Category: Research

Jeff Naber Receives 2023 ASME Internal Combustion Engine Award


Jeffrey D. Naber is the 2023 recipient of the prestigious Internal Combustion Engine (ICE) Award, presented annually by the American Society of Mechanical Engineers (ASME).

Naber is the Department of Mechanical Engineering-Engineering Mechanics’ (ME-EM’s) Richard and Elizabeth Henes Professor in Energy Systems and director of the Advanced Power Systems Research Center (APSRC/APS Labs) at Michigan Technological University. He was honored with the award at the ASME’s 2023 ICE Forward Conference, held Oct. 8-11 in Pittsburgh, Pennsylvania.

The ASME ICE Award recognizes eminent achievement or distinguished contribution over a substantial period of time, which may result from research, innovation or education in advancing the art of engineering in the field of internal combustion engines; or in directing the efforts and accomplishments of those engaged in engineering practice in the design, development, application and operation of internal combustion engines.

Naber, the recipient of Michigan Tech’s 2022 Research Award, was nominated for ASME ICE Award recognition by Seong-Young Lee (ME-EM).

By Mechanical Engineering-Engineering Mechanics.

New Faculty Spotlight: Shawn Brueshaber

Shawn Brueshaber comes to Michigan Tech from Western Michigan University, where he earned his MS and PhD in Mechanical Engineering. He earned his BS in Aerospace Engineering at Embry-Riddle Aeronautical University in Daytona Beach, Florida. After graduating, he spent several years in industry, eventually earning his Master’s degree while working full time. His research at Western focused on the polar atmospheric dynamics of the giant planets—Jupiter, Saturn, Uranus, and Neptune. And that’s just for starters. Welcome, Dr. Brueshaber!

What drew you to Michigan Tech?

I like the climate—cool and snowy.  Seriously, I applied to multiple universities and when I interviewed here, I found it to be a good fit.  

What is your primary area of research and what led you to it?

I’ve always had an interest in weather and planetary science. Once I discovered I could combine them with my formal education of mechanical and aerospace engineering to conduct research, I was off and running!

My primary area of research is basically figuring out how weather works on other planets. 

Dr. Shawn Brueshaber

Can you share a little more about your research and what you like about it?

At first glance, atmospheric planetary science doesn’t seem to hold a lot of everyday, practical problem-solving here on Earth, which is what many engineering students tend to do.  However, because our understanding of weather and climate is a subset of fluid dynamics, and, in turn, is a huge area of physics that is still not fully understood, atmospheric planetary science provides another rich field of science that may eventually lead to a more complete understanding of fluid mechanics. 

My ultimate goal is to develop a comprehensive theory of weather and climate applicable to all planetary bodies with an atmosphere. Perhaps along the way, we will gain a better understanding of turbulence, which can help with generating sustainable fusion power production.

What do you consider an important long-term goal for your research, teaching, or outreach?

I am working towards developing a deeper understanding of how planetary atmospheres work.  I intend to do this by continuing my current research plans, as well as conducting new research focusing on clouds and precipitation in the Keweenaw Peninsula. 

I have some nascent research ideas applicable to biological sciences, too. Through all this, I want to create industry- and graduate school-ready engineers with a love of learning and appreciation for the natural world–and how we can move humanity forward in a more sustainable and compassionate path to the future.

What do you hope to accomplish, as an educator and as a researcher, over the next few years?

The Flammarion engraving is a wood engraving by an unknown artist that first appeared in Camille Flammarion’s L’atmosphère: météorologie populaire (1888).

I want to set up a more comprehensive suite of meteorology instrumentation for the Keweenaw area, while continuing my current research inquiries on the giant planets. Additionally, I have a strong interest in branching into researching meteorology on Saturn’s giant moon, Titan.  

As for education, I want to develop a new course that teaches engineering students the basics of planetary science, for those that wish to work in the space industry. Understanding why scientists impose a set of instrument requirements for engineers to figure out is an important component in making more efficient and less expensive space exploration missions. In turn, we will get more science return per dollar. 

And, of course, I desire to improve my teaching abilities. I have taught on and off since 1995. I started out by teaching a graduate course (developing a fluids class from scratch), and then undergrad courses (Thermodynamics, Introduction to Mechanical Engineering, and Material Science), and Developmental Algebra. 

