Tag: fourth industrial revolution

Manufacturing Engineering Programs From MTU Go Online.

A young manufacturing engineering professional touches a computer monitor while in a factory setting.

The Department of Manufacturing and Mechanical Engineering Technology (MMET) has recently announced two new online programs: the MS and the PhD in Manufacturing Engineering. Previously, these programs were available only on campus. 

Both Michigan Tech’s online master’s degree and PhD program, designed in partnership with industry, stress manufacturing competitiveness. This competitiveness is central to smart manufacturing, modeling, simulation, sustainability, additive manufacturing, and advanced materials. All of these areas are crucial to Industry 4.0.

The programs’ practical core curriculum, which covers both the breadth and depth of manufacturing engineering, is inspired by Society of Manufacturing Engineer’s Four Pillars of Manufacturing Knowledge:

  • Materials and manufacturing processes
  • Product, tooling, and assembly engineering
  • Manufacturing systems and operations
  • Manufacturing competitiveness

Flexible Manufacturing Engineering Degrees for Working Professionals

But according to John Irwin, Professor and Department Chair of MMET, these programs are not solely for manufacturing engineers.

That is, similar to Michigan Tech’s online manufacturing engineering certificate, these in-demand programs have been designed to attract people from a wide range of undergraduate backgrounds. Students might come from mechanical engineering, electrical or computer engineering, materials science and engineering, manufacturing engineering technology, biomedical engineering, and robotics.

In other words, many can enroll in and then benefit from these degrees, which provide the tools and knowledge to take the next step: earning SME certifications, which are available in Lean, Additive, and Robotics Manufacturing.

In addition, the master’s and the PhD programs are both flexible and customizable. You may choose from three pathways for the 30-credit master’s degree (thesis, report, or course-work only). Also, there are two options for the doctoral degree (60 credits or 30 credits). Options depend on whether you begin with an undergraduate or a master’s degree. Beyond the core courses, you can also choose electives from four fundamental manufacturing areas. Thus, you can customize a degree that matches your educational and professional goals.

These online programs allow students from Michigan and beyond to benefit from this rigorous curriculum while working part or full-time. In fact, both programs are designed so that those enrolled can collaborate with their employers to complete workplace-based projects or conduct thesis or dissertation research.

 Students in the GD&T course work virtually in teams taking a component of a system from their workplace to perform tolerance analysis and conversion of traditional dimensions to GD&T in order to improve part functionality and minimize manufacturing errors.

John Irwin, Professor and Department Chair of MMET

In-Demand Knowledge for Current and Future Manufacturing Engineering Challenges

In 2021, the waves of the pandemic started to quickly unravel supply chains across the world. Manufacturing plants slowed or even closed, ports experienced unprecedented back-ups, and transportation costs and inflation raised prices dramatically.

According to NAM’s (National Association of Manufacturer’s) Q3 2023 Manufacturer’s Outlook Survey, 72.1% of the respondents indicated that the biggest challenge facing manufacturers was attracting and retaining a quality workforce. 

And manufacturing engineers are obviously a crucial part of that quality workforce. The US BLS stated that the job growth for industrial engineers (one possible career path) between 2023-2033 is 12%. This growth is much faster than average. Currently, there are over 241,977 manufacturing engineers employed in the US, but there still is a need for more. 

Why? The drive to incorporate Lean manufacturing processes, advances in additive manufacturing, the digital transformation of the manufacturing industry, and the reshoring of manufacturing in the US have all magnified the demand for manufacturing engineers.

In particular, the manufacturing industry needs engineers with expertise in IOT (Internet of Things) technologies and smart factory solutions, which are essential to manufacturing competitiveness. Michigan Tech, in fact, has a long history in advanced these and other manufacturing solutions.

That is, both the MS and PhD in manufacturing support efforts highlighted by Automation Alley, Michigan’s Industry 4.0 knowledge center. This center has helped manufacturers of all sizes understand the rapid technological changes associated with digital technology in manufacturing, so that both Michigan and the nation remain globally competitive.

Quality means doing it right when no one is looking.

Henry Ford, American industrialist, founder of the Ford Motor Company

Get Started On Your Program Now.

Michigan Tech’s online manufacturing programs can help you accelerate your career while making a difference in Industry 4.0.

There is still time to begin a graduate program for Spring 2025. Alternatively, you can start with an online graduate certificate in manufacturing engineering, and then apply these credits towards an advanced degree.

For Spring 2025, MMET is offering Industry for 4.0 Concepts (MFGE 5200), Design for Additive Manufacturing (MFGE 5300), which are core courses for both the certificate and master’s degree. Industrial Safety (MFGE 5500), a core course for the master’s program, is also on deck.

For more information about these programs, please contact David Wanless, Associate Teaching Professor MET and Program Director; and visit the web page on Global Campus.

Foundations of Cybersecurity: New Certificate From MTU.

