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Is this a serious talk?

Possibly. 

Are you going to be talking about predication? 

Nihil sub sole novum.

Why are you giving this talk then?

To give a new perspective.

So, let’s start with the question: 

Why do we need to use branches in implementing the semantics of our programs?



Turing completeness



Turing completeness

Corrado Böhm, professor emeritus at the 
University of Rome "La Sapienza", left us on 
October 23, 2017 at the age of 94. 

He has been an exceptionally talented and 
creative researcher: his results have deeply 
influenced the development of theoretical 
computer science.

In their seminal paper :

Flow Diagrams, Turing Machines And Languages With Only Two Formation Rules, 
Communications of the ACM (CACM), Volume 9 Issue 5, May 1966 (*),

Corrado Böhm and his student Giuseppe Jacopini proved that sequencing, selection
and iteration are sufficient to simulate any Turing machine.



Turing completeness

Corrado Böhm, professor emeritus at the 
University of Rome "La Sapienza", left us on 
October 23, 2017 at the age of 94. 

He has been an exceptionally talented and 
creative researcher: his results have deeply 
influenced the development of theoretical 
computer science.

In their seminal paper :

Flow Diagrams, Turing Machines And Languages With Only Two Formation Rules, 
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and iteration are sufficient to simulate any Turing machine.

(*) One of two references in Dijkstra’s Go To Statement Considered Harmful paper.
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Go To Statement Considered Harmful, Communications of the 
ACM (CACM), Volume 11 Issue 3, March 1968.

Edsger Wybe Dijkstra: 

Guiseppe Jacopini seems to have proved the (logical) superfluousness of the go to 
statement. The exercise to translate an arbitrary flow diagram more or less mechanically 
into a jump-less one, however, is not to be recommended. Then the resulting flow diagram 
cannot be expected to be more transparent than the original one.(*) 

(*) I highlighted the text
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In the rest of the talk, I’ll show that we can efficiently implement:

1. Sequencing in a data-driven manner
2. Selection using gating functions
3. Iteration through recursion

All without branches!

Furthermore, we will end-up with a “more transparent” program than the original 
program!

Question: 
Eliminating Go To statements through structured programming does not eliminate
branches. We still need to implement structured constructs using branches at the 
low-level, right?

Answer:
No, we do not need branches even at the low-level, if we forgo controlling 

instructions and concentrate only on data values. We only need gating and recursion.
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It is well-known that branch instructions implement control-dependencies. They can 
be converted to data-dependencies through if-conversion (predication). 

Formally:
An instruction j is control-dependent on i if the execution of j is controlled by i.

Both paths are fetched and executed.
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Gating
In eliminating branches through 
if-conversion, regardless of the 
type of the conversion, the ability 
to point to the instruction whose 
result will be used is lost. 

T  :  P = a < b
P  :  k = 5

┐P  :  k = 10
= k

If-converted code

Corollary: 
1. Branch instructions route data through memory by selecting instructions. Only 

the fetched (i.e., selected) instruction can update memory. The word selection in 
Böhm and Jacopini’s paper must be understood as selecting among data values 
(even though that is not exactly what they had shown).

2. Predication controls who can update memory, i.e., who should write, but it 
cannot select instructions.

3. Gating selects among data values, i.e., who should be read, but it cannot select 
instructions – (is that true?)

As a result, instructions providing the value for each path must be unconditionally 
executed, in anticipation that its value might be needed. 
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A “function call” is nothing but reading a 
memory location. If the location is full, it returns 
the data value. If it is empty, it evaluates the 
instruction, stores the value and makes the 
location full.
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Gating: 
1. It does not matter how complicated the control-flow structure is. Unlike 
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How about loops?

The loop in single-assignment form facilitates the conversion to recursion: 
1. If we keep branches, the code is forward executable.
2. Alternatively, we can drop the branches and call the exit function of the loop.
3. The exit function “iterates” until the predicate becomes true.
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𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 

𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 

p = 𝑖𝑖2 < 100 𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1

𝑖𝑖2= 𝑖𝑖1 + 1 𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 
p = 𝑖𝑖2 < 100
𝑖𝑖2= 𝑖𝑖1 + 1
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑅𝑅2= T
𝑠𝑠𝑠𝑠𝑠𝑠0= 0

Entry point

Data-driven sequencing



Drop branches and (just for fun) shuffle instructions

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 < 100

p?

