Tag: electric vehicles

Rev Up Your ICE Knowledge With New Program From MTU and USCAR

A diesel engine, one type of ICE or internal combustion engine.

Internal Combustion Engines (ICEs) Are Definitely Sticking Around.

Very Important Note: The author constructed this blog with the helpful, substantive input and the important, factual content (and snappy title) from these two Michigan Tech staff, writers, and people: Kimberley Geiger, director of Communications for the College of Engineering; and Donna Jeno-Amici, coordinator of Research and Marketing at the Department of Engineering-Engineering Mechanics.

Discover the Latest Internal Combustion Engines (ICE) Breakthroughs.

Michigan Tech is proud to announce an expansion of graduate-level course offerings in the specialized area of internal combustion engines (ICE). These courses will be available on campus at Michigan Tech, as well as online at MTU Global Campus.

Students can enroll in these courses individually if they require expertise in a certain ICE area. Or they can take several to create a graduate certificate that provides more advanced, specialized knowledge in internal combustion engines. Currently, the Department of Mechanical Engineering-Engineering Mechanics is developing a 15-course ICE graduate certificate. Alternatively, those interested may pursue an MS in Mechanical Engineering with a focus area on ICE.

And as with all graduate programs, the online application is free. And no GRE is required.

Enroll in Summer Classes.

Wasting no time, the ME-EM department is offering these courses right away. In fact, there are a few graduate-level offerings on deck for Summer 2024 and one brand-new course for Fall 2024.

Summer 2024 Courses

  • SI Engine Fundamentals (MEEM 5201): June 19-21, 2024, lab course
  • SI Engine Controls (MEEM 5203): July 10-12, 2024, lab course
  • Online Thermodynamics Refresher (MEEM 3990): June 10 – Aug. 8, 2024

New Offering for Fall 2024

  • Thermodynamics for Engine Systems (MEEM 5990) is available, along with our existing courses.

These courses could fill soon, so we recommend that you contact Jeff Naber at jnaber@mtu.edu for more information.

Learn From ICE Industry Experts.

These courses have been developed in collaboration with Dr. Andrea Strzelec, Sr. Research Scientist at USCAR. Strzelec, FSAE, holds a Ph.D. in Combustion Engineering from the University of Wisconsin-Madison Engine Research Center. She specializes in transportation and fuels, as well as engine research. Formerly the program director of Masters of Engineering in Engine Systems at the University of Wisconsin-Madison College of Engineering, Strzelec is lending her substantial expertise to Michigan Tech to launch this new engines-focused program.

USCAR, the United States Council for Automotive Research, is an umbrella organization facilitating pre-competitive research and development collaboration for Ford Motor Company, General Motors, and Stellantis. Its main objective is strengthening the U.S. auto industry’s technology base. It does so by promoting cooperative research efforts, reducing costs, supporting regulatory compliance, and accelerating the development of advanced technologies. Another of USCAR’s goals is keeping the U.S. automotive industry globally competitive.

This new graduate program will not only provide Michigan Tech students with both foundational and specialized ICE knowledge and skills, but also prepare them for advances in the US automotive industry.

Acquire Practical ICE Expertise and Skills.

Despite the move towards electrification and advances in battery technology, the world still needs internal combustion engines. For those unfamiliar with the technology, ICEs generate power by burning fuel inside a confined space (combustion chamber). The combustion process then releases energy, which is converted into mechanical work to move a vehicle or operate machinery. These engines generally run on gasoline, diesel, natural gas, and biofuels.

ICEs are known for their low cost, broad availability, durability, and high performance. They also have a rich research and development history. That is, ICEs have been improved and refined over several years. Besides working on lowering emissions and increasing fuel efficiency, researchers and engineers have made advances in engine design, control systems, and fuel compatibility.

Most importantly, these engines reliably provide high power and torque, features especially important in military, industrial, and other heavy-duty applications. The US military, in fact, uses diesel engines (one type of ICE) in nearly all of its ground vehicles because diesel fuel is less flammable and has a high energy density.

Furthermore, IC engines still feature prominently in automobiles, marine vessels, and aircraft. They also power a lot of portable equipment (lawn mowers, chainsaws) as well as some standby generators. And many hybrid vehicles still use ICEs in conjunction with electric motors, leveraging the benefits of both technologies to improve fuel efficiency and reduce emissions.

For instance, take the new Formula 1 proposed post-2026 regulations. Along with cars that are 30% lighter as well as more aerodynamic and agile, FIA is proposing a power unit redesign that is “an even split between internal combustion engine and electric power plus the use of 100% sustainable fuels.” That is, even a plan for the sustainable future of elite race car driving involves ICEs.

