Category: Funding

New Funding: Trista Vick-Majors Collaborative Research

Trista Vick-Majors
Trista Vick-Majors

Trista Vick-Majors is the principal investigator (PI) on a project that has received a $481,851 research and development grant from the National Science Foundation. The project is titled “Collaborative Research: Advancing a comprehensive model of year-round ecosystem function in seasonally frozen lakes through networked science.” This is a potential four-year project.

About the Biological Sciences Department

Biological scientists at Michigan Technological University help students apply academic concepts to real-world issues: improving healthcare, conserving biodiversity, advancing agriculture, and unlocking the secrets of evolution and genetics. The Biological Sciences Department offers seven undergraduate degrees and three graduate degrees. Supercharge your biology skills to meet the demands of a technology-driven society at a flagship public research university powered by science, technology, engineering, and math. Graduate with the theoretical knowledge and practical experience needed to solve real-world problems and succeed in academia, research, and tomorrow’s high-tech business landscape.

Questions? Contact us at biology@mtu.edu. Follow us on Facebook and Instagram for the latest happenings

New Funding: Amy Marcarelli and Michelle Kelly

Amy Marcarelli is the principal investigator (PI) on a project that has received a $300,000 research and development grant from the National Science Foundation.

The project is titled “MSA: Quantifying whole-stream denitrification and nitrogen fixation with integrated modeling of N2 and O2 fluxes.”

Michelle Kelly is a co-PI on this potential two-year project.

Amy is an ecosystem ecologist with interests in energy and biogeochemical cycles in freshwaters. Her research program blends basic and applied research and integrates across aquatic habitats, including streams, rivers, wetlands, lake littoral zones, and the nearshore regions of the Great Lakes. Dr. Marcarelli’s past and future research trajectory is governed by an interest in understanding the role of small, poorly quantified fluxes or perturbations on ecosystem processes and in linking those ecosystem processes to the underlying structure of microbial, algal, macrophyte, and animal communities.

Congratulations Dr. Marcarelli and Michelle Kelly!

Amy Marcarelli
Amy Marcarelli
Michelle Kelly
Michelle Kelly

New Funding: Yan Zhang

Yan Zhang
Yan Zhang

Yan Zhang is the principal investigator on a project that has received a $469,500 research and development grant from the National Institutes of Health.

The project titled “High urinary phosphate induces TLR4-mediated inflammation and cystogenesis in polycystic kidney disease” is a potential two-year project.

Autosomal dominant polycystic kidney disease (ADPKD) is the most common, potentially lethal genetic disorder characterized by the progressive enlargement of numerous fluid-filled cysts and the development of interstitial inflammation and fibrosis. ADPKD is caused by the mutation of PKD1 or PKD2 gene. Approximately 50% of patients progress to end-stage renal disease by middle age and require dialysis or renal transplantation. Currently, treatment options for ADPKD patients are limited; thus, the development of new effective therapies is urgent. Dr. Zhang’s research lab investigates the role of innate immunity in the pathological microenvironment of ADPKD and the potential therapeutic effects of manipulating innate immunity. Dr. Zhang’s lab shows interest in determining the function of polycystin-1 encoded by PKD1.

Congratulations Dr. Yan Zhang!

About the Biological Sciences Department

Biological scientists at Michigan Technological University help students apply academic concepts to real-world issues: improving healthcare, conserving biodiversity, advancing agriculture, and unlocking the secrets of evolution and genetics. The Biological Sciences Department offers seven undergraduate degrees and three graduate degrees. Supercharge your biology skills to meet the demands of a technology-driven society at a flagship public research university powered by science, technology, engineering, and math. Graduate with the theoretical knowledge and practical experience needed to solve real-world problems and succeed in academia, research, and tomorrow’s high-tech business landscape.

Questions? Contact us at biology@mtu.edu. Follow us on Facebook and Instagram for the latest happenings.

Call for Applications: 2023 Songer Research Award for Human Health

Matthew Songer, (Biological Sciences ’79) and Laura Songer (Biological Sciences ’80) have generously donated funds to the College of Sciences and Arts (CSA) to support a research project competition, the Songer Research Award for Human Health, for undergraduate and graduate students. Remembering their own eagerness to engage in research during their undergraduate years, the Songers established these awards to stimulate and encourage opportunities for original research by current Michigan Tech students.

Students may propose an innovative medically-oriented research project in any area of human health. The best projects will demonstrate the potential to have a broad impact on improving human life. This research will be pursued in consultation with faculty members within the College of Sciences and Arts. The Songers’ gift and matching funds from the College will support two awards for undergraduate research ($4,000) and two for graduate research ($6,000), for research conducted over the Summer of 2023 and/or the following academic year.

Learn more about who is eligible to apply, how to apply, and how the funds may be used.

