Category: Seminars

Seminar

Blake R. Peterson, Ph.D.

Our last speaker for our Spring Seminar Series is Dr. Blake R. Peterson from Ohio State University.

Dr. Peterson is the chair and a professor in the Division of Medicinal Chemistry and Pharmacognosy, John W. Wolfe Chair in Cancer Research, Co-Leader, OSUCCC Translational Therapeutics Program, and Co-Director, OSUCCC Medicinal Chemistry Shared Resource.

The seminar on Subcellular Targeting for Phenotypic Drug Discovery is at 3:00 pm this Friday, April 9th, via Zoom.

Abstract:
Phenotypic drug discovery represents an important approach for the identification of therapeutics because it does not require extensive knowledge of a specific drug target or mechanism of action. We are using this approach in conjunction with the synthesis of molecular probes that accumulate in specific organelles to discover novel anticancer agents and tool compounds. In this seminar, I will describe the use of this phenotypic discovery / subcellular targeting strategy to identify small molecule anticancer agents. The organelle that we are targeting with these probes is the endoplasmic reticulum (ER), which is defined by an extensive network of intracellular membranes and plays critical roles in the processing of secreted and transmembrane proteins. To deliver small molecules to membranes of this organelle, we synthesized novel fluorinated fluorophores derived from a fluorophore that we previously reported termed Pennsylvania Green. I will describe how these compounds can be used to inhibit a specific protein processing pathway controlled by the ER, and how we built on this molecular platform to create uniquely sensitive sensors of the reactive nitrogen species peroxynitrite, which contributes to immunosuppression in cancer. We further used an optimized peroxynitrite sensor in a phenotypic drug discovery campaign to identify small molecules capable of blocking the production of this reactive species in immune cells prevalent in the tumor microenvironment. This approach could lead to novel small molecule inhibitors and repurposing of existing drugs as therapeutics that help overcome immunosuppression in cancer.

Bio:
Blake Peterson was raised in Reno, Nevada. After receiving a B.S. in Chemistry from the University of Nevada Reno in 1990, he pursued a PhD in Chemistry with Prof. François Diederich at UCLA. During his graduate training, he moved with Prof. Diederich to Switzerland, where he conducted research for two years at the ETH-Zurich. In 1994, he accepted a postdoctoral position with Prof. Gregory Verdine in the Dept. of Chemistry and Chemical Biology at Harvard University as a Damon Runyon / Walter Winchell Cancer Research Foundation Fellow. In 1998, he joined the faculty in the Dept. of Chemistry at Penn State University as an Assistant Professor and was promoted to Associate Professor with tenure in 2004. During this time, he was named a research scholar of the American Cancer Society in 2003 and was the recipient of a Camille Dreyfus Teacher Scholar Award in 2004. In 2008, he joined the faculty of the Department of Medicinal Chemistry at the University of Kansas as Regents Distinguished Professor and was named an Eminent Scholar by the Kansas Biosciences Authority. In 2013, he was elected as a fellow of the American Association for the Advancement of Science (AAAS). In 2019, he joined the faculty of The Ohio State University College of Pharmacy as Professor and Chair of the Division of Medicinal Chemistry and Pharmacognosy. He additionally holds appointments at the Ohio State University Comprehensive Cancer Center as John W. Wolfe Chair in Cancer Research, Co-Leader of the Translational Therapeutics Program, and Co-Director of the Medicinal Chemistry Shared Resource. His current research interests involve the pursuit of new strategies for early-stage anticancer drug discovery.

Seminar

Dr. Patrick Tomco

Our next Chemistry Seminar will be this Friday at 3 p.m. via Zoom.

Dr. Patrick Tomco will be presenting his piece on “Petroleum-derived dissolved organic matter from oil spill cleanup at high latitudes: formation, photo-oxidation, and ecotoxicological effects.”

Dr. Tomco is an Assistant Professor and ASET Lab Coordinator in the Department of Chemistry from the University of Anchorage Alaska.

Abstract:
Oil and gas drilling have been occurring in Alaska since the 1950s, and additional lease sales are planned for Cook Inlet and the Beaufort Sea. As regions in the Arctic become ice-free, offshore drilling in that area is expected to increase. As petroleum development increases, so does the risk of another major oil spill. Oil spills can have a devastating effect on the marine environment, and dispersants, chemical herders, and in-situ burning are supposed to mitigate that effect. Despite some of the benefits, this technique appears to have on oil spill mitigation, opinions on the utilization of these strategies are polarized, and the issue requires careful consideration and study. This talk will focus on several recent investigations aimed at characterizing hydrocarbon-derived dissolved organic matter (DOMHC), photochemical products of DOMHC, photo-modified DOMHC bioavailability, and resulting toxicity potential of DOMHC to Arctic marine aquatic life (mussels, Mytilus trossulus). Characterization methods include Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS), fluorescence excitation emission matrices (EEMs), toxicity biomarkers, 16S rRNA sequencing, and NMR-based metabolomics. 