Where are you from? What do you like to do in your spare time?

Originally, I’m from Maryland. I like hiking, cross-country skiing, SCUBA diving, backpacking, and running (although I need to start from scratch again). Also reading—history and science fiction—and gaming (both computer and board games).  I enjoy astronomy, cooking, and spending time serving my three cats.

What’s your favorite book, movie, or piece of art?

That is a very difficult question. How can one have only ONE favorite book, movie, or piece of art?  ;-). I’ll answer by saying one of my favorite recently-read books was “Sleepwalkers, How Europe went to War in 1914,” by Christopher Clark.  This book goes into a deep analysis of the situation in Europe and the Near East in the late 19th century and how Europe’s leaders avoided a number of potential flashpoints into the 20th century, but infamously and not at all inevitability, stumbling into the catastrophe of World War I, the Great War. This war, perhaps every bit as the Second World War, shapes much of our geopolitics today. 

As for movies, I can’t really single out a favorite.  But I have been very pleased with the recent Star Trek TV series “Strange New Worlds.”  I’m also a big fan of The Expanse, Star Wars, and Battlestar Galactica. If it is science fiction, I’m going to pay attention.   

As for art, the Flammarion engraving is probably my favorite piece. It first intrigued me as a four-year old. I couldn’t stop looking at it and trying to understand it.

In September of 2022, I attended a planetary science conference in Granada, Spain.  I visited the Alhambra complex and fell in love with the architecture of the Nasrid dynasty, and in Cordoba, the Grand Mosque-Cathedral. The use of thin tall columns, arches, color, use of light, water features, and the elaborate application of geometric patterns on tile, and natural, and astronomical themes was breathtaking. 

“Be open to new ideas and new experiences. You get a finite number of orbits around the Sun so make the most of them.”

Dr. Shawn Brueshaber’s advice to incoming students

Any favorite spots on campus, in Houghton, or in the UP?

I’m new to the area so I don’t really have a truly  favorite place yet. However, on previous trips to the UP, I really enjoyed Munising and hope one day to hike part of the long trail above Pictured Rocks. 

Any advice for incoming students?

Learn to organize your day, week, and semester. Establish a healthy and energetic lifestyle, and engage in intellectual interests beyond your major.  I became a huge history buff in college and took several additional history courses as electives. I read many a book on ancient and military history and it has provided me with useful lessons and a sound understanding of how the world really works. If you are an engineering student, simply sticking to engineering courses is a severe detriment, both as a citizen and as an employee. So, find or rejuvenate your intellectual curiosity. Be open to new ideas and new experiences. You get a finite number of orbits around the Sun so make the most of them. 

A view from the hiking trail above the Pictured Rocks National Lakeshore on Lake Superior. Photo by Richard Hurd, Flickr.

New Faculty Spotlight: Chad Walber

Dr. Chad Walber

Chad Walber recently joined the faculty as an Associate Teaching Professor. He earned a BS in Electrical Engineering and a BS in Mechanical Engineering from Michigan Tech, then went to work for PCB Piezotronics for several years as a technical support engineer. He returned to Michigan Tech in 2007 to earn an MS and PhD in Mechanical Engineering. After that, he returned to PCB, working as a research and development engineer for 12 years. He joined Michigan Tech as a Visiting Professor of Practice in January, before joining the ME-EM Department full time this fall.

“I like to tell people I have the Michigan Tech Grand Slam.”

Dr. Chad Walber

What drew you to Michigan Tech?

I’m originally from Wisconsin. I’ve loved the Houghton-Hancock area from the first moment I saw it, when I came up for a tour as a prospective undergrad. After living here and making some of the best friendships of my life during college, I knew I always wanted to end up back up here. To me, the Keweenaw is one of the most beautiful places in the world.

What is your primary area of research and what led you to it?

My background is in Dynamic Systems, Noise and Vibration, Acoustics, and specifically the test and measurement of those quantities. I was very interested in the Signal Processing aspect of all of this from my electrical engineering classes, and really dug into it more when I started to work for PCB. At PCB I helped develop not only new sensors, but new calibration methods for microphones and accelerometers. I am also very involved in microphone and accelerometer calibration standards through the IEC.

Can you share a little more about your research and what you like about it?