Submit applications as a single PDF file to the Office of the College of Sciences and Arts by 4:00 p.m. Monday, April 24, 2023. Applications may be emailed to djhemmer@mtu.edu. Any questions may be directed to David Hemmer (djhemmer@mtu.edu).

Amy Marcarelli Receives NSF Grant to Explore How Microbes Process Organic Matter in Streams

Professor Amy Marcarelli and a multi-disciplinary team have received a two-year, $300,000 NSF grant. The grant from the National Science Foundation is to study the relationships between organic matter and micro-organisms in streams. 

Marcarelli and colleague in stream with five gallon bucket collecting a water sample
Marcarelli and colleague collecting water samples

An ecosystems ecologist, Marcarelli is leading a team of Michigan Tech ecosystem scientists, microbiologists, environmental chemists, and data scientists. The researchers are conducting detailed laboratory experiments to gather data on how microbial communities work together to process complex mixtures of dissolved organic matter in streams.  Steve Techtmann, associate professor of Biological Sciences and an environmental microbiologist, is doing all the microbial work on the project in his lab at Michigan Tech. 

Dissolved organic matter comprises many different kinds of molecules that come from terrestrial and aquatic plants and microbes.  The researchers expect different microbes that live in streams to be specialized to break down these different molecules. 

“We expect the relationships to be extremely complicated,” Marcarelli says. 

They are looking at rates of respiration, carbon breakdown, and energy release. They hope to discover how the characteristics of dissolved organic matter and stream microbes can explain rates of carbon dioxide emission from streams. 

The researchers will use the data to develop machine-learning models. “The relationships between the organic matter and micro-organisms might not be evident in simpler analysis methods,” Marcarelli explains. 

The current work is the start of a much larger project. “We hope to build on the results of this project with a much bigger proposal for a large field project,” she says. 

And why is this work important?  “Although we, as a field, have studied carbon dioxide production and emission across many different streams, we can only predict a small amount of the variation we see based on environmental characteristics like temperature,” Marcarelli explains. “We think there is an important role of both microbes and organic matter structure that contributes to this variability, and understanding that is important for predicting these emissions in the future and response to global changes like climate and land use change.”

Marcarelli is the director of the Ecosystem Science Center at Michigan Tech.

This blog post initially appeared in the Fall 2022 Biological Sciences Newsletter. Read this article and others like it today.

NIH Grant Helps Dr. M. Tang Explore Cancer Mechanisms and Novel Treatments

Mark Tang
Mark Tang

Xiaohu (Mark) Tang’s Laboratory of Cancer Metabolism and Functional Genomics is using a three-year $413,090 grant from the National Institutes of Health to find ways to optimize the efficacy of targeted cysteine therapy and broaden its application for the treatment of different subtypes of breast cancer. Tang is an assistant professor of Biological Sciences. He earned his Ph.D. at The Weizmann Institute of Science. Haiying Liu, Professor of Chemistry, is a co-investigator on this project.

“Targeted cancer therapy is an emerging trend in precision cancer medicine,” Tang explains. “It uses the specific genetic makeup of a patient’s tumor to select the safest and most effective personalized treatment, instead of the traditional symptom-driven practice of medicine. Identifying and targeting metabolic vulnerabilities in cancer is a promising therapeutic strategy.”

The NIH grant will also provide research-based training for undergraduates and graduate students in Biological Sciences and the Biochemistry and Molecular Biology programs. “The work will enable students to understand the complexity of cancer and motivate them to seek novel strategies to improve health issues,” says Tang.

Tang’s lab works to characterize the deregulation of cancer metabolism and the role of nutrients during cancer initiation and progression. He is working to understand the underlying mechanisms of cancer to pursue workable alternative treatments for patients. He also hopes that a better understanding of diet-cancer interactions could establish a strategy for long-term cancer prevention.

This blog post initially appeared in the Fall 2022 Biological Sciences Newsletter. Read this article and others like it today.

Erika Hersch-Green Receives NSF CAREER Award

Erika Hersch-Green, plant evolutionary ecologist and associate professor of Biological Sciences, received a National Science Foundation CAREER Award. She will investigate how specific attributes of plants, such as their genome size, influence community biodiversity responses to increased nitrogen and phosphorus availability. Hersch-Green’s approach combines molecular, cytological, physiological, and phylogenetic techniques.  

Erika Hersch-Green
Erika Hersh-Green

Hersch-Green is conducting her research on three fronts. First, she is currently gathering fresh data and merging it with information from experimental grassland sites around the world. These sites have plots with different nutrient treatments, allowing her to examine how response patterns vary depending on climate conditions. Second, she is conducting controlled greenhouse studies to better understand mechanisms that focus on two common grassland plants: fireweed and goldenrod, both of which she has studied before. Lastly, she developed a new research site at Churning Rapids, north of Hancock and south of McClain State Park. There she is extending her research to look at how disturbance patterns affect levels of biodiversity. 