Bio:
Patrick Tomco, Ph.D is an Assistant Professor of Chemistry at the University of Alaska Anchorage, Chair of the Alaska ACS Local Section, and manager of the Applied Science Engineering and Technology (ASET) laboratory.

Seminar

Dr. Clint P. Aichele

There will be a Chemistry Seminar at 3 p.m. Friday, March 26th via Zoom.

Dr. Clint P. Aichele will present “Biomimetic Hydrogels for Protein Delivery, Stabilization, and Immobilization.”

Aichele is an Associate Professor and Lew Ward Faculty Fellow in the School of Chemical Engineering at Oklahoma State University.

Abstract: Proteins are incredibly useful in medicine and industrial chemistry. Many of the most recent breakthroughs in cancer therapy are based on monoclonal antibody treatments. Yet, there are major difficulties that can act as deterrents in developments of such therapies. Sustained subcutaneous, oral or pulmonary deliveries of such therapeutics are limited by the poor stability, short half-life, and non-specific interactions between the therapeutic biomolecules (e.g. antibody) and the delivery vehicle. Similarly, usage of proteins as enzymes in processes is limited by poor stability, short half-life, and difficulties with reusability. With growing usage of proteins as pharmaceuticals and biocatalysts, and apparent shortcomings in both fields, there is a growing need to design materials that are protein compatible and can improve protein stability. The key to successfully utilizing proteins as therapeutics, biocatalysts or biosensors is to maintain their conformation and function. There is emerging evidence that biomimetic, biocompatible zwitterionic polymers can prevent non-specific interactions within proteins systems and increase protein stability. For the purpose of protein delivery, a biodegradable zwitterionic poly(carboxybetaine) based microscale hydrogel (microgel) was synthesized. The resulting microgels were characterized via FTIR, diffusion NMR, SANS, and cell culture studies. We examined a novel post-fabrication technique that resulted in effective loading of IgG in the microgels. The released antibodies (especially from the high crosslinked microgels) proved to be completely active and able to bind with antibody receptors. Furthermore, for the purpose of protein immobilization, reaction a scheme was developed and studied for covalent immobilization of the protein (α-chymotrypsin) (ChT) within the zwitterionic microscale hydrogels. This research paves the way for designing protein delivery vectors as well as fabrication of enzyme immobilized materials with extended enzyme lifetime and activity.

Bio: Dr. Clint P. Aichele is an Associate Professor and Lew Ward Faculty Fellow in the School of Chemical Engineering at Oklahoma State University. Dr. Aichele’s research is in the area of colloids and interfacial phenomena with specific applications in gas/liquid separation, emulsions, enhanced oil recovery, distillation, and flow assurance. His work specifically focuses on engineering interfaces to solve separation challenges in complex fluids. Dr. Aichele received his B.S. in Chemical Engineering from OSU in 2004 and Ph.D. from Rice University in 2009. Dr. Aichele worked at ConocoPhillips as a Research Engineer for 3 years in the CO2 Capture and Avoidance group prior to joining the faculty at Oklahoma State University.

Seminar

Professor Zhenan Bao

Our next Chemistry Seminar Speaker of our Spring Series is Professor Zhenan Bao, K.K. Lee Professor and Department Chair in the Department of Chemical Engineering, Standford University. Professor Bao is also a Courtesy Professor in the Department of Chemistry and Department of Materials Science and Engineering while also holding the title of Director of Stanford Wearable Electronics Initiative (eWEAR). Professor Bao will be speaking on “Skin-Inspired Organic Electronics.” The seminar will start at 3:00 pm, Friday, March 19th, via Zoom.

