Tag: Michigan automotive industry

MAHLE and MTU: Moving Forward Together

Leaders from MAHLE and Michigan Tech gather at the signing ceremony.
Leaders from MAHLE and Michigan Technological University gather at the signing ceremony.

MAHLE is excited to partner with Michigan Tech on the Corporate Education Fellowship. This partnership not only allows employees to steer their professional development and open new pathways for internal career mobility, but also allows MAHLE to proactively support the development of our employees to meet the evolving demand for new skills and competencies.

This fellowship, when coupled with MAHLE’s Educational Reimbursement, provides employees with the ability to access affordable education through Michigan Tech’s online programs, offering flexibility to learn at their own pace, while balancing their personal life and work. We look forward to a successful partnership that will help to further prepare MAHLE and our employees as our industry transforms toward a decarbonized future.

President of MAHLE Peter Lynch

On Tuesday, Oct. 24, 2023, Michigan Technological University signed a Corporate Education Partnership Agreement with MAHLE Industries Inc. MAHLE is a leading international development partner and supplier to the automotive industry.

The partnership agreement was signed at MAHLE’s North American headquarters in Farmington Hills, Michigan. President Richard Koubek and David Lawrence (vice president for Global Campus and continuing education) were present for Michigan Tech. Peter Lynch (president of MAHLE) and Tiffiney Woznak, (director of Talent Management, MAHLE North America) represented MAHLE. Other leaders from both organizations also attended.

Richard Koubek and Peter Lynch sign the fellowship agreement.
President Koubek and MAHLE President Peter Lynch sign the fellowship agreement.
Jacque Smith, director of Graduate Enrollment Services; and Peter Lynch  chat.
Jacque Smith, director of Graduate Enrollment Services, and Peter Lynch, president of MAHLE chat.

Growing With Their Organizations

The Corporate Education Fellowship supports MAHLE employees in their pursuit of graduate education through Michigan Tech’s Global Campus. Eligible employees will receive fellowships to enroll in one of Michigan Tech’s online graduate certificates or master’s degree programs.

A hard copy of the MAHLE Corporate Education Fellowship Agreement that people sign.
The signing documents for the corporate fellowship agreement.

With this fellowship, employees can acquire industry-needed skills, follow areas of professional interest, and meet the diverse challenges of the ever-evolving automotive industry.

And they can achieve these benefits while studying online through Global Campus. As many of us understand, earning a credential while staying on the job is very convenient for working professionals.

These fellowships are available for up to four years. Recipients must meet the eligibility requirements of both the fellowship program and the scholastic standards of Michigan Tech’s Graduate School.

This program is part of the connected missions of Global Campus: building relationships between academia and industry, making quality online education more accessible to a diverse population of adult learners, and helping professionals advance and grow with their workplaces.

So far, several MAHLE associates have expressed a deep interest in this program.

Tiffiney Woznak stands in front of a picture of American NASCAR legend Richard Petty and the car Petty’s Garage helped design for MAHLE. Using MAHLE components, Petty’s Garage builds supercharged high-horsepower engines for one-of-a-kind-vehicles.

Tiffiney Woznak shows President Koubek the MAHLE car that Petty helped design.
Tiffiney Woznak (head of Talent Management for MAHLE North America) talks to President Koubek.

Partnering With MAHLE

If you haven’t heard of MAHLE, it is a global powerhouse. It has approximately 72,000 employees working in more than 30 countries. The company also boasts 152 production locations and 12 major research and development centers. As a global leader in technology, MAHLE has been proudly shaping the future of mobility and transforming the automotive industry for more than 100 years. It is known for being a leading international development partner and supplier to the automotive industry with customers in both passenger car and commercial vehicle sectors.

And you’ve probably been in the presence of a MAHLE part or two, as well. That is, this company’s components reside in about 50% of all the passenger and commercial vehicles on the road.

MAHLE’s portfolio is also wide. The company is also involved with industrial applications, as well as both small and large engine components. One of the company’s newest technological ventures is investing in e-bikes and smart bike accessories. E-bikes tend to be remarkably heavy, but MAHLE is changing the game with its ultra-light drive systems.