Michigan Tech is offering both a in-person and online certificate in the Foundations of Cybersecurity. In nine credits, students will learn how to identify and describe the foundational principles of securing both a computer system and a computer network. They’ll also study the fundamentals of secure software development and apply them effectively.

This credential addresses cyber crime, a costly and dangerous global problem.

Brief Case Study: The WannaCry Ransomware Attack

Flash backward to seven years ago.

In 2017, the WannaCry ransomware worm spread rapidly across computers running the Microsoft Windows operating system.

This worm first encrypted files and then demanded ransomware payments–first 300$ and then 600$ in bitcoins. Unfortunately, even those who paid the ransom, such as a friend of this writer, still lost their files.

Screenshot of the 2017 WannaCry Ransomware attack.
The WannaCry Attack. Image Credit: (https://cdn.securelist.com/files/2017/05/wannacry_05.png/)

How did this attack happen? The worm wriggled its way in through a vulnerability in Windows’ Server Message Block (SMBv1) protocol (EternalBlue), used for file and printer sharing on Windows networks. Then, it installed DoublePulsar as the “backdoor” on compromised computers.

The U.S. National Security Agency (NSA) had previously disclosed the Eternal Blue weakness. Then, a hacking group called the Shadow Brokers leaked it onto the web and cyber criminals took lurking in the shadows took notice. Within a few days, WannaCry affected at least 200,000 computers and 300,000 devices in more than 150 countries. The attack caused widespread disruption, particularly in critical sectors such as healthcare, telecommunications, and manufacturing. One of the most notable victims was the UK’s National Health Service (NHS), which canceled both appointments and operations, turning patients away.

Microsoft quickly released security patches for versions of Windows with the Eternal Blue vulnerability. However, it had actually sent security patches two months earlier, which hadn’t taken effect because many organizations hadn’t taken the time to update their systems. Oops!

Training in the Foundations of Cybersecurity is Needed Now More Than Ever.

This attack, then, not only underscored the importance of updating systems regularly to install timely security patches, but also the need to quickly implement protocols of backup and recovery. Even more so, WannaCry revealed the demand for more well-trained, cybersecurity professionals from government agencies, private sector companies, and other organizations who could collaborate on and react quickly to global cyber crime incidents.

Along with ransomware, cybersecurity professionals must be ready to battle Advanced Persistent Threats (APTs), Phishing and Social Engineering, Zero-day attacks, high-profile data breaches, DDoS attacks, and many other types of cyber crime. The changing nature of cyber threats also requires organizations to continually improve their defenses and adapt to new attack vectors.

And digital transformation, vehicle electrification, robotic workplaces, and Industry 4.0 pose new challenges as well. That is, as organizations move to cloud environments and the IoT (Internet of Things) continues to proliferate, cybersecurity professionals must safeguard infrastructures and predict possible vulnerabilities.

More troubling news: In the last decade or so, cyber attacks have grown in sophistication, frequency, and size. In fact, according to US News, “Data breaches and ID theft are still hitting records.” Recently, on July 4, while this blog was being drafted, Cybernews reported that a file containing 9,948,575,739 plain text passwords was posted on a hacker site by the user Obamacare. This file, known as the RockYou24 leak, was a compilation of passwords that were collected from 4000 databases over the last two decades. (Previously, the RockYou21 leak contained 8.5 billion of these same passwords.)

With these passwords, Cybernews explains that “threat actors could exploit the RockYou2024 password compilation to conduct brute-force attacks and gain unauthorized access to various online accounts used by individuals who employ passwords included in the dataset.”

Here are Some Other Startling Statistics About Cyber Crime:

The Cybersecurity Talent Gap is Expanding.

But perhaps one of the biggest challenge that cybersecurity professionals face is that there are not enough of them. That is, many organizations are struggling to fill critical positions. The global cybersecurity employment gap, which reached 4 million workers in 2023 (ISC2 2023), is expected to expand to 85 million by 2030.

The United States is one of those countries facing a shortage of cybersecurity professionals.

Interactive heatmap from cyberseek that provides information on cybersecurity jobs in the US.
This interactive heatmap by cyberseek provides both an overall and granular look into US cybersecurity jobs.

Between September 2022 and August 2023, 572,000 US jobs opened up in the cybersecurity industry. This number is up 74% from 2010.

And in the US, there were 1.18 million cybersecurity professionals employed between September 2022 and August 2023, which is also an an increase of 59% since 2010.

To help address this talent shortage, Michigan Tech is offering both online and in-person certificates in the Foundations of Cybersecurity, which start in Fall 2024. Students can complete this certificate or use the credits to dive deeper into cybersecurity and progress towards a master’s degree. They can choose from either Michigan Tech’s MS in Cybersecurity or the MS in Computer Science.

To be eligible for the program, applicants must have earned an undergraduate degree in computer science, computer engineering, or software engineering. The online application is free and requires no GMAT or GRE.