Abstract: Skin is the body’s largest organ, and is responsible for the transduction of a vast amount of information. This conformable, stretchable, self-healable and biodegradable material simultaneously collects signals from external stimuli that translate into information such as pressure, pain, and temperature. The development of electronic materials, inspired by the complexity of this organ is a tremendous, unrealized materials challenge. However, the advent of organic-based electronic materials may offer a potential solution to this longstanding problem. Over the past decade, we have developed materials design concepts to add skin-like functions to organic electronic materials without compromising their electronic properties. These new materials and new devices enabled arrange of new applications in medical devices, robotics and wearable electronics. In this talk, I will discuss several projects related to engineering conductive materials and developing fabrication methods to allow electronics with effective electrical interfaces with biological systems, through tuning their electrical as well as mechanical properties. The end result is a soft electrical interface that has both low interfacial impedance as well as match mechanical properties with biological tissue. Several new concepts, such as “morphing electronics” and “genetically targeted chemical assembly – GTCA” will be presented.

Image of stretchable electronic skin. Image credit: Amir Foudeh, Sihong Liu of Bao Group, Stanford University

Bio:

Zhenan Bao is Department Chair and K.K. Lee Professor of Chemical Engineering, and by courtesy, a Professor of Chemistry and a Professor of Material Science and Engineering at Stanford University. Bao founded the Stanford Wearable Electronics Initiate (eWEAR) in 2016 and serves as the faculty director.
Prior to joining Stanford in 2004, she was a Distinguished Member of Technical Staff in Bell Labs, Lucent Technologies from 1995-2004. She received her Ph.D in Chemistry from the University of Chicago in 1995. She has over 550 refereed publications and over 65 US patents with a Google Scholar H-Index >160.
Bao is a member of the National Academy of Engineering and the National Academy of Inventors. She is a Fellow of MRS, ACS, AAAS, SPIE, ACS PMSE and ACS POLY.
Bao was selected as Nature’s Ten people who mattered in 2015 as a “Master of Materials” for her work on artificial electronic skin. She was awarded the inaugural ACS Central Science Disruptor and Innovator Prize in 2020, the Gibbs Medal by the Chicago session of ACS in 2020, the Wilhelm Exner Medal by Austrian Federal Minister of Science 2018, ACS Award on Applied Polymer Science 2017, the L’Oréal-UNESCO For Women in Science Award in the Physical Sciences 2017, the AICHE Andreas Acrivos Award for Professional Progress in Chemical Engineering in 2014, ACS Carl Marvel Creative Polymer Chemistry Award in 2013, ACS Cope Scholar Award in 2011, the Royal Society of Chemistry Beilby Medal and Prize in 2009, the IUPAC Creativity in Applied Polymer Science Prize in 2008.
Bao is a co-founder and on the Board of Directors for C3 Nano and PyrAmes, both are silicon-valley venture funded start-ups. She serves as an advising Partner for Fusion Venture Capital.

Seminar

Dr. Bradley D. Smith

We welcome Dr. Bradley D. Smith, Emil T. Hofman Professor of Chemistry and Biochemistry at the University of Notre Dame, as this Friday’s Seminar Speaker. The seminar on Near-Infrared Fluorescent Probes for Bioimaging will begin at 3:00 pm via Zoom.

Abstract: The lecture will describe new families of near-infrared absorbing molecular probes. Cell microscopists have a need for fluorophores with high photostability, extreme brightness, low phototoxicity, and user-friendly bioconjugation. In contrast, in vivo imaging researchers and fluorescence-guided surgeons strongly prefer fluorescent probes that emit low-energy near-infrared light since it can penetrate through skin and tissue. A family of interlocked molecules called Squaraine-Rotaxanes are valuable as extremely bright and stable deep-red fluorescent probes and they are being used increasingly for single-molecule tracking studies. A new dye architecture called Squaraine Figure-Eight enables the insertion of peptide units into the probe structure to create targeted probes. Another new probe system is based on sterically shielded near-infrared heptamethine cyanine dyes that have unsurpassed performance properties such as high stability and low propensity for non-specific interaction with biological surfaces. Bioconjugates of these shielded heptamethine cyanine dyes include antibody and peptide systems with superb bioimaging performance in cells and in living subjects.

Bio: Bradley D. Smith is the Emil T. Hofman Professor of Chemistry and Biochemistry at the University of Notre Dame, Indiana, USA. He is also Director of the Notre Dame Integrated Imaging Facility that supports university imaging research. He is the author of 260 research publications and Associate Editor of the ACS journal Bioconjugate Chemistry. His research group develops molecular probes for detecting and treating cancer or microbial infections in living subjects. Dr. Smith has invented a series of near-infrared fluorescent dye molecules and converted them into imaging probes for a wide range of applications in biomedical science, biotechnology, and nanotechnology.

