 𝑘𝑘2

T

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

E/F Value Instruction

1 1

Two function calls per instruction

=𝑘𝑘2 + …

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }

Evaluating the value of 𝑘𝑘2

T

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

E/F Value Instruction

1 1

Two function calls per instruction

=𝑘𝑘2 + …

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }

Evaluating the value of 𝑘𝑘2

T 5

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

E/F Value Instruction

1 1

51

Two function calls per instruction

=𝑘𝑘2 + …

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }5

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

E/F Value Instruction

1 1

51

1 5

Two function calls per instruction

=𝑘𝑘2 + …

𝑘𝑘0() { return 5 }
𝑘𝑘1 () { return 10 }
P() { return a() < b() }
𝑘𝑘2() { return Ψ𝑝𝑝() (𝑘𝑘0(), 𝑘𝑘1()) }

… { return 𝑘𝑘2() + … }5

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

E/F Value Instruction

1 1

51

1 5

A “function call” is nothing but reading a
memory location. If the location is full, it returns
the data value. If it is empty, it evaluates the
instruction, stores the value and makes the
location full.

A more complicated example

p

q r

x = 5 x = 10

= x

p

q r

𝑥𝑥1= 5 𝑥𝑥2= 10

𝑥𝑥3= Ψ 𝑝𝑝 & 𝑟𝑟 |(!𝑝𝑝 & 𝑞𝑞)(𝑥𝑥2,𝑥𝑥1)
= 𝑥𝑥3

T

FT

T

TT

F F

F F FT

A more complicated example

Gating:
1. It does not matter how complicated the control-flow structure is. Unlike

branches, predicate expressions can be evaluated in parallel.

2. If (p &r) | (!p & q) is true, we’ll fetch and execute 𝑥𝑥2= 10, otherwise we’ll
fetch 𝑥𝑥1= 5.

p

q r

x = 5 x = 10

= x

p

q r

𝑥𝑥1= 5 𝑥𝑥2= 10

𝑥𝑥3= Ψ 𝑝𝑝 & 𝑟𝑟 |(!𝑝𝑝 & 𝑞𝑞)(𝑥𝑥2,𝑥𝑥1)
= 𝑥𝑥3

T

FT

T

TT

F F

F F FT

How about loops?

How about loops?

sum = sum + a[i]
i = i + 1
p = i < 100

p ?

T

sum = 0
i = 0

F

How about loops?

sum = sum + a[i]
i = i + 1
p = i < 100

p ?

T

sum = 0
i = 0

F

How about loops?

sum = sum + a[i]
i = i + 1
p = i < 100

p ?

T

sum = 0
i = 0

F

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 < 100

p?

TF
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

How about loops?

sum = sum + a[i]
i = i + 1
p = i < 100

p ?

T

sum = 0
i = 0

F

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 < 100

p?

TF
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 𝑅𝑅1 and 𝑅𝑅2 are read-once predicates

How about loops?

The loop in single-assignment form facilitates the conversion to recursion:
1. If we keep branches, the code is forward executable.
2. Alternatively, we can drop the branches and call the exit function of the loop.
3. The exit function “iterates” until the predicate becomes true.

sum = sum + a[i]
i = i + 1
p = i < 100

p ?

T

sum = 0
i = 0

F

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 < 100

p?

TF
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 𝑅𝑅1 and 𝑅𝑅2 are read-once predicates

Drop branches and (just for fun) shuffle instructions

Drop branches and (just for fun) shuffle instructions

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 < 100

p?

TF
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

Drop branches and (just for fun) shuffle instructions

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 < 100

p?

TF
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)
p = 𝑖𝑖2 < 100
𝑖𝑖2= 𝑖𝑖1 + 1
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑅𝑅2= T
𝑠𝑠𝑠𝑠𝑠𝑠0= 0

Entry point

Drop branches and (just for fun) shuffle instructions

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 < 100

p?