She is also exploring ways to improve students’ scientific literacy and engagement in research.  To accomplish this, she is incorporating students in grades 6 through 12 and undergraduates in research, enhancing research involvement in the classroom, facilitating effective scientific communication skills of graduate students, and promoting collaboration among undergraduate students and faculty in the Departments of Biological Sciences and Humanities. These students will produce video content that will be used to enhance education and public understanding of biological science and ecology.

To summarize, Hersch-Green aims to provide a system-level understanding of how nutrient eutrophication—the increasingly dense growth of particular plants at the expense of other species—and landscape disturbances affect individual organisms and multi-species communities by looking at their interactions.

Although she is passionate about her research, Hersch-Green is also deeply committed to the educational component of her CAREER award. Her educational goals are to increase both scientific literacy and engagement of high school and university students on critical topics related to nutrient eutrophication, biodiversity, evolutionary adaptation, and awareness of related STEM (science, technology, engineering, and math) career pathways. 

This blog post initially appeared in the Fall 2022 Biological Sciences Newsletter. Read this article and others like it today.

Anatomage Table 8.0 is a True Game Changer for Students

Students standing beside an interactive table in a lab
Students using Anatomage Table in A & P

Thanks to the generous support from our alumni and friends, the department purchased a virtual human cadaver dissection table from Anatomage. The table cost about $72,000. Our Anatomy and Physiology (A & P) students have been excited to use this equipment since the Fall of 2021. The table will move to our new H-STEM building when that project is complete (and be joined by a second table). This 7.2-foot-long iPad-like table allows eight students to simultaneously learn and experience medical sciences in a way they have never done before! We would greatly appreciate it if you could contribute to Anatomage Michigan Tech Fund #3454. Funds will go to purchase a second Anatomage table. As a result, this increases instruction for up to 16 students at the same time. We are already halfway there. 

The Anatomage Table 8.0 is one of the most technologically advanced virtual dissection platforms. The Table’s interactive, life-sized display is now available for our undergraduate students to utilize within the Anatomy & Physiology Teaching Laboratory! It expands our ability to provide ultra-high-quality visualization for students to view photorealistic anatomical structures. Students are amazed by the level of detail within each virtual human cadaver. They see value in comparing models and textbook images to actual medical images. The Table includes a robust library of histology scans, CT and MRI scans, clinical cases, and physiology simulations. 

This blog post initially appeared in the Fall 2022 Biological Sciences Newsletter. Read this article and others like it today.

Paul Goetsch Receives NIH Grant to Study Cell Cycle Regulation

Dr. Goetsch assisting a graduate student in the lab

Assistant Professor Paul Goetsch received a $423,381 grant from the National Institutes of Health. Dr. Goetsch will study how the DREAM transcriptional repressor complex regulates the cell cycle of cellular progression and cellular quiescence.

Cellular division is extremely important as an organism grows to maturity, but just as important are the mechanisms that stop cells from dividing. Dysfunction in cellular quiescence generally leads to the development of cancer cells, Goetsch explains.

Working in the model system Caenorhabditis elegans, a 1 mm-long transparent nematode, the Goetsch lab is using CRISPR/Cas9-mediated genome editing to disrupt how the DREAM complex forms and test how that affects its function. “By exploiting advances in genomic editing and genetic tools in a tractable model system, we will gain new insights into how the DREAM complex protects cellular and organismal health,” says Goetsch.

Another part of the grant supports bringing research directly into the classroom for Biological Sciences students in the second-year genetics lab. Goetsch and his colleagues are implementing Course-based Undergraduate Research Experiences (CUREs). These are used to provide students a glimpse into research opportunities within the department.

In Spring 2021, Goetsch and his student Emily Washeleski developed a unique experiment combining C. elegans genetics with environmental microbiology. “We are continuing to expand upon our CURE approach to provide students equitable access to research experience as a cornerstone of their professional development within the department,” Goetsch says.

This blog post initially appeared in the Fall 2022 Biological Sciences Newsletter. Read this article and others like it today.

New Funding

Bruce Lee (BioMed) is the principal investigator on a project that has received a $434,993 research and development grant from the National Institutes of Health.

The project is entitled, “Multifunctional Nanocomposite Bioadhesive for Diabetic Wound Repair.” Xiaoqing Tang (BioSci) and Rupak Rajachar (BioMed) are Co-PI’s on this potential three-year project.

*****

Ebenezer Tumban (BioSci) is the principal investigator on a project that has received a $435,591 research and development grant from the National Institutes of Health. The project is entitled, “Development of a Novel and Broadly Applicable Thermostable Bacteriophage VLPs Platforms for Vaccine Design, Drug Delivery, and Imaging.”

This is a potential three-year project.