Seminar

Dr. Joseph Pignatello

Our next Chemistry Seminar Speaker of our Spring Series is Dr. Joseph J. Pignatello, Chief Scientist at The Connecticut Agricultural Experimental Station. Dr. Pignatello will be speaking on “Interactions of organic compounds with natural and human-made pyrogenic carbonaceous materials—sorption, reaction, and catalysis.” His seminar will start at 3:00 pm, Friday, February 19th, via Zoom.

Abstract: Pyrogenic carbonaceous materials (PCM) are solid products of pyrolysis or thermolysis of biomass. Chars from wildfires, crop residue burning, or land clearing practices are widely distributed in the environment, and may influence soil structure, microbial activity, and behavior of pollutants especially in highly impacted areas. Produced PCMs such as activated carbon, biochar, and related materials, are in use or under study as agents in water, soil, and air purification, and as additives to improve soil properties. Central to the behavior of PCMs is their role as adsorbents; however, PCMs and their physico-chemically modified forms, are attracting interest as electron-transfer mediators and catalyst substrates. This lecture will describe our recent efforts in understanding and manipulating sorptive functions, probing the inherent chemical reactivity of PCMs and their ability to mediate electron-transfer reactions, and the modification of PCMs for specific environmental remediation functions.

Bio: Dr. Pignatello has been a pioneer in Environmental Science, and currently is Chief Scientist at The Connecticut Agricultural Experimental Station There, he leads the Environmental Chemistry Group, which researches both fundamental and applied aspects of the environmental chemistry of pollutants and natural processes, such as physical-chemical processes for removing or degrading pollutants in soil, water and air, physical-chemical interactions of organic compounds with soils and soil components, and bioavailability of organic contaminants in natural particles. A recent research focus is studying the nature of the interactions between organic compounds and pyrogenic carbon, including studies of novel interactions between the carbons and behaviors, tailoring the carbon surfaces to adsorb and transform contaminants, and potential roles for these carbons in environmental management.

Seminar

Dr. Weihua Zhou

Michigan Technological University’s College of Computing Assistant Professor Weihua Zhou is our second Chemistry Seminar Speaker of the semester!

Dr. Zhou will be presenting “Artificial intelligence for medical image analysis: our approaches” on Friday, February 12th, at 3:00 pm via Zoom.

Abstract: Machine learning (ML) has shown great advantages to overcome the challenges of high-dimensional complexity and inter-correlation among clinical predictors and help physicians make patient-specific clinical decisions related to diagnosis and treatment. Deep learning as a type of more complicated ML methods has been extensively used to extract information from medical records and images, and predict outcomes with a very high accuracy. Convolutional neural networks (CNN) are state-of-the-art deep learning techniques for computer vision, such as medical image segmentation and classification. This research talk will introduce our approaches of applying these artificial intelligence (AI) techniques to medical image analysis, particularly on image segmentation. We will also give an example about building a clinically accurate and practical AI-based software toolkit to improve percutaneous coronary intervention (PCI) for the treatment of patients with coronary artery disease.

Bio: Dr. Weihua Zhou, is an Assistant Professor of Applied Computing at Michigan Tech. He has been doing research on medical imaging and informatics since 2008. Prior to joining Michigan Tech, he was a post-doctoral fellow at Emory University School of Medicine from 2012 to 2015 and was an Assistant Professor of Computer Science at The University of Southern Mississippi from 2015 to 2019. Dr. Zhou’s research is driven by clinical significance. His research record includes more than 70 publications, 1 active patent, and 7 invention disclosures. His software applications are being used by 3 clinical trials and more than 30 hospitals.

Seminar

Our Spring Chemistry Seminar Series starts today! Dr. Ana de Bettencourt-Dias, a Susan Magee and Gary Clemons Professor of Chemistry from the University of Nevada, Reno, kicks off the series.

Her piece on Lanthanide Complexes with Dual Activity and Unusual Coordination Chemistry starts today at 3:00 pm, via zoom.

Abstract: The luminescence of lanthanide ions is based on f-f transitions. Due to the core nature of the 4f orbitals involved in the process, as well as the forbidden nature of these transitions, the emission properties make these ions uniquely suited for a variety of applications involving light emission, such as lighting,  imaging, and sensing. Since the f-f transitions are forbidden, the emission is most efficiently promoted through coordinated chromophores. The use of these coordinated ligands provides unique opportunities.  They can be functionalized to tailor the chemical and photophysical properties of the resulting complexes.1 We have used this approach to synthesize complexes that can be used as imaging agents for cancer cells.2 By extending the conjugation of the ligand we shifted the excitation wavelengths into the visible and isolated complexes that can be used as molecular nanothermometers.3In addition, we used carbazole-based ligands that enabled excitation of the resulting complexes in the biological window by a two-photon process. Finally, we used oligothiophene-based ligands to isolate complexes that luminesce and generate singlet oxygen.  
In this presentation, I will discuss my group’s recent work on lanthanide ion complexes with dual activity, as well as some recent results on unusual coordination chemistry4-5 of these fascinating metal ions. 