TF
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)
p = 𝑖𝑖2 < 100
𝑖𝑖2= 𝑖𝑖1 + 1
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑅𝑅2= T
𝑠𝑠𝑠𝑠𝑠𝑠0= 0

Entry point

Data-driven sequencing

Drop branches and (just for fun) shuffle instructions

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 < 100

p?

TF
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)
p = 𝑖𝑖2 < 100
𝑖𝑖2= 𝑖𝑖1 + 1
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑅𝑅2= T
𝑠𝑠𝑠𝑠𝑠𝑠0= 0

Entry point

Data-driven sequencing

Drop branches and (just for fun) shuffle instructions

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 < 100

p?

TF
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

p = 𝑖𝑖2 < 100 𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1

𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)
p = 𝑖𝑖2 < 100
𝑖𝑖2= 𝑖𝑖1 + 1
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑅𝑅2= T
𝑠𝑠𝑠𝑠𝑠𝑠0= 0

Entry point

Data-driven sequencing

Drop branches and (just for fun) shuffle instructions

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 < 100

p?

TF
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

p = 𝑖𝑖2 < 100 𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1

𝑖𝑖2= 𝑖𝑖1 + 1 𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)
p = 𝑖𝑖2 < 100
𝑖𝑖2= 𝑖𝑖1 + 1
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑅𝑅2= T
𝑠𝑠𝑠𝑠𝑠𝑠0= 0

Entry point

Data-driven sequencing

Drop branches and (just for fun) shuffle instructions

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 < 100

p?

TF
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

p = 𝑖𝑖2 < 100 𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1

𝑖𝑖2= 𝑖𝑖1 + 1

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)

𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑅𝑅2= T

𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)
p = 𝑖𝑖2 < 100
𝑖𝑖2= 𝑖𝑖1 + 1
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑅𝑅2= T
𝑠𝑠𝑠𝑠𝑠𝑠0= 0

Entry point

Data-driven sequencing

Drop branches and (just for fun) shuffle instructions

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 < 100

p?

TF
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

p = 𝑖𝑖2 < 100 𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1

𝑖𝑖2= 𝑖𝑖1 + 1

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)

𝑅𝑅1= T

𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑅𝑅2= T

𝑠𝑠𝑠𝑠𝑠𝑠0= 0

𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)
p = 𝑖𝑖2 < 100
𝑖𝑖2= 𝑖𝑖1 + 1
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑅𝑅2= T
𝑠𝑠𝑠𝑠𝑠𝑠0= 0

Entry point

Data-driven sequencing

Drop branches and (just for fun) shuffle instructions

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 < 100

p?

TF
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

p = 𝑖𝑖2 < 100 𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1

𝑖𝑖2= 𝑖𝑖1 + 1

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)

𝑅𝑅1= T

𝑖𝑖0 = 0

𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑅𝑅2= T

𝑠𝑠𝑠𝑠𝑠𝑠0= 0

𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)
p = 𝑖𝑖2 < 100
𝑖𝑖2= 𝑖𝑖1 + 1
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑅𝑅2= T
𝑠𝑠𝑠𝑠𝑠𝑠0= 0

Entry point

Data-driven sequencing

Drop branches and (just for fun) shuffle instructions

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 < 100

p?

TF
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

p = 𝑖𝑖2 < 100 𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1

𝑖𝑖2= 𝑖𝑖1 + 1

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)

𝑅𝑅1= T

𝑖𝑖0 = 0

𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑅𝑅2= T

𝑠𝑠𝑠𝑠𝑠𝑠0= 0

𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)
p = 𝑖𝑖2 < 100
𝑖𝑖2= 𝑖𝑖1 + 1
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑅𝑅2= T
𝑠𝑠𝑠𝑠𝑠𝑠0= 0

Entry point

Data-driven sequencing

End of first iteration!

Conversion to a “functional program”

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 > 100

p?