Reach Out About the New ICE Program.

In short, for several applications, ICEs are likely to remain relevant for the foreseeable future.

For additional details on these courses and the new ICE graduate programs from ME-EM, please contact

To learn about all MS online programs, please visit MTU Global Campus.

Electric Vehicles: Moving Beyond Tesla

Parking lot spot with an icon for electric vehicles.

Increasing Demand for Electric Vehicles

In a previous blog, I discussed some of the challenges and constraints regarding the future of electric vehicles. But despite certain challenges, such as a need for more charging stations, the demands for electric and hybrid vehicle sales are, respectively, either climbing or staying steady.

In fact, in the third quarter of 2022, US sales of electric vehicles and hybrid-plug-in electric vehicles hit an all-time high. According to a Kelley Blue Book report, the total number of electric vehicles and fuel-cell electric vehicles (fcevs) sold was 578,402. That number marks a 69% increase from 2021 (339, 671). Also, the total number of hybrid and plug-in vehicles sold was 686,271, which is actually strong but slightly down from 2021 numbers (728, 507). Based on these figures, Kelley Blue Book estimates that there will be over 1,000,000 EVs sold in 2023.

What these numbers mean is that although the demand for hybrids is still strong, the popularity of electric vehicles is accelerating, despite the fact that these latter vehicles aren’t cheap. That is, the average cost of an electric vehicle remains over $65k.

Tesla continues to be the leader with its models 3, S, X, & Y all having dramatically increased sales, despite their hefty price tags.

Producing Electric Vehicles for Different Users

“While EV prices currently align more closely with luxury versus mainstream, the market continues to grow and evolve with more choices hitting the scene all the time. It’s no longer just ‘which Tesla is available,’ but rather an industry-wide boom with more EVs on the horizon from Ford, GM, Hyundai, and other manufacturers.”

Brian Moody, Kelley Bluebook

In other words, it is not just Tesla winning at the electric vehicle game. Based on year-to-date sales numbers, some of the other solid contenders for improved sales were the following:

  • Mini Cooper: 2,615 (2022) vs. 1,226 (2021) = +113%
  • Ford Mustang Mach-E: 28,089 (2022) vs. 18,855 (2021) = +49%
  • Audi e-tron: 10,828 (2022) vs. 7.7939 (2021) = +38.9%
  • Mini Cooper: 1,099 (2022) vs. 488 (2021) = +125%

On the hybrid and plug-in hybrid front, overall sales remained relatively steady. But some companies experienced huge gains: Acura, BMW, Honda, Toyota, and Volvo. The big winner in the hybrid market, however, was moderately priced Lincoln Corsair, which had 7X as many sales as those of the previous year.

Meeting the EV Challenge with Trucks

Beyond SUVs like the Lincoln Corsair, the next trend on the horizon is electric trucks. The F-150, currently the best selling vehicle in the US, now has an electric version. The F-150’s more climate-conscious cousin, the Lightning, was rolled out in May 2022 after tens of thousands of Americans had already reserved one. (The F-150 also comes in a hybrid model.)

What’s even cooler: The F-150 Lightning can act as its own power source. With its vehicle-to-grid (V2G) capabilities, it has the ability to charge another electric vehicle. And its massive battery can also power your home, yes your home, during an outage. Ford claims, in fact, that a fully charged Lightning can keep a household going for three days.

Chevrolet followed quickly with its Silverado, built on the same electric platform as the Hummer EV. With the EV Silverado, you can also purchase an ultium charging accessory to power your home in emergencies. Both of these innovative products support GM’s goals of creating a more resilient grid. The company is also investing 750M in charging infrastructure, so that everyone can take advantage of what electric vehicles have to offer.

With site hosts and our dealers, we are installing up to 40,000 chargers in local dealers’ communities through GM’s Dealer Community Charging Program—focusing on underserved rural and urban areas. Participating dealers will get level 2 chargers to install in their communities.

GM Newsroom

Pursuing Electric Vehicle Education at Tech

I’ll stop geeking out here about the plethora of new electric vehicles on the horizon. And I’ve obviously just scratched the surface of the automotive future. (In fact, as I was editing this post, one of my former students excitedly chimed in about the 2024 GM E-ray, a snazzy, sleek, powerful electric Corvette!)

The main point is that several automotive companies, beyond Tesla, are thinking greener and rolling out electric and hybrid models to meet the different needs, lifestyles, and, especially, price points of consumers. In other words, what many thought was a trend–vehicle electrification–is now both a business strategy and an environmental mission for several automotive companies. And it is a strategy and a mission that Michigan Tech can help prepare you for.