Figure 1. Temperature-dependent emission spectrum of K3[Tb(dipicCbz)3]. Inset shows the intensity of the 5D4 → 7F5 transition as a function of temperature.
Figure 1. Temperature-dependent emission spectrum of K3[Tb(dipicCbz)3]. Inset shows the intensity of the 5D4 → 7F5 transition as a function of temperature.3

References 

  1. Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials. de Bettencourt-Dias, A.,  Ed. John Wiley and Sons: 2014. 
  2. Monteiro, J. H. S. K.; Machado, D.; de Hollanda, L. M.; Lancellotti, M.; Sigoli, F. A.; de Bettencourt-Dias,  A., Selective Cytotoxicity and Luminescence Imaging of Cancer Cells with A Dipicolinato-based EuIII Complex  Chem. Commun. 2017, 53, 11818-11821. 
  3. Monteiro, J. H. S. K.; Sigoli, F. A.; de Bettencourt-Dias, A., A Water-soluble TbIII complex as temperature sensitive luminescent probe. Can. J. Chem. 2018, 96, 859-864. 
  4. de Bettencourt-Dias, A.; Beeler, R. M.; Zimmerman, J. R., Anion-π and H-Bonding Interactions Supporting  Encapsulation of [Ln(NO3)6/5]3-/2-(Ln=Nd,Er) with a Triazine-based Ligand. J. Am. Chem. Soc. 2019, 141,  15102-15110. 
  5. de Bettencourt-Dias, A.; Beeler, R. M.; Zimmerman, J. R., Secondary-Sphere Chlorolanthanide(III)  Complexes with a 1,3,5-Triazine-Based Ligand Supported by Anion-π, π-π, and Hydrogen-Bonding  Interactions. Inorg. Chem. 2020, 59, 151-160.

Bio: Ana de Bettencourt-Dias received her ‘licenciatura’ (MS equivalent) in Technological Chemistry from the University of Lisbon in 1993, and her ‘Dr. rer. nat.’ (PhD equivalent) in Inorganic Chemistry from the University of Cologne in 1997 with Prof. Thomas Kruck. In her graduate work, she isolated new titanium complexes as single source precursors for the chemical vapor deposition of TiN thin layers. She joined the group of Prof. Alan Balch at UC Davis in 1998 as a Gulbenkian postdoctoral fellow, where she studied the electrochemistry and structure of fullerenes and endohedral fullerenes. In 2001 she joined the faculty at Syracuse University and started her work on luminescent lanthanide ion complexes. She moved to the University of Nevada, Reno, as associate professor in 2007 and was promoted to professor in 2013. Her research centers on light-emitting compounds and coordination chemistry of the f block of the periodic table. She served on the editorial advisory board for Inorg. Chem. from 2013 to 2015, and has been a managing member of the editorial board of the Journal of Rare Earths since 2014.  She was program chair of the 2011 and conference chair of the 2014 Rare Earth Research Conference, organizes the lanthanides and actinides symposia at the national meetings of the American Chemical Society and was the 2019 Chair of the Division of Inorganic Chemistry of the American Chemical Society. She served as the Associate Vice President for Research at UNR from 2015 to 2019. She returned to being a full-time faculty in July 2019, and is now the Susan Magee & Gary Clemons Professor of Chemistry.

Seminar

We welcome Dr. Christine Chow as our last seminar speaker of the fall semester. Dr. Chow will present her piece on Tools for Monitoring RNA Modifications and Drug Interactions at 3:00 p.m. Friday, via Zoom.

Abstract: Among different RNA modifications, the helix 69 (H69) region of the bacterial ribosomal RNA (rRNA) contains three pseudouridines (Ψs). H69 is functionally important due to its location in the heart of the ribosome. Several structural and functional studies have shown the importance of Ψ modifications in influencing the H69 conformation as well as maintaining key interactions in the ribosome during protein synthesis. Therefore, a need exists to understand the influence of modified nucleosides on conformational dynamics of the ribosome under solution conditions that mimic the cellular environment. We have used a variety of methods including fluorescence spectroscopy and chemical probing with dimethyl sulfate (DMS) to examine H69 conformational states and the influence of Ψ modifications under varying solution conditions in the context of model RNAs, ribosomal subunits, and full ribosomes. The use of DMS footprinting, electrospray ionization mass spectrometry, and fluorescence spectroscopy to study the binding of aminoglycosides to H69 as well as helix 44 of bacterial rRNA as antibiotic targets will also be discussed. As highlighted in our work, DMS probing and footprinting are versatile techniques that can be used to gain important insight into RNA local structure and RNA-drug interactions.

