Tag: Fall 2013

ME-EM Graduate Seminar: Hands-On Education with The Michigan Tech Mobile Lab

ME-EM graduate seminar guest is Jeremy Worm, a Research Engineer and Instructor in the Department of Mechanical Engineering – Engineering Mechanics at Michigan Tech. His presentation is entitled ‘Hands-On Education with The Michigan Tech Mobile Lab’ and will be in 112 MEEM at 4:00 PM.

The Michigan Tech Mobile Lab is a one-of-a-kind educational facility. The lab is used for providing hands-on discovery based educational experiences. As such, the lab is used for teaching hands-on college courses, professional short courses, and STEM outreach. With light and heavy duty ground vehicles, powertrain test cells, a chassis dynamometer, benchtop activities, and advanced instrumentation systems, the lab can be used for a wide range of engineering subjects. This seminar will provide an overview of the lab, its capabilities, and will look at the specifics of one of the hands-on experiments students conduct in the lab.

Jeremy Worm, is a Research Engineer and Instructor in the Department of Mechanical Engineering – Engineering Mechanics at Michigan Tech, where he received his BS and MS degrees. Prior to joining the Michigan Tech Staff, Jeremy was a Senior Engineer at GM Powertrain. At GM Jeremy focused on combustion analysis, development of variable valve timing systems and operational strategies, and was the Lead Development Engineer for a new engine in a hybrid vehicle. At Michigan Tech, Jeremy remains active in the field of powertrain research, has developed and teaches several courses in the area of powertrain research and hybrid vehicles, and directs the Michigan Tech Mobile Lab. Jeremy is a licensed Professional Engineer, has authored or co-authored 22 publications, has 2 patents, has received a best paper award, and has been inducted into the Michigan Tech Academy of Teaching Excellence.

MEEM Graduate Seminar: Low Temperature Combustion Engines

Samveg Saxena, Ph.D, Lawrence Berkeley National Laboratory and the University of California at Berkeley
Title: Fundamental Phenomena Affecting Low Temperature Combustion Engines High Load Limits & Strategies for Extending These Limits; Thursday, Sept. 19, 2013 4:00 – 5:00 p.m. Roo m 112, ME-EM Bldg.

Low temperature combustion (LTC), including HCCI, is one of the most promising directions for high efficiency and low emission engines for vehicles of the future. This seminar presents an overview of a recent comprehensive review article in the journal “Progress in Energy and Combustion Science” which can be found at: http://dx.doi.org/10.1016/j.pecs.2013.05.002

The article provides a thorough review of fundamental phenomena governing the performance of LTC engines and uses this as a foundation to discuss emissions characteristics, high load operating limits, and recent research on promising strategies to extend high load limits. Promising future research directions in LTC engine technology and gaps in current literature are also discussed.

Additionally, an overview of the vehicle powertrain research program at Lawrence Berkeley National Laboratory and UC Berkeley will be discussed to provide a foundation to explore prospective research collaborations between LBNL and MTU faculty and students.

Dr. Saxena is a research scientist at Lawrence Berkeley National Laboratory (LBNL) and UC Berkeley where he leads several research programs in vehicle electrification and predicting electricity grid impacts from EVs. Sam completed his Ph.D in Mechanical Engineering at UC Berkeley in 2011 where he led several studies on innovative engine technologies for higher efficiency combustion, including LTC, microwave-assisted spark ignition, and cylinder deactivation strategies. Using this experience, Dr. Saxena has provided the technical foundation to secure over $2 Million in engine and powertrain research funding from the US DOE, California Energy Commission and other agencies. In early 2012, Dr. Saxena joined LBNL working on modeling of vehicle powertrain systems. Prior to beginning his Ph.D, Dr. Saxena worked in industry on engine and vehicle powertrain research at the Toronto-based companies: Magna Powertrain Engine Technologies Group, and Multimatic Technical Center. Dr. Saxena has been recognized in the Canadian House of Commons for his leadership excellence and has several awards for his demonstrated excellence in teaching and research, including the NSERC Canada Graduate Scholarship, and serves as a reviewer, session organizer, and editorial board member for leading conferences and journals in combustion, engines and powertrain technologies. After hours, Sam enjoys trail runs in the hills around LBNL.

MEEM Graduate Seminar: Cooling of Embedded Electronics

Dr. Frank Kulacki, Professor of Mechanical Engineering at the University of Minnesota will be the ME-EM graduate seminar guest speaker for Thurs., Sept. 12 in 112 MEEM at 4:00 His presentation is entitled ‘Cooling of Embedded Electronics – Flow Boiling Is the Key to High Power Density’. He will also include the results of a survey of the ASME Heat Transfer Division.

