Day: November 3, 2014

Elucidating the Pathways for Protein Misfolding and Aggregation: Unity in Diversity.

Dr. Ashutosh Tiwari, Assistant Professor of Chemistry

Department of Chemistry,  Michigan Technological University     

 

November 7, 2014  ~  3:00pm  ~  Chemical Science Building, Room 101

Abstract:

Due to the aging of baby boomers in the USA, the proportion of the population in higher age groups has increased. This demographic shift coupled with a concomitant increase in longevity has brought new challenges and threats in the form of diseases and disorders that not only affect an individual but impact the whole society at large. Increased oxidative damage of proteins associated with aging causes them to misfold and aggregate and thus, disorders related to protein misfolding and aggregation are on the rise. Since many aggregated proteins share a common fibrillar structure at the molecular level, understanding the principles and contributing factors that regulate protein misfolding, surface hydrophobic exposure, aberrant interactions, or aggregation is key to understanding their relationship to cellular toxicity. I will discuss recent results from my laboratory wherein we studied several proteins for their surface-hydrophobic exposure and aggregation propensity at physiological pH and temperature. Identifying shared protein aggregation pathways for a large set of structurally diverse proteins will lead to a better understanding of the disease process and as a consequence provide common effective targets for therapy.

 

 

Green Chemistry: An Overview of Principles and Applications

Mark R. Mason

Professor, Department of Chemistry and Biochemistry and
Director,  School of Green Chemistry and Engineering
The University of Toledo
Thursday, November 6, 2014
11:00 am Chemical Sciences Building Room 102

Over the past two decades, there has been a dramatic shift in the way government and industry view pollution prevention and the environmental consequences of chemical manufacture in the United States. Source reduction, rather than “end of the pipe” waste treatment, is now the preferred method for reducing pollution. This approach requires chemists and engineers to be increasingly aware of the environmental consequences of the chemical-related products and processes we develop. Green chemistry, “the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances,” is the foundation of this increased awareness. This presentation will provide an overview of selected green chemistry principles, green chemistry applications and metrics, chemical alternatives assessment, and future opportunities.