Collaborating With Companies Making a Difference

MAHLE has a rich past, but like Michigan Tech, it also has ambitious future-changing initiatives.

That is, one of the company’s main and ambitious goals is working towards climate-neutral mobility. To that end, it is focusing “on the strategic areas of electrification and thermal management as well as further technology fields to reduce CO2 emissions, such as fuel cells or highly efficient combustion engines that also run on hydrogen or synthetic fuels” (MAHLE). The company is also striving to improve “the triad of sustainable drives”: the electric motor, the fuel cell, and the non-fossil-fuel-powered intelligent internal combustion engine.

In other words, MAHLE, is both a presence in the vehicular industries and a crucial driver in the global move towards electrification and environmental sustainability. Its leadership in both of these areas make it a natural fit for Michigan Tech.

That is, MTU has a long history of working with the automotive industry and collaborating with other future-forward companies. For instance, in Nov. 2022, MTU signed a fellowship agreement with Nexteer Automotive. Nexteer is respected for delivering high-quality, next-level electric power and steer-by-wire systems, steering columns, driveline systems, and driver-assistance systems. And in August, ITC, a company committed to solving next-generation electricity infrastructure challenges, also partnered with MTU.

Pursuing Advanced Education: An Ongoing Journey

President Koubek confirmed the need for employees to earn advanced degres. From his experience, he knows well that all employees and leaders must continuously improve their skills to not only help their organizations succeed, but also meet upcoming technological challenges. He stressed that education, rather than an endpoint, is an ongoing process.

“I think we’re at a point in time where change is happening so fast . . . . It’s almost an expectation in the world now, especially in the technological fields, that you’re continuing your advanced education, that you’re never really done, and that there is always room to grow.”

Richard Koubek

Michigan Tech looks forward to working with MAHLE and to helping grow its success.

Michigan Tech Signs on to MEDC’s Semiconductor Talent Action Team

Close-up of a circuit board, one of the products that require semiconductors.

Securing state-wide chip production is crucial to several manufacturing industries, such as mobility, and to maintaining the health of Michigan’s economy.

On November 17, 2022, Governor Gretchen Whitmer joined forces with The Michigan Economic Development Corporation (MEDC) to form the Semiconductor Talent Action Team (TAT). This collaboration, a public/private alliance led by the MEDC, aims at making Michigan a leader in semiconductor talent, production, and growth.

MEDC’s Talent Action Team involves this organization, the State of Michigan, SEMI (an industry association for global electronics design and its manufacturing supply chain), and four key universities: Michigan Technological University, Michigan State University, University of Michigan, and Wayne State University. Other partners include key community colleges.

 The Semiconductor TAT has several goals:

  • Expanding the development of Michigan-created semiconductors
  • Ensuring the onshoring of both legacy and advanced semiconductor systems
  • Creating well-paying manufacturing jobs
  • Reducing semiconductor shortages
  • Securing the supply chain

Addressing the Semiconductor Shortage

Semiconductors are the foundation for integrated circuits (or microchips), which are vital components in manufacturing. Semiconductors are material products that lie between insulators (glass) and pure conductors (such as copper and aluminum). These versatile products can have their conductivity altered (through the addition of impurities) to meet the needs of various devices. Chips are found in appliances, medical equipment, gaming devices, smartphones, computers, and, increasingly, automobiles.

In short, they’re everywhere.

But COVID put the brakes on chip production. Labor problems, the shutting down of assembly lines, the closing of factories, and disruptions of the global supply chain all contributed to a semiconductor shortage. There were also drastic reductions in raw materials and substrates and slowdowns in crucial processing steps, such as wire bonding and testing. As a result, consumers were unable to purchase electronic devices as well as larger goods such as appliances and vehicles.

Protecting the Automotive Industry

But the global semiconductor shortage caused significant problems for the automotive industry, driving down both production and sales. Some companies, such as GM, were even forced to build vehicles that were missing parts. By some estimates, the reductions in automotive sales were extreme: down by 80% in Europe, 70% in China, and nearly 50% in the United States.