Michigan Tech offers several online graduate certificates and programs so that you keep up with the mobility revolution.


The Future of Electric Vehicles and Vehicle Electrification

Close up of an electric vehicle being charged.

The Future is Definitely Electric

Despite common perceptions, electric vehicles are not a new phenomenon. In fact, the first battery-powered electric vehicle was built in 1834—more than 50 years before the first gas-powered internal combustion vehicle. In fact, according to an IEEE Proceedings article by Chan (2013), more than one-third of automobiles in the United States were electric by 1912.

What’s behind this rapid growth? What benefits of electric vehicles attract consumers? What is the future of electric vehicles beyond our highways? And how can we continue to build electrical cars responsibly? Read on for more.

Accelerating into the Future with Electric Vehicles

Despite sputtering in the 1990s and early 2000s, advances in electric vehicles have evolved rapidly in recent years. After the wildly popular launch of electric vehicles from Tesla, automakers scrambled to expand their foothold in the market. And they’re getting plenty of help.

Government Cooperation

National governments worldwide are fast-forwarding the future of electric vehicles by setting specific benchmarks. For instance, in the U.S., the Biden administration’s wants half of all vehicles sold in 2030 to be electric. Furthermore, the Inflation Reduction Act  encourages companies to install EV chargers at their properties. Those that do so can receive a 30% tax credit.

Also, the European Union’s goal by 2030 is to reduce net greenhouse gas emissions by at least 55 percent. They plan to do so through a combination of policies that are collectively called the “Fit for 55” program. Even local governments are undertaking strong sustainability initiatives. Paris is in the midst of an ambitious “Bike Plan” initiative to create 112 miles of new permanent bicycle lanes. Furthermore, the city aims to triple the number of bike parking spots to 180,000 by 2026.

Consumer Behavior

These government-sponsored measures are a response to shifting attitudes by consumers about alternative modes of transportation—especially among those who live in cities. One recent survey indicated that inner-city trips with shared bicycles and e-scooters have risen 60 percent year over year. This number is no surprise when you consider that, in 2020, electric bikes outsold electric cars in the U.S. by more than 2 to 1. Also, public consumers aren’t the only ones shifting to electric: The U.S. Army is planning to transition its non-tactical fleet of 177,000 to electric vehicles by 2035.

Improvements in Electric Vehicle Technology

And investors are taking notice of these electric trends. That is, nearly $330 billion in investments have been granted to more than 2,000 mobility companies over the last decade. These companies are focused on automation, connectivity, electrification, and smart mobility (ACES). Thanks to these investments, automakers may research and invent new and innovative ways to increase the quality and durability of electric vehicles. One ultimate goal: making electric vehicles less expensive than gas-powered cars.

By 2035, the largest automobile markets will go electric.

McKinsey Center for Future Mobility

Considering Electric Vehicles Beyond Automobiles

When it comes to the future of electric vehicles, the possibilities go beyond highways and byways. From keeping electric vehicles on the road to changing the perception of electric vehicles in other modes of transportation, there are many innovations to get excited about and challenges to conquer.

Charging Infrastructure

There has been substantial growth in electric car sales. However, nearly half of U.S. consumers say battery or charging issues are their top concern when considering an electric vehicle. As a result, there have been increasing calls for improving charging infrastructure for electric vehicles. This infrastructure entails the network of charging stations, cables, and other equipment needed to power up these vehicles. A summary of this infrastructure is below.

  • Public charging stations
  • Home-based charging points
  • Workplace chargers
  • Necessary installation services
  • Software
  • Energy management systems

To help make charging easier for Americans, the US government has recently stepped in. For instance, the recently passed Bipartisan Infrastructure Law provides $7.5 billion toward strengthening charging infrastructure nationwide. A main objective is installing half a million public chargers by 2030.

Sustainable Mobility in Cities

As previously mentioned, Paris wants to become a “100 percent cyclable city.” However, Paris’s vision is not the only option for cities seeking to increase both mobility and sustainability. One possible potent solution from the McKinsey Center for Future Mobility is called “Seamless Mobility.” This solution is a flexible, highly responsive network of transportation options. These include a shared fleet of public electric vehicles, electrified mass transit, and urban planning meant to reduce emissions. Therefore, an average-sized city could reap up to $2.5 billion per year by 2030 by implementing Seamless Mobility practices.

Look! Up in the Sky!