T

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

F
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

loop (𝑖𝑖1, 𝑠𝑠𝑠𝑠𝑠𝑠1)
{
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 > 100
return Ψ𝑝𝑝 (𝑠𝑠𝑠𝑠𝑠𝑠2,loop(𝑖𝑖2, 𝑠𝑠𝑠𝑠𝑠𝑠2))

}

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑠𝑠𝑠𝑠𝑠𝑠3= loop (𝑖𝑖0, 𝑠𝑠𝑠𝑠𝑠𝑠0)

Conversion to a “functional program”

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 > 100

p?

T

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

F
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

loop (𝑖𝑖1, 𝑠𝑠𝑠𝑠𝑠𝑠1)
{
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 > 100
return Ψ𝑝𝑝 (𝑠𝑠𝑠𝑠𝑠𝑠2,loop(𝑖𝑖2, 𝑠𝑠𝑠𝑠𝑠𝑠2))

}

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑠𝑠𝑠𝑠𝑠𝑠3= loop (𝑖𝑖0, 𝑠𝑠𝑠𝑠𝑠𝑠0)

Isn’t this tail-recursion?

Conversion to a “functional program”

The program on the right is a functional program, generated from the imperative program,
following a completely mechanical procedure. In this program, sequencing is data-driven,
selection is provided by gating functions and iteration is implemented using a special form of
tail-recursion, we call “cut-tail” recursion.

Cut-tail is a mirror image of continuation-passing, only in reverse (we forward return points).

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 > 100

p?

T

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

F
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2)

loop (𝑖𝑖1, 𝑠𝑠𝑠𝑠𝑠𝑠1)
{
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 > 100
return Ψ𝑝𝑝 (𝑠𝑠𝑠𝑠𝑠𝑠2,loop(𝑖𝑖2, 𝑠𝑠𝑠𝑠𝑠𝑠2))

}

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑠𝑠𝑠𝑠𝑠𝑠3= loop (𝑖𝑖0, 𝑠𝑠𝑠𝑠𝑠𝑠0)

Isn’t this tail-recursion?

“Branch” Prediction

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2

Gating Under Lazy evaluation, there is a pipeline delay between the
time the gating function gets the predicate and the
appropriate path is fetched. The same is true for the
recursive iterator.

The only way to remedy this delay is to predict the predicate.
In this case, the function can simultaneously evaluate the
predicted path and the predicate expression, provided that
evaluation of the predicted path is side-effect free.

“Branch” Prediction

𝑘𝑘0 = 5
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2

Gating

Corollary:
1. It is more appropriate to talk about control-dependence prediction, rather than

“branch prediction”.

2. Correlation manifests itself now among predicates. It is more appropriate to talk
about correlation in control-dependence as well.

3. Control-dependence prediction, and exploiting control-dependence correlation
are lasting contributions. They won’t go away whether or not programs are
expressed imperatively or functionally (or by using branches or not).

Under Lazy evaluation, there is a pipeline delay between the
time the gating function gets the predicate and the
appropriate path is fetched. The same is true for the
recursive iterator.

The only way to remedy this delay is to predict the predicate.
In this case, the function can simultaneously evaluate the
predicted path and the predicate expression, provided that
evaluation of the predicted path is side-effect free.

What we have

What we have
We have a “graph solver” which can take any imperative program and generate a
functional version of it in the form of a program representation, called Future
Gated Single Assignment (FGSA) form:

Shuhan Ding, John Earnest, and Soner Önder. 2014. Single Assignment Compiler, Single
Assignment Architecture: Future Gated Single Assignment Form; Static Single Assignment
with Congruence Classes. In Proceedings of Annual IEEE/ACM International Symposium on
Code Generation and Optimization (CGO '14). ACM, New York, NY, USA, , Pages 196 , 12
pages. DOI=10.1145/2544137.2544158

What we have
We have a “graph solver” which can take any imperative program and generate a
functional version of it in the form of a program representation, called Future
Gated Single Assignment (FGSA) form:

Shuhan Ding, John Earnest, and Soner Önder. 2014. Single Assignment Compiler, Single
Assignment Architecture: Future Gated Single Assignment Form; Static Single Assignment
with Congruence Classes. In Proceedings of Annual IEEE/ACM International Symposium on
Code Generation and Optimization (CGO '14). ACM, New York, NY, USA, , Pages 196 , 12
pages. DOI=10.1145/2544137.2544158

We have a complete instruction set in which FGSA programs can be encoded at
the machine-level:

Omkar Javeri and Zhaoxiang Jin, and Soner Onder (2018). A Demand-Driven Instruction Set
Architecture. Technical Report, Department of Computer Science, Michigan Technological
University, CS-TR-18-01.