Why the plummeting sales? Even the most basic automobile is heavily reliant upon semiconductors. That is, the average car can contain more than 100 chips. These tiny devices power such necessary components as the navigation display, digital speedometer, and fuel-pressure sensors.

More sophisticated vehicles, on the other hand, may contain thousands of these chips. For instance, these chips are found in advanced safety features, electrical and powertrain systems, and connectivity components.

And the need for these chips in expanding. Market research company Yole predicts that by 2026, semiconductors in cars will value $78.5 billion dollars, which adds up to a 14.75% CAGR from 2020.

Therefore, securing the semiconductor supply chain is especially crucial to the mobility industry, and, by extension, to Michigan’s economy. To help prevent these shortages and their repercussions, and to further tap into the burgeoning semiconductor market, Michigan’s Semiconductor TAT  is on board to secure the state’s semiconductor production.

Accessing Michigan’s Semiconductor Talent

Michigan is well-suited to take advantage of these funding opportunities. The state has a history of semiconductor manufacturing. That is, Michigan is home to Hemlock (semiconductors), SK Siltron (semiconductor wafers), and KLA (semiconductor R & D and supply). Even closer to Michigan Tech is Calumet Electronics, which has been in Calumet since 1968. This Michigan company specializes in manufacturing printed circuit boards for the domestic industrial, power, aerospace, defense, medical, and commercial markets.

What’s more. This state has almost 50 semiconductor-related courses and programs. Michigan Tech, for instance, from its undergraduate to graduate degrees in materials engineering, mechanical engineering, and its electrical and computer engineering ; as well as its specialized graduate certificates in manufacturing engineering and automotive systems, has a long history in preparing students for all things semiconductors. Whether its the materials from which they are made, to their design, processing, properties, applications, integrations, and even their repurposing, Tech has a program. The university also has a history of collaborating with the automotive industry and helping to ensure its success.

Furthermore, on May 5, 2022, The Michigan Strategic Fund approved the Semiconductor Technician Apprenticeship Network Program. Michigan is one of only three states, in fact, that is launching plans to define curricula that will support employers in the semiconductor industry.

In short, both Michigan Tech and the state have the drive, talent, resources, and history to advance semiconductor production and to make Michigan a leader on both the national and global stages.

Making a Historic Investment in Chip Technology

The Semiconducor TAT answers the call of the bipartisan 2022 CHIPS and Science Act (August 9, 2022). Nearly a year in the making, this act implemented previous programs under the 2021 CHIPS for America Act (January 2021). It also authorized nearly $250 billion in semiconductors and scientific research and development. This monumental amount adds up to the country’s largest publicly funded R & D program.

The CHIPS and Science Act responds not only to semiconductor shortages, but also to the decline in American microchip fabrication. That is, in January 2021, the US manufactured 12% of the world’s chips, which is down from 37% in the 1990s.

The act, which focuses on building key critical semiconductor technologies in the United States, has several goals:

  • Building a stronger and more diverse workforce
  • Creating high-paying technical manufacturing jobs
  • Supporting and extending American manufacturing
  • Investing in American science and innovation
  • Rebuilding and securing our supply chains

Most of the act’s funds ($169.9 billion) are dedicated to research and innovation. These funds are dispersed among several foundations, which include the National Science Foundation (NSF), Department of Commerce (DOC), Department of Energy (DOE), and the National Aeronautics and Space Administration (NASA).

All departments will expand semiconductor research, development, training, and talent. For instance, in its budget, NSF’s mandate is investing in research, building a STEM workforce, and expanding rural STEM education.

Supporting the Growth of Local and State Economies

The act also directs the DOC to create 20 geographically distributed regional technology hubs. These hubs will focus on developing technology, creating jobs, promoting U.S. innovation, and providing economic development activities for distressed communities.

Besides the $169.9 billion dedicated to research, there is a $54.2-billion-dollar federal advancement for domestic semiconductor production and public wireless supply chain innovation. $39 billion, the responsibility of the Department of Commerce (DOC) Manufacturing Incentives, is allocated to building, extending, and modernizing domestic semiconductor facilities. Another $200 million is for jump-starting the development of the domestic semiconductor workforce, which has faced extreme labor shortages.