As a teaching professor, I’m not really focused on research. For my other professional activities though, I am involved in international standards with respect to microphones and accelerometers. I’ve helped develop both specification and calibration standards around microphones and sound level meters. I’m also involved in the sensors and instrumentation technical committee for the Society of Experimental Mechanics. This coming year at the International Modal Analysis Conference, I will also be teaching Modal Theory at the New/Young Engineer Workshop. 

When it comes to collaboration, I’m happy to help people with various measurement requirements. I’ve got a lot of experience in measurements of dynamics systems, but I’ve done a fair amount of destructive testing as well.

What do you consider an important long-term goal for your teaching, research, and outreach?

I’d like to get more people talking about Metrology. Part of almost every type of research that’s done here has a measurement component, but sometimes we don’t really think about how accurate our measurements really are, or if there might be a better way to measure that phenomena we look at. I worked a lot in calibrated dynamic transducers, and showing how different calibration methods can give you a slightly different answer as to the performance of the particular device.

“Ask for help on anything you have questions on. Don’t be afraid to make mistakes, it’s the best way to learn something.”

Dr. Chad Walber’s advice for incoming students

What do you hope to accomplish over the next few years?

The Starry Night (1889) by Vincent Van Gogh

I’d like to get to know my students better and help them figure out how best they learn. I feel like when folks come to MTU, they don’t realize that they can and should adapt their learning processes. The way a student learned things in high school may not be the best way for them to learn things going forward. 

I also want to make them all more curious about the world around them. I want my students to be okay with questioning things as well as understanding that it’s alright to not know all of the answers the first time.

What do you like to do in your spare time?

I’m very much a tinkerer, and I’ve gotten into 3-D printing, carpentry, programmable electronics, and photography. Astrophotography is a hobby of mine. I also enjoy board games, computer games, and LEGOs. If you come by the ME-EM Department front desk, and my office, you’ll see some of the models I’ve built. I also enjoy camping and all forms of outdoor cooking. Grilling, smoking, and open fire foods are high on my list of favorites.

What’s your favorite book, movie, or piece of art?

My favorite book is “The Martian,” by Andy Weir. My favorite movie is WALL-E. My favorite piece of artwork is The Starry Night by Vincent van Gogh. I just received the LEGO version of this painting today and will be putting it together in the coming week.

Any favorite spots on campus, in Houghton, or in the UP?

Anywhere along the Portage “canalside” is a great place to just sit and collect your thoughts. On campus I do enjoy the green space between the EERC and Rehki Hall. It’s a great place to relax in some shade, and enjoy the day.

New Faculty Spotlight: Bhisham Sharma

Bhisham Sharma

Associate Professor Bhisham Sharma comes to Michigan Tech from Wichita State University, where he worked as an assistant professor in the Department of Aerospace Engineering. He earned his BS in Mechanical Engineering at the University of Pune in Pune, India, and his MS and PhD in Aeronautical and Astronautical Engineering at Purdue University. He also spent a few years at Purdue as a post-doctoral research associate and a visiting assistant professor. Welcome, Dr. Sharma!

What drew you to Michigan Tech?

I was initially drawn to Michigan Tech for its exceptional academic reputation and its commitment to interdisciplinary research and innovation. This environment offers a fantastic opportunity to foster collaboration, a critical element in addressing complex research challenges. What sets Michigan Tech apart is the visible support and resources provided by the administration, a feature not commonly found at every university.

Another significant factor in my decision was the ME-EM department’s outstanding academic program and its strong emphasis on equipping students with real-world experiences. As a faculty member, my own teaching philosophy and vision perfectly align with the department’s approach as we bridge the gap between theoretical knowledge and practical engineering applications.

Last but not least, who wouldn’t jump at the chance to reside in such a breathtaking and unique natural environment? Michigan’s Upper Peninsula offers a quality of life that is second to none, with an abundance of outdoor activities and natural beauty. I am looking forward to exploring all there is to explore!

“Always remember that the word ‘school’ derives from the Greek word for leisure. True learning only happens when your mind is free to explore and think new thoughts.”

Dr. Bhisham Sharma’s advice for incoming students

What is your primary area of research?