TF
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 

𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 

p = 𝑖𝑖2 < 100 𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1

𝑖𝑖2= 𝑖𝑖1 + 1

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)

𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑅𝑅2= T

𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 
p = 𝑖𝑖2 < 100
𝑖𝑖2= 𝑖𝑖1 + 1
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑅𝑅2= T
𝑠𝑠𝑠𝑠𝑠𝑠0= 0

Entry point

Data-driven sequencing



Drop branches and (just for fun) shuffle instructions

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 < 100

p?

TF
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 

𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 

p = 𝑖𝑖2 < 100 𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1

𝑖𝑖2= 𝑖𝑖1 + 1

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)

𝑅𝑅1= T

𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑅𝑅2= T

𝑠𝑠𝑠𝑠𝑠𝑠0= 0

𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 
p = 𝑖𝑖2 < 100
𝑖𝑖2= 𝑖𝑖1 + 1
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑅𝑅2= T
𝑠𝑠𝑠𝑠𝑠𝑠0= 0

Entry point

Data-driven sequencing



Drop branches and (just for fun) shuffle instructions

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 < 100

p?

TF
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 

𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 

p = 𝑖𝑖2 < 100 𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1

𝑖𝑖2= 𝑖𝑖1 + 1

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)

𝑅𝑅1= T

𝑖𝑖0 = 0

𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑅𝑅2= T

𝑠𝑠𝑠𝑠𝑠𝑠0= 0

𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 
p = 𝑖𝑖2 < 100
𝑖𝑖2= 𝑖𝑖1 + 1
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑅𝑅2= T
𝑠𝑠𝑠𝑠𝑠𝑠0= 0

Entry point

Data-driven sequencing



Drop branches and (just for fun) shuffle instructions

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 < 100

p?

TF
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 

𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 

p = 𝑖𝑖2 < 100 𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1

𝑖𝑖2= 𝑖𝑖1 + 1

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)

𝑅𝑅1= T

𝑖𝑖0 = 0

𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)

𝑅𝑅2= T

𝑠𝑠𝑠𝑠𝑠𝑠0= 0

𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 
p = 𝑖𝑖2 < 100
𝑖𝑖2= 𝑖𝑖1 + 1
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑅𝑅2= T
𝑠𝑠𝑠𝑠𝑠𝑠0= 0

Entry point

Data-driven sequencing

End of first iteration! 



Conversion to a “functional program”

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 > 100

p?

T

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

F
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 

loop (𝑖𝑖1, 𝑠𝑠𝑠𝑠𝑠𝑠1)
{
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 > 100
return Ψ𝑝𝑝 (𝑠𝑠𝑠𝑠𝑠𝑠2,loop(𝑖𝑖2, 𝑠𝑠𝑠𝑠𝑠𝑠2))

}

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑠𝑠𝑠𝑠𝑠𝑠3= loop (𝑖𝑖0, 𝑠𝑠𝑠𝑠𝑠𝑠0) 



Conversion to a “functional program”

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 > 100

p?

T

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

F
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 

loop (𝑖𝑖1, 𝑠𝑠𝑠𝑠𝑠𝑠1)
{
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 > 100
return Ψ𝑝𝑝 (𝑠𝑠𝑠𝑠𝑠𝑠2,loop(𝑖𝑖2, 𝑠𝑠𝑠𝑠𝑠𝑠2))

}

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑠𝑠𝑠𝑠𝑠𝑠3= loop (𝑖𝑖0, 𝑠𝑠𝑠𝑠𝑠𝑠0) 

Isn’t this tail-recursion?



Conversion to a “functional program”

The program on the right is a functional program, generated from the imperative program, 
following a completely mechanical procedure. In this program, sequencing is data-driven, 
selection is provided by gating functions and iteration is implemented using a special form of 
tail-recursion, we call “cut-tail” recursion.

Cut-tail is a mirror image of continuation-passing, only in reverse (we forward return points).

𝑖𝑖1= Ψ𝑅𝑅1(𝑖𝑖0, 𝑖𝑖2)
𝑠𝑠𝑠𝑠𝑠𝑠1= Ψ𝑅𝑅2(𝑠𝑠𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠𝑠𝑠2)
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 > 100

p?