What we have

What we have

We have a functioning pipelined processor implementation written in ADL language
which gives us a cycle-accurate simulator:

Omkar Javeri and Tino Moore, and Soner Onder (2018). Demand-Driven Execution Pipeline.
Technical Report, Department of Computer Science, Michigan Technological University, CS-TR-19-
00.

Demand-driven Execution Pipeline

What we have

What we have

Finally, we have a compiler that can compile C programs and generate
demand-driven ISA code for inner-most loops.

Open Problems

Open Problems

1. Existing branch predictors rely on existence of sequential sequencing (i.e., global
branch history). We do not know how to exploit “predicate histories” which are
data-driven.

2. It seems that in programs with sufficient ILP, prediction of “forward” branches in
this domain may not be necessary, or a non-correlating simple predictor would
suffice. On the other hand, we MUST predict the loop back-edges. We do not
know how to best do this.

Diversity

“Besides a mathematical inclination, an exceptionally good mastery of one's native
tongue is the most vital asset of a competent programmer.”

― Edsger W. Dijkstra

Diversity

“Besides a mathematical inclination, an exceptionally good mastery of one's native
tongue is the most vital asset of a competent programmer.”

― Edsger W. Dijkstra

Diversity

A simple Turkish sentence: Eve gideceğim.

“Besides a mathematical inclination, an exceptionally good mastery of one's native
tongue is the most vital asset of a competent programmer.”

― Edsger W. Dijkstra

Diversity

A simple Turkish sentence: Eve gideceğim.

Dissecting :

“Besides a mathematical inclination, an exceptionally good mastery of one's native
tongue is the most vital asset of a competent programmer.”

― Edsger W. Dijkstra

Diversity

A simple Turkish sentence: Eve gideceğim.

Dissecting :

Home to go will I
Ev e gid eceğ im

“Besides a mathematical inclination, an exceptionally good mastery of one's native
tongue is the most vital asset of a competent programmer.”

― Edsger W. Dijkstra

Diversity

A simple Turkish sentence: Eve gideceğim.

Dissecting :

Home to go will I
Ev e gid eceğ im

“Besides a mathematical inclination, an exceptionally good mastery of one's native
tongue is the most vital asset of a competent programmer.”

― Edsger W. Dijkstra

Diversity

A simple Turkish sentence: Eve gideceğim.

Dissecting :

Home to go will I
Ev e gid eceğ im

“Besides a mathematical inclination, an exceptionally good mastery of one's native
tongue is the most vital asset of a competent programmer.”

― Edsger W. Dijkstra

Diversity

A simple Turkish sentence: Eve gideceğim.

Dissecting :

Home to go will I
Ev e gid eceğ im

“Besides a mathematical inclination, an exceptionally good mastery of one's native
tongue is the most vital asset of a competent programmer.”

― Edsger W. Dijkstra

Diversity

A simple Turkish sentence: Eve gideceğim.

Dissecting :

Home to go will I
Ev e gid eceğ im

“Besides a mathematical inclination, an exceptionally good mastery of one's native
tongue is the most vital asset of a competent programmer.”

― Edsger W. Dijkstra

Diversity

A simple Turkish sentence: Eve gideceğim.

Dissecting :

Home to go will I
Ev e gid eceğ im

“Besides a mathematical inclination, an exceptionally good mastery of one's native
tongue is the most vital asset of a competent programmer.”