My research primarily falls in the overlap of solid mechanics, structural dynamics, acoustics, and advanced manufacturing. At one end of the spectrum, I seek to understand fundamental mechanics and acoustics of novel engineered material systems such as acoustic metamaterials, phononic structures, architected lattice structures, and stochastic foams. At the other end, I focus on developing advanced manufacturing methods that can enable such structures and to translate this fundamental knowledge—create performance-tailored solutions to critical engineering problems across various industries.

Can you share a little more about your research and what you like about it?

Overall, my research revolves around a central question: Can we develop lightweight structures that possess tailored multifunctional properties for specific applications? Let’s take, for example, the outer casing of a cutting-edge aircraft engine, a nacelle, which is designed as a set of separate components. Each serves a single function: the duct shells bear the primary loads; acoustic liners absorb engine noise; thermal management relies on heat shields; and composite fabric wraps ensure blade containment. This conventional “single-component, single-function” approach hampers cost savings, weight reduction, and fuel efficiency gains. It also constrains innovation in vehicle configuration.

My overarching research objective is to drive a paradigm shift and replace this design approach with a new, “single-component, multiple-functions” approach, a transformation that involves creating application-specific multifunctional structures, and advancing the essential tools for their design, analysis, and certification.

My work is inherently interdisciplinary, encouraging me to delve into physics, mathematics, and manufacturing. This continuous opportunity to acquire new knowledge fuels my passion and excitement for this field. I am motivated by the prospect of pushing the boundaries of what is possible. I find immense fulfillment in the daily process of discovery and learning that this field offers.

What do you like to do in your spare time?

Most of my spare time these days is spent enjoying the adorable shenanigans of my two 1-year old kittens. I love Indian classical music and enjoy discovering new aspects to its underlying theory. I also read quite a bit. I have always been fascinated by geopolitics, so I spend a fair amount of time reading up on the current state of world affairs. I am also an ardent Manchester United soccer fan, and make sure to watch their game over the weekends. Watching TV—baking shows or murder mysteries—is my go-to after a busy day at work.

What’s your favorite book, movie, or piece of art?

Candide by Voltaire and Animal Farm by George Orwell. I have read both books multiple times. Guide, an old Bollywood movie—and Taxi Driver are my favorite movies. My favorite piece of art is Beethoven’s Symphony No. 5. I don’t think any human being has ever created anything more beautiful than its allegro con brio.

Great Sand Bay, source: Visit Keweenaw

Any favorite spots on campus, in Houghton, or in the UP?

I have only been here two months, so it is too early for me to pick a favorite spot! For now, I think the Great Sand Bay in Eagle Harbor is my favorite spot on a warm day.

Jeffrey Allen receives NASA funding for Physical Sciences Informatics (PSI) research

Professor Jeffrey S. Allen is the John F. and Joan M. Calder Endowed Professor in Mechanical Engineering-Engineering Mechanics at Michigan Tech. Dr. Allen also serves as Associate Chair and Director of Undergraduate Studies for the department.

Jeffrey Allen (Professor, ME-EM) is the principal investigator on a recently awarded NASA Physical Sciences Research Program grant that will build on prior reduced-gravity research to advance fundamental research in the physical sciences.

The project, titled “Reduced-order modeling of interfacial dynamics to enable large-scale, mission-length simulations of low-gravity propellant management using CVB PSI data”, is one of six funded proposals under this initiative. Anurag Ranjan, PhD (postdoc) is a co-investigator.

The overall objective of the proposed research is to develop a new efficient computational approach for fast, long duration, high fidelity simulations of the interface dynamics of liquid vapor mixtures in microgravity using a vortex sheet evolution equation coupled to a
vorticity-velocity bulk fluid solution in an extended FEM technique.

The Physical Sciences Informatics (PSI) system is an online database of completed physical science reduced-gravity flight experiments conducted on the International Space Station (ISS), Space Shuttle flights, Free Flyers, or commercial cargo flights to and from the ISS, and of related ground-based studies.

For more information:

Access Professor Allen’s publications here: https://www.researchgate.net/profile/Jeffrey-Allen-7

Visit Professor Allen’s faculty profile here: https://www.mtu.edu/mechanical/people/faculty/allen/

PSTDL Finalists in NASA Watts on the Moon Challenge

Assistant Professor Paul van Susante (ME-EM/MARC) and the Planetary Surface Technology Development Lab, aka HuskyWorks, advanced to the “final four” in Phase 2 of NASA’s Watts on the Moon Challenge. Through this challenge, NASA seeks to partner with a broader community of experts to augment its investments in power generation.