Bio: My group studies large RNAs in order to better understand the impacts of modifications, determine how drugs locate their preferred binding sites, and identify new drug target sites. We use a combination of synthetic, biochemical, bioinorganic, and biophysical techniques, including modified oligonucleotide synthesis, chemical modification of RNA and primer extension assays, phage display, mass spectrometry, and circular dichroism, fluorescence, and NMR spectroscopies. I have a broad background in nucleic acid chemistry, with specific expertise in modified ribosomal RNAs and small molecule-RNA interactions. To help prepare students for professional success after graduate school, I have been involved with the NIH-supported WSU Broadening Experiences in Scientific Training program (BEST, co-PI from 2013-2018 and PI2018-2019). My role was to develop seminar and workshop content for 7 different modules in business, communication, community engagement, government, law, research administration, and teaching), which involved two-hour seminars and all-day workshops with alumni, business partners, and experts in the various career tracks. I also initiated the “Mini-BEST” program at Wayne State, in which faculty in departments, centers, and cross-disciplinary programs across the campus were given guidance on how to establish their own career development events (funded by the Wayne State Graduate School).  The BEST program has served more than 1000 students at Wayne State University since 2013. In 2012, I helped develop and run a campus-wide “Fellowship Writing Bootcamp”, which guided graduate students and postdocs in preparing F31/F32 applications (2012–2017). The workshop included mock study panels and recruitment of faculty to serve as reviewers of the proposals prior to submission. I also initiated the use of mock study section panels for faculty across three colleges (Liberal Arts & Sciences, Engineering, and School of Medicine).

Seminar

Chemistry welcomes Dr. Sangyoon Han from the Biomedical Engineering Department as our seminar speaker this Friday (November 13th). The virtual seminar will be held via Zoom at 3:00 PM. The passcode is 859189 if needed.

Toward Discovery of the Initial Stiffness-Sensing Mechanism by Adherent Cells

Abstract: The stiffness of the extracellular matrix (ECM) determines nearly every aspect of cellular/tissue development and contributes to metastasis of cancer. Adherent cells’ stiffness-sensing of the ECM triggers intracellular signaling that can affect proliferation, differentiation, and migration of the cells. However, biomechanical and molecular mechanisms behind this stiffness sensing have been largely unclear. One critical early event during the stiff-sensing is believed to be a force transmission through integrin-based adhesions, changing the molecular conformation of the molecules comprising the adhesions that link the ECM to the cytoskeleton. To understand this force transmission, my lab develops experimental and computational techniques, which include soft-gel-based substrates, live-cell imaging, computer-vision-based analysis, and inverse mechanics, etc. In this talk, I will talk about how we use soft-gel to quantify the spatial distribution of mechanical force transmitted by a cell, how we use light microscopy and computer vision to analyze the focal adhesions, and how these techniques are related to stiffness sensing. In particular, I will show you new data where cells can transmit different levels of traction forces in response to varying stiffness, even when the activity of the major motor protein, myosin, is inhibited. At the end of the talk, potential molecules responsible for the differential transmission will be discussed.

Bio: Sangyoon Han received his Ph.D. in Mechanical Engineering at the University of Washington (UW) in 2012 and did postdoctoral training with Dr. Gaudenz Danuser in the Department of Cell Biology at Harvard Medical School and the University of Texas Southwestern Medical Center for five years until 2017. Before the Ph.D., he received B.S and M.S. degree from Mechanical Engineering at Seoul National University, Seoul, Korea in 2002 and 2004. He joined Michigan Tech, Biomedical Engineering from this fall, 2017, and started Mechanobiology Laboratory. His lab’s interests are in understanding the dynamic nature of force modulation occurring across cell adhesions and cytoskeleton that regulate cells’ environmental sensing. His lab develops a minimally-perturbing experimental approach and computational techniques, including soft-gel fabrication, nano-mechanical tools, live-cell microscopy, and image data modeling, to capture the coupling between force modulation and cellular molecular dynamics.