This certificate adds to the roster of MTU’s already respected cybersecurity research program, recognized nationally for its academic and research excellence. In fact, the US National Security Agency designated MTU as a National Center of Academic Excellence in Cyber Research (CAE-R). This CAE-R designation, establishing that Michigan Tech has met the rigorous requirements set forth by the NSA, extends through the 2029 academic year.

The Future Looks Bright for Those with Skills in the Foundations of Cybersecurity.

When it comes to cybersecurity professionals, there are several possible career paths.

Take the career of Information Security Analyst, for instance. A person in this role will have several responsibilities. They must use and maintain software, such as firewalls and data encryption programs, to protect sensitive information. In addition, they must check for vulnerabilities in computer and network systems; research the latest information technology (IT) security trends; and prepare reports that document general metrics, attempted attacks, and security breaches.

Being vigilant and proactive are also essential traits of this cybersecurity professional as they strive to develop security standards and best practices for their organization and timely recommend security enhancements. And they are also heavily involved with creating their organization’s disaster recovery plan, which IT employees must follow in case of emergency.

Because of the importance of these tasks, the US Bureau of Labor Statistics predicts a need for several tens of thousands of these analysts, with a career growth of 32% (much faster than average.) And these jobs way well, too: the 2023 median salary of an information security analyst was $120,360.

Other Top-Paying Cybersecurity Jobs

  • Cybersecurity Analyst: $114,306
  • Cybersecurity Manager: $150,943 per year
  • Penetration and Vulnerability Tester: $124,424
  • Cybersecurity Architect: $147,142 per year
  • Cybersecurity Engineer: $131,768
  • Incident and Intrusion Analyst: $103,639
  • Cybersecurity Consultant: $124,275
  • Cyber Crime Analyst: $103,198
The US government employs several professionals trained in the foundations of cybersecurity.
The US government, which employs 11,000 cybersecurity professionals, advertised for 6000 jobs in 2023.

Educate Yourself to Meet the Growing Need for Cybersecurity Professionals.

The estimated loss of that 2017 WannaCry incident was about four billion dollars. That bill was just a drop in the bucket.

According to Cybersecurity Ventures, cyber crime is expected to grow by 15% a year in the next three years. What this prediction means is that cyber crime will cost the world $10.5 trillion annually by 2025. This figure includes damage and destruction of data, stolen money, lost productivity, theft of intellectual property, and other costs.

Professionals with training in the foundations of cybersecurity can not only save organizations a lot of money, then, but even save lives.

Yes lives. When a 2020 ransomware attack on Dusseldorf University Hospital (Germany) caused its IT systems to fail (30 servers!), the hospital could not admit emergency patients. As a result, staff directed a critically ill woman who needed immediate care to another hospital about 20 miles away. This delay in treatment, which contributed to the patient’s death, is often cited as the first death resulting from a cyber attack.

It is obvious that the costs of cybercrime , which are immense, multifaceted, and global, impact economies, organizations, and individuals. Because of these costs, cybersecurity professionals are needed across every sector and industry. But there is a particularly urgent need for them in financial services, health care, government, national security, manufacturing, and retail.

And the growing sophistication of cyber threats and the increasing reliance on digital technologies suggest that these costs will continue to rise, highlighting the crucial demands for both robust cybersecurity measures and the highly skilled and trained professionals to enact them.

Get Started on Your Foundations of Cybersecurity Certificate at MTU.

Symposium Brings Together MTU and MSU Researchers

Research symposium group picture.

Presenters, organizers, and some attendees of the second MTU / MSU collaborative research symposium pose for a group photo.

Developing novel approaches to fighting disease, using machine learning and computational methods to solve epidemiological problems and improve patient health, and applying technologies to intervene on disease. These are just a few of the challenges and ambitious solutions facing the state of biomedicine now and in the future. These topics, and several others, were addressed at a recent invitation-only collaborative research symposium between MTU and MSU.

On Friday, Oct. 27, 2023, groups of researchers from Michigan Technological University and Michigan State University University met in a collaborative research symposium.

Entitled Engineering the Future of Human Health II: Biomedicine in the 4th Industrial Revolution, this event was held in Michigan Tech’s Memorial Union Building.

VP David Lawrence opens the symposium.
David Lawrence, vice president for Global Campus and continuing education, opens the symposium.

The symposium preceded the Upper Peninsula Medical Conference, put on by MTU’s Health Research Institute, which focused on diverse approaches to health challenges affecting rural communities. It marked the second collaborative research symposium between these two universities. That is, Michigan State University College of Human Medicine hosted the first symposium on March 13, 2023. It was held in MSU’s beautiful Secchia Center in Grand Rapids, Michigan.

Delivering Short Talks With A Big Impact

For these symposiums, the goals continue to be learning about each other’s work; and investigating areas of shared objectives, mutual interests, and possible research projects between MTU and MSU. But perhaps the even greater purpose is that of these institutions combining forces (and resources) to tackle the most challenging health-related issues of the upcoming decades.

Jeremy Prokop opens the MSU / MTU symposium.
