Day: April 8, 2013

MEEM Graduate Seminar: Apr 11

Mechanical Engineering – Engineering Mechanics Graduate Seminar: Thurs., April 11 at 4:00 in 112 MEEM.
Dr. Mahdi Shahbakhti, an assistant professor of Mechanical Engineering and Director of the Energy Mechatronics Laboratory at Michigan Technological University, will be the graduate seminar speaker for Thursday, April 11 at 4:00 in 112 MEEM. The presentation is entitled ‘Low Temperature Combustion Engines: Opportunities, Challenges, and Solutions’.

Dr. Mahdi Shahbakhti is an assistant professor of Mechanical Engineering at Michigan Technological University, where he conducts research in the area of controls and energy. He is currently the director of Energy Mechatronics Laboratory (EML) at MTU. Prior to joining the faculty at Michigan Tech, Shahbakhti was a post-doctoral scholar at the Vehicle Dynamics & Control Laboratory in the University of California-Berkeley (2010-2012). He received his PhD in Mechanical Engineering from University of Alberta in Canada in 2009. He worked several years on control of dynamic systems in the automotive (2001-2004), robotic (2000-2001), and HVAC (1998-2000) industries. An ASME and SAE member, Shahbakhti has been doing research in the area of powertrains and controls for the past 13 years. His research has centered on developing dynamical models and novel control techniques with application in powertrain control, utilization of alternative/renewable fuels, reduction of vehicular emissions, and hybrid electric vehicles. He is the author of over 50 refereed publications in the field of powertrain, dynamic systems and controls. Dr. Shahbakhti is an active member of ASME Dynamic Systems & Control Division, serving as the trust area leader and executive member of the Energy Systems technical committee and as a member of the Automotive and Transportation Systems technical committee, chairing and co-organizing sessions in the areas of modeling, fault diagnosis, and control of advanced fuel and combustion systems.

Title: “Low Temperature Combustion Engines: Opportunities, Challenges, and Solutions”

Abstract: In the past decade, Low Temperature Combustion (LTC) engines have captured a lot of attention as a promising future engine technology since they have negligible nitrogen oxides (NOx) and soot emissions with a thermal efficiency over 50%. Fuel saving gains up to 30% compared to conventional engines has made LTC engines very attractive for car manufacturers. Some of major car manufacturers (e.g. GM, VW, Mercedes-Benz, and Honda) have already built functioning prototype HCCI engines but stability and control of the LTC combustion process continues to be the major barriers to commercial implementation. Different versions of LTC engines have been investigated in the past several years. Homogeneous Charge Compression Ignition (HCCI) engines are well recognized LTC engines. This talk centers on HCCI engines and presents some recent advanced research results in this area. Control of HCCI ignition timing, particularly for a wide load and speed range, is recognized as the most challenging problem in HCCI engines. Sensitivity to charge initial conditions and the lack of a direct method to initiate ignition make it difficult to control cyclic variations of HCCI ignition timing. Boundaries of high cyclic variations limit HCCI high and low load operation ranges. Model-based control of HCCI engines is a promising solution to tackle HCCI challenges and will be discussed in this presentation.