In short, the CHIPS and Science Act will support American manufacturing and create jobs, It will also ensure that, when it comes to STEM education, semiconductor research, and chip production, the US will be a global force.

Taking First Crucial Steps: What’s Next for the TAT?

The ultimate goal of the Semiconductor TAT is to help Michigan access funding in order to increase its STEM workforce. Another objective is leveraging the state’s talent, assets, resources, so that it leads the future of the semiconductor industry.

But big goals begin with small steps. The TAT’s first objective is having its partners form advisory boards. These boards will provide strategic direction on the semiconductor programs, talent, and research that exist at Michigan’s universities and colleges. They will also analyze the “broader semiconductor and technology ecosystem” to develop a better understanding of industry needs for semiconductors.

The university community looks forward to learning about Michigan Tech’s contributions to the Semiconductor TAT as well as this group’s ongoing initiatives.

Michigan Tech and Global Campus: Ready for the Mobility Revolution

Black Michigan Tech truck on the floor at Advanced Power Systems (APS) Labs.

Innovative Automotive Research

Investing in Michigan’s Future

Home to almost 1/5 of all American automobile production facilities. Headquarters to 71 of the major automotive suppliers. The largest population of engineers in any state. These are some of the reasons Michigan is a natural for leading the mobility revolution. And Michigan’s combination of facilities and talent is drawing investment, especially in the funding of innovative technologies related to vehicles.

For instance, General Motors pledged a historic 7-billion dollars to create 5,000 jobs. And then Ford joined in with a $2-billion dollar investment. Ford’s commitment will secure Michigan’s internal combustion engine portfolio, support future electric vehicle (EV) manufacturing growth, and grow 3,200 jobs. Michigan lawmakers also created a 1-billion dollar fund to attract Electric Vehicle (EV) technology.

These developments bode well for the automotive industry of the Great Lakes State. And even more so for higher-education institutions that specialize in engineering and STEM, such as Michigan Tech.

Reskilling for the Evolving Automotive Industry

The mobility revolution will require the reskilling of the current automotive workforce. It will also speed up the training of software developers, engineering technicians, electrical and electronics engineers, systems engineers, and first-line supervisors. From the manufacturing floor to the design room to the manager’s office, those in the automotive industry will need additional education. They will need skills in the fundamentals of electrified vehicles, batteries and electric storage, automotive systems, controls, communication networks, signal processing, and cybersecurity.

Michigan Technological University is once again ready to take up the challenge of reskilling the automotive workforce. We were there in the early days (or some might say, “back in the day”). In the early 1970s, ME-EM started developing its world-class expertise in combustion engines. Then, in the mid-1990s, ME-EM faculty also hosted short courses on noise and vibration, both on MTU’s campus and then on-site at Ford. It was about the same time that ME-EM offered some of our university’s earliest distance courses to General Motors (GM).

Since then, Tech has collaborated with the mobility industry, training both its current and future workforce to meet its ever-evolving needs. One example, developed by Michigan Tech, GM, the Michigan Academy of Green Mobility, and AVL, is our 15-credit certificate in hybrid electric drive engineering.

Automotive Programs at Tech and Through Global Campus

Tech also offers a very specific certificate in automotive systems and controls. This certificate prepares graduates with skills in controls, systems engineering, and systems integration. And these are just a few of the innovative online programs offered through the Michigan Tech Global Campus.

The rapidly expanding College of Computing at Michigan Tech (70% growth since 2014!) is also stepping up to the plate. Its versatile programs in computer science, software engineering, cybersecurity, data science, mechatronics, computer network, and system administration are all relevant to the mobility industry. Computing, as we all know, is everywhere.

And then there is Michigan Tech’s impressive Advanced Power Systems (APS) LABS, which offers customizable on-site and online automotive courses, in 35 system and subsystem areas. For several years, APS has supplied the automotive industry with research, resources, outreach services, training, and talent. It exemplifies innovation on wheels. (Stay tuned for a deeper look into APS!)

Wherever the mobility revolution takes us, rest assured that Michigan Tech, Global Campus, and APS LABS will be along for the ride.