Title: Cooling of Embedded Electronics – Flow Boiling Is the Key to High Power Density

The performance of embedded airborne electronics and computers is nearing a thermal limit. Devices and systems are now in development that will push heat transfer requirements to power densities greater than 1 KW/cm3 and average heat flux greater than 1 KW/cm2. Cooling techniques based on single phase forced convection cannot meet these requirements. The emergence of three-dimensional computing packages makes heat rejection even more challenging. This seminar reports measurements of heat transfer in flow boiling in short, symmetrically heated narrow gap channels. This geometry emulates the basic configuration of electronic devices envisioned in high power density embedded computing. Watt densities of 1 KW/m3 are considered, and it is demonstrated that sub-cooled flow boiling can achieve thermal regulation and maintain average temperatures below a 95 oC operating limit. Our measurements characterize heat transfer in a single pair of heaters and a set of three in line heat pairs. For the latter, uniform and non-uniform power density are addressed. Coolants investigated are water and NovecTM 7200 and 7300. Inlet Reynolds numbers range from 250 to 1200, Weber numbers from 2 to ~18, and boiling numbers from O(10-4) to O(10-3). Exit quality can reach 30 percent in some cases. Overall heat transfer coefficients of 40 kW/m2K are obtained. Pressure drops
for either experimental configuration are well within the capabilities of the airborne computer systems. Correlations for heat transfer are developed and generalized, and a systems analysis is suggested that will point toward a developmental path to externalized cooling approaches. At the conclusion of the technical presentation, some comments will be offered on the results of national survey conducted by the ASME Heat Transfer Division on the emergent trends in heat transfer engineering, research and education.

Dr. Frank Kulacki, Professor of Mechanical Engineering at the University of Minnesota, received his degrees in mechanical engineering at the Illinois Institute of Technology and the University of Minnesota. His research/interests include coupled heat and mass transfer in porous media, two-phase flow in micro-channels, natural convection heat transfer, heat transfer in metal foams, hybrid renewable energy systems, thermal energy storage technology, energy policy, management of technology, and the adaptation of computer-based technologies in engineering education. To date, he has 163 technical articles, 14 book chapters/review articles, 34 educational/professional articles, 28 technical reports, edited 7 books/conference volumes, two Springer monographs and has advised 20 doctoral, 43 masters, and 13 undergraduate research scholars. As the department chair at the University of Delaware, the dean of engineering at the Colorado State University and the dean of the Institute of Technology (now the College of Science and Engineering) at the University of Minnesota, he initiated and expanded computer-aided engineering and technology-based instructional activities, increased research funding, established new multidisciplinary degree programs, research initiatives, centers, and specialized research facilities. He chaired the Heat Transfer Division of the American Society of Mechanical Engineers, the ASME Task Force on Graduate Education, and the Education Advisory Group of the National Society for Professional Engineers. He served on the ASME Vision 2030 project which addressed the body of knowledge for mechanical engineers in the 21St Century, the ASME Board on Professional Development, the Board on Engineering Education, the Board of the Center for Education, the NSPE Task Force on Education and Registration, the DOE Peer Review Panel on Thermal and Hydrological Impacts of the Yucca Mountain Repository, and as the director of graduate studies for the MS in Management of Technology program at Minnesota. He has lectured on energy policy and related issues in the MOT program and at the Hubert H. Humphrey Institute for Public Affairs.

Dr. Kulacki’s advisory board experience includes the engineering programs at Swarthmore College, the University of Kentucky, the University of Maryland/Baltimore County, and Florida International University. From 1998 – 2001 he was an ASME Distinguished Lecturer. He has served as the Executive Director of the Technology-Based Engineering Education Consortium, an initiative of the William C. Norris Institute.

He is a Life Fellow of ASME and the American Association for the Advancement of Science (AAAS). At the University of Minnesota, he received the ASME Distinguished Service Award and the George Taylor Distinguished Service Award of the Institute of Technology.

Graduate Seminar: Gregory M. Odegard

Professor Gregory M Odegard, of the Department of Mechanical Engineering – Engineering Mechanics
Michigan Technological University will present the Graduate Seminar, Thursday, Sept. 5, 2013 4:00 – 5:00 p.m. Room 112, ME-EM Bldg.
Dr. Gregory M. Odegard will present an overview of presentation guidelines will be given. This will cover suggested presentation content, formatting, organization, and style. Examples will be given of poor presentation slides.is an Assistant Professor in the Department of Mechanical Engineering – Engineering Mechanics, and an Adjunct Assistant Professor in the Department of Materials Science and Engineering. He received his B.S. in Mechanical Engineering from the University of Colorado at Boulder, and his M.S. and Ph.D. in Mechanical Engineering from the University of Denver. He received the 2008 Ferdinand P. Beer and E. Russell Johnston Jr. Outstanding New Mechanics Educator Award (awarded by the American Society of Engineering Education), the 2008 Outstanding Graduate Mentor Award (awarded by the Michigan Tech Graduate Student Council), the 2006 HJE Reid Award (awarded by NASA Langley Research Center), and the 2005 Boeing/SDM Best Paper Award (awarded by the American Society of Mechanical Engineers). Dr. Odegard is currently serving as the Chair of the Structures and Materials Committee of the American Society of Mechanical Engineers (ASME).