The first competition phase started in September 2020 and included 60 eligible teams, from which seven winners were chosen. Winners in each phase receive equal shares of a prize purse, used to fuel the development of ideas for building energy infrastructures on the Moon.

“As we tread new ground in exploration, we’ll need to draw on creativity across the nation. The technologies created through Watts on the Moon are one example, with new perspectives helping us address a crucial technology gap.”

Denise Morris, acting program manager for Centennial Challenges at NASA’s Marshall Space Flight Center in Huntsville, Alabama

Building on previous success, the team will use the current $400,000 prize to refine their Phase 2, Level 3 prototype and test it under a simulated lunar environment (vacuum chamber) at NASA facilities in 2024. Up to two teams at this level will receive awards: The first-place team will be awarded $1 million, and second place will be awarded $500,000. Winners are expected to be announced in September, 2024.

You can learn more about the challenge by visiting NASA’s Watts on the Moon fact sheet. For more details on Dr. van Susante’s lab capabilities, visit the PSTDL’s  Facilities page.

Play Four Teams Advance to Final Level of NASA’s Watts on the Moon Challenge video
Preview image for Four Teams Advance to Final Level of NASA’s Watts on the Moon Challenge video

Four Teams Advance to Final Level of NASA’s Watts on the Moon Challenge

Greg Odegard Receives NASA Outstanding Public Leadership Medal

Professor Greg Odegard, recipient of the NASA Outstanding Public Leadership Award

Professor Greg Odegard (ME-EM) is the director of the Ultra-Strong Composites by Computational Design (US-COMP) NASA Space Technology Research Institute (STRI), one of the inaugural STRIs funded by the agency’s Space Technology Mission Directorate. And now he has received a NASA Outstanding Public Leadership Medal, awarded to nongovernment employees for “notable leadership accomplishments that have significantly influenced the NASA Mission.”

3 gold medals, small, medium and large, imprinted with the word "NASA" and six connected stars, with a set of three striped ribbons, one for each that are light blue, dark blue and gold.
The NASA Outstanding Public Leadership medal, presented to Professor Gregory Odegard on April 26, 2023.

The five-year US-COMP collaboration brings together 22 professors from 11 universities and two industry partners with a range of expertise in molecular modeling, manufacturing, material synthesis and testing.

Odegard’s nomination letter outlines how he harnessed the group’s talents to successfully overcome challenges and make significant progress:

“Dr. Odegard leads by example, exhibiting the NASA core values for safety, integrity, teamwork, excellence and inclusion. He respected the constraints imposed by safety measures taken to protect students during COVID, while finding ways to continue making progress. He embraced the challenges of working with industry, where open sharing of information is tempered by the need to maintain their competitive edge. He walked the fine balance of demonstrating investment payoff for the funder through publications, while respecting intellectual property concerns by the industry members. Dr. Odegard’s openness to change to more effectively serve NASA’s mission needs is exceptional. He led with the courage and humility of leaders who leave an indelible legacy because they are different. His service to the Agency and to the nation deserves recognition.”

Jenn Gustetic, director of NASA Early Stage Innovations and Partnerships, told Odegard the medal is well deserved. “Leading extensive and complex transdisciplinary research across numerous partners is no small feat — and you did so to great effect,” Gustetic said. “I am delighted that the Agency is recognizing your individual leadership contribution in this way, as institutes do not come together well without exceptional leadership.”

Odegard received the medal at a ceremony held in Washington, D.C., on April 26, 2023. The US-COMP team was also recognized by the agency as a whole for their contributions.

Please join us in congratulating Professor Odegard on this important recognition and achievement.

Sustainable and Resilient Communities Faculty Research Fellowship for Hassan Masoud

Hassan Masoud
Hassan Masoud

The Tech Forward Initiative on Sustainability and Resilience (ISR) is excited to announce its awardees for spring 2023! The ISR supports advancements in curriculum development and research through a series of three awards programs: Curriculum Innovation Awards, Early Career and New Directions Award, and:

Sustainable and Resilient Communities Faculty Research Fellowship

Hassan Masoud (ME-EM/AIM) has been awarded a Sustainable and Resilient Communities Faculty Research Fellowship (typical award range: $12,000-$17,000) that will support a one-course buyout for spring 2024 to provide time to develop research collaborations and proposals on wave energy and other forms of renewable energy, in partnership with internal and external collaborators and the Center for Innovation in Sustainability and Resilience.