The future of electric vehicles, however, isn’t limited to the road. That is, interest continues to grow in electric air travel through eVTOLs (pronounced “ee-vee-tols”)—electric vertical takeoff and landing aircraft. Think of them as safe, quiet, affordable, and environmentally friendly helicopters. Using eVTOLs as “flying taxis” for short flights or for trips normally taken by cars could substantially reduce emissions. Airbus Innovations, for example, is experimenting with electric and hybrid-electric propulsion systems.

Some major airlines are thinking even bigger when it comes to electric aircraft. For instance, United Airlines Ventures, Air Canada, and Mesa Airlines have made significant financial pledges. After joining the investment group for Swedish-based electric aviation startup Heart Aerospace, these companies ordered several 30-passenger electric planes.

Close up of a hybrid-electric plane by the company Airbus. Planes are also electric vehicles.
Airbus Innovations is an initiative launched by Airbus to drive the development of new technologies and capabilities for the aerospace industry, such as electric and hybrid-electric propulsion systems, autonomous flight systems, and more.

Or Maybe Down to the Sea.

Cars and planes are not the only vehicles going electric. That is, electric boats are becoming more popular due to their low emissions, quiet operation, efficiency, and cost-effectiveness over traditional gas-powered boats. Some examples of electric boats include electric sailboats, electric ferries, electric speedboats, and electric fishing boats. More and more boat manufacturers are beginning to offer electric models, and electric boats are becoming more widely available.

Several boat manufacturers are offering electric models, including Sea Ray, Yamaha, Beneteau, Bayliner, Chris Craft, Viking, and Four Winns.

Building Electric Vehicles Responsibly

Although the benefits of electric vehicles can be substantial, it’s important to ensure those benefits aren’t canceled out by the environmental and human impact of manufacturing electric vehicles and infrastructure.

Sourcing and Mining Raw Materials

Virtually all batteries used by electric vehicles require lithium. And its price has skyrocketed—by about 550 percent in one year—as the demand for electric vehicles has grown. Mining more lithium, as well as other necessary elements such as cobalt, means more manpower. However, this mining, which often occurs in countries such as China, Guinea, and the Democratic Republic of the Congo, can be a dirty business. Miners are often subject to unsafe working conditions and potentially toxic side effects of dust and fumes. As with other human and workers’ rights campaigns in recent years, raising awareness of the plight of these workers can pressure on manufacturers and governments to regulate and improve working conditions.

Ensuring Equitable Electricity

The U.S. government’s investment in charging infrastructure is substantial. Nonetheless, this investment will only be successful if those chargers are equitably distributed among its citizens. Currently, most chargers tend to be installed in higher-income areas. For example, California has 112 chargers per 100,000 people in high-income urban districts. Contrast this number with only 24 chargers per 100,000 households in urban districts with low to moderate incomes.

States that have taken specific action to improve their electric vehicle infrastructure include the following:

  • Arizona
  • Colorado
  • Connecticut
  • Hawaii
  • Illinois
  • Maryland
  • Massachusetts
  • New Jersey
  • New York
  • Oregon
  • Washington

Furthermore, several other states, including Minnesota, Pennsylvania, Rhode Island, and Virginia are working to promote electric vehicle adoption.

A charger for electric vehicles.
Charging stations in remote, rural areas will ensure electricity equity and encourage more Americans to buy electric vehicles.

7 in 10 survey respondents who don’t own electric vehicles said the areas near their homes lack a significant number of chargers.

McKinsey Report

Promoting Electric Vehicles

Nonetheless, roadblocks to even greater adoption of electric vehicles can be overcome. And manufacturers and governments can be catalysts for meaningful change. For example, the European Union recently introduced legislation that would require battery manufactures to identify and respond to human rights or environmental issues in their raw-material supply chain. To help create greater equity in charging infrastructure, “cities and states should “think creatively about providing chargers that work well in public settings such as curbsides, parking lots, and rest stops” (McKinsey Group).

How Will YOU Influence the Electric Future?

You can play a role in creating electric vehicles and in helping others understand the benefits of vehicle electrification. One way to start is by furthering your education through an online graduate certificate or master’s program at Michigan Tech, which has a long and respected history of collaborating with the automotive industry.

Our university also offers several online graduate certificates and programs that meet the cutting edge needs of this industry. Some of these are the following:

Investigate these and other graduate programs at our Global Campus. Explore how Michigan Tech can help prepare you for the challenging, but exciting future of electric vehicles.

AUTHOR’S NOTE: This article is a joint effort of the brilliant Sparky T. Mortimer and Shelly Galliah. Whereas Mortimer provided the initial research and solid content, Galliah provided guidance for more material and then copyedited and formatted the content for this blog. All images, which are copyright-free, are from Creative Commons.