T

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑅𝑅1= T
𝑅𝑅2= T

F
𝑠𝑠𝑠𝑠𝑠𝑠3= η (!p, 𝑠𝑠𝑠𝑠𝑠𝑠2) 

loop (𝑖𝑖1, 𝑠𝑠𝑠𝑠𝑠𝑠1)
{
𝑠𝑠𝑠𝑠𝑠𝑠2= 𝑠𝑠𝑠𝑠𝑠𝑠1+ a 𝑖𝑖1
𝑖𝑖2= 𝑖𝑖1 + 1
p = 𝑖𝑖2 > 100
return Ψ𝑝𝑝 (𝑠𝑠𝑠𝑠𝑠𝑠2,loop(𝑖𝑖2, 𝑠𝑠𝑠𝑠𝑠𝑠2))

}

𝑠𝑠𝑠𝑠𝑠𝑠0= 0
𝑖𝑖0 = 0
𝑠𝑠𝑠𝑠𝑠𝑠3= loop (𝑖𝑖0, 𝑠𝑠𝑠𝑠𝑠𝑠0) 

Isn’t this tail-recursion?



“Branch” Prediction

𝑘𝑘0 = 5 
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2

Gating Under Lazy evaluation, there is a pipeline delay between the 
time the gating function gets the predicate and the 
appropriate path is fetched. The same is true for the 
recursive iterator.

The only way to remedy this delay is to predict the predicate. 
In this case, the function can simultaneously evaluate the 
predicted path and the predicate expression, provided that 
evaluation of the predicted path is side-effect free. 



“Branch” Prediction

𝑘𝑘0 = 5 
𝑘𝑘1 = 10
P = a < b
𝑘𝑘2 = Ψ𝑝𝑝 (𝑘𝑘0,𝑘𝑘1)

= 𝑘𝑘2

Gating

Corollary: 
1. It is more appropriate to talk about control-dependence prediction, rather than 

“branch prediction”.

2. Correlation manifests itself now among predicates. It is more appropriate to talk 
about correlation in control-dependence as well.

3. Control-dependence prediction, and exploiting control-dependence correlation 
are lasting contributions. They won’t go away whether or not programs are 
expressed imperatively or functionally (or by using branches or not).

Under Lazy evaluation, there is a pipeline delay between the 
time the gating function gets the predicate and the 
appropriate path is fetched. The same is true for the 
recursive iterator.

The only way to remedy this delay is to predict the predicate. 
In this case, the function can simultaneously evaluate the 
predicted path and the predicate expression, provided that 
evaluation of the predicted path is side-effect free. 



What we have



What we have
We have a “graph solver” which can take any imperative program and generate a 
functional version of it in the form of a program representation, called Future 
Gated Single Assignment (FGSA) form:

Shuhan Ding, John Earnest, and Soner Önder. 2014. Single Assignment Compiler, Single 
Assignment Architecture: Future Gated Single Assignment Form; Static Single Assignment 
with Congruence Classes. In Proceedings of Annual IEEE/ACM International Symposium on 
Code Generation and Optimization (CGO '14). ACM, New York, NY, USA, , Pages 196 , 12 
pages. DOI=10.1145/2544137.2544158
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We have a complete instruction set in which FGSA programs can be encoded at 
the machine-level:

Omkar Javeri and Zhaoxiang Jin, and Soner Onder (2018). A Demand-Driven Instruction Set 
Architecture.  Technical Report, Department of Computer Science, Michigan Technological 
University, CS-TR-18-01. 
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We have a functioning pipelined processor implementation written in ADL language 
which gives us a cycle-accurate simulator:

Omkar Javeri and Tino Moore, and Soner Onder (2018). Demand-Driven Execution Pipeline.  
Technical Report, Department of Computer Science, Michigan Technological University, CS-TR-19-
00. 



Demand-driven Execution Pipeline
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Finally, we have a compiler that can compile C programs and generate 
demand-driven ISA code for inner-most loops.



Open Problems



Open Problems

1. Existing branch predictors rely on existence of sequential sequencing (i.e., global 
branch history). We do not know how to exploit “predicate histories” which are 
data-driven.

2. It seems that in programs with sufficient ILP, prediction of “forward” branches in 
this domain may not be necessary, or a non-correlating simple predictor would 
suffice. On the other hand, we MUST predict the loop back-edges. We do not 
know how to best do this.
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“Besides a mathematical inclination, an exceptionally good mastery of one's native 
tongue is the most vital asset of a competent programmer.”

― Edsger W. Dijkstra 

Diversity

Turkish is primarily a suffix based, “postfix language”. In Turkish, it is natural to say 
everything in “reverse”!

A simple Turkish sentence:  Eve gideceğim.

Dissecting : 

Home to go will I
Ev e       gid eceğ im
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