If you have questions or would like to ask about a potential future proposal, please reach out to ISR lead Chelsea Schelly at cschelly@mtu.edu.

DoD SMART Scholarship Awardees Noah Baliat and Marcello Guadagno

The Graduate School is pleased to announce the U.S. Department of Defense (DoD) Science, Mathematics, and Research for Transformation (SMART) Scholarship awardees:

  • Noah Baliat
    Baliat is an undergraduate student in mechanical engineering. Baliat will be at the Holloman Air Force Base (AFB) in New Mexico after graduation next year.
  • Marcello Guadagno
    Guadagno is a Ph.D. candidate in mechanical engineering-engineering mechanics under Paul van Susante (ME-EM/MARC). Guadango will be at the Kirtland AFB in New Mexico.
  • Aaron Wildenborg
    Wildenborg is a Ph.D. candidate in physics under Jae Yong Suh (Physics). Wildenborg will be at the Naval Information Warfare Center Atlantic in South Carolina.

Semifinalists:

  • Erican Santiago, a Ph.D. candidate in biomedical engineering under Hyeun Joong Yoon.
  • Kaitlyn Morgenstern, an undergraduate in mathematics.
  • Jonathan Oleson, a Ph.D. candidate in mechanical engineering-engineering mechanics under Susanta Ghosh.
  • Rachel Passeno, an undergraduate in cybersecurity.
  • Trent Betters, an undergraduate in computer science.

The DoD SMART Scholarship is part of the National Defense Education Program and its benefits include full tuition and education-related expenses payment, a stipend of $30,000 to $46,000 per year, summer internships ranging from eight to 12 weeks, health insurance, a miscellaneous allowance of $1,000 per year, mentorship at one of the DoD sponsoring facilities and employment placement at a DoD facility upon degree completion.

The Graduate School is proud of these students for their outstanding scholarship. These awards highlight the quality of students at Michigan Tech, the innovative work they have accomplished, the potential for leadership and impact in science and engineering that the country recognizes in these students, and the incredible role that faculty play in students’ academic success.

If you have students who are interested in receiving writing support for the DoD SMART Scholarship or other graduate funding opportunities, have them contact Sarah Isaacson at sisaacso@mtu.edu.

Ezra Bar-Ziv on Innovative Plastic Recycling

Illustration of a process involving plastic processing.
Center for Chemical Upcycling of Waste Plastics – STRAP Video Proposal (2022)

Ezra Bar-Ziv (ME-EM/APSRC) was quoted by WLUK FOX 11 of Green Bay, Wisconsin, in a story on Green Bay’s candidacy for a new plastic recycling system that uses solvents to break down plastic film types. The system prototype is being built at Michigan Tech. The story was picked up by 101.1 WIXX-FM and five other Wisconsin news outlets.

George Huber, a College of Engineering professor at UW-Madison came up with the process called STRAP (Solvent Targeted Recovery and Precipitation). According to Huber, “It uses solvents to selectively solubilize one plastic over another. Then, we precipitate it out, and then we’re left behind with a pure plastic.”

Michigan Tech staff and students are creating the system prototype to breakdown the plastic in a larger scale.

“What we are doing is, we’re going from a lab scale—which could be a pound, half a pound, quarter pound—all the way to something similar to say a ton, ton per hour. That’s what we’re trying to do that, and we are doing it in strong collaboration with the Madison crew,” says Ezra Bar-Ziv, a mechanical engineering professor at Michigan Tech.

Read more at WLUK FOX 11 by Emily Matesic.

Related

Ezra Bar-Ziv (ME-EM/APSRC) is the principal investigator (PI) on a project that has received a $549,954 research and development grant from the National Science Foundation.

The project is titled “Continous Process for Solvent-Targeted Recovery and Precipitation (STRAP) for Plastic Wastes using Green Solvents.”

Shreyas Kolapkar (ME-EM/APSRC) is the co-PI on this potential three-year project.

April 19, 2023.