― Edsger W. Dijkstra

Diversity

Turkish is primarily a suffix based, “postfix language”. In Turkish, it is natural to say
everything in “reverse”!

A simple Turkish sentence: Eve gideceğim.

Dissecting :

Home to go will I
Ev e gid eceğ im

Acknowledgement

XPS: Full: FP: Collaborative Research: Sphinx: Combining Data and Instruction Level
Parallelism through Demand Driven Execution of Imperative Programs, CCF 1533828, MTU
Lead institution, PI:Soner Onder (Michigan Tech), PI:David Whalley (Florida State University)
EAGER: Combining Data and Instruction Level Parallelism through Demand Driven Execution
of Imperative Programs, CCF 1450062, PI:Soner Onder
SHF: Small: Single Assignment Architecture / Single Assignment Compiler, CCF 1116551, PI:
Soner Onder

Tino Moore
(MTU-CS)
Graph-solver

Omkar Javeri
(MTU-ECE)
Processor design

Graduate and Graduated Students

Dr. Shuhan Ding
(MTU-CS)
FGSA
(Qualcomm)

Ryan Baird
(FSU-CS)
Compiler Framework

	Program semantics meets architecture:� �What if we did not have branches?
	Prologue
	Prologue
	Prologue
	Prologue
	Prologue
	Prologue
	Prologue
	Prologue
	Prologue
	Prologue
	Prologue
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Turing completeness
	Turing completeness
	Turing completeness
	Turing completeness
	Turing completeness
	Turing completeness
	Turing completeness
	Turing completeness
	Revisiting control-dependence – if-then-else
	Revisiting control-dependence – if-then-else
	Revisiting control-dependence – if-then-else
	Revisiting control-dependence – if-then-else
	Revisiting control-dependence – if-then-else
	Revisiting control-dependence – if-then-else
	Revisiting control-dependence – if-then-else
	Executing both paths
	Revisiting control-dependence - Gating
	Revisiting control-dependence - Gating
	Revisiting control-dependence - Gating
	Executing in “Reverse”
	Executing in “Reverse”
	Executing in “Reverse”
	Executing in “Reverse”
	Executing in “Reverse”
	Executing in “Reverse”
	Executing in “Reverse”
	Executing in “Reverse”
	Executing in “Reverse”
	Executing in “Reverse”
	Executing in “Reverse”
	Executing in “Reverse”
	Executing in “Reverse”
	Two function calls per instruction
	Two function calls per instruction
	Two function calls per instruction
	Two function calls per instruction
	Two function calls per instruction
	Two function calls per instruction
	Two function calls per instruction
	Two function calls per instruction
	Two function calls per instruction
	Two function calls per instruction
	Two function calls per instruction
	A more complicated example
	A more complicated example
	How about loops?
	How about loops?
	How about loops?
	How about loops?
	How about loops?
	How about loops?
	Drop branches and (just for fun) shuffle instructions
	Drop branches and (just for fun) shuffle instructions
	Drop branches and (just for fun) shuffle instructions
	Drop branches and (just for fun) shuffle instructions
	Drop branches and (just for fun) shuffle instructions
	Drop branches and (just for fun) shuffle instructions
	Drop branches and (just for fun) shuffle instructions
	Drop branches and (just for fun) shuffle instructions
	Drop branches and (just for fun) shuffle instructions
	Drop branches and (just for fun) shuffle instructions
	Drop branches and (just for fun) shuffle instructions
	Conversion to a “functional program”
	Conversion to a “functional program”
	Conversion to a “functional program”
	“Branch” Prediction
	“Branch” Prediction
	What we have
	What we have
	What we have
	What we have
	What we have
	Demand-driven Execution Pipeline
	What we have
	What we have
	Open Problems
	Open Problems
	Diversity
	Diversity
	Diversity
	Diversity
	Diversity
	Diversity
	Diversity
	Diversity
	Diversity
	Diversity
	Diversity
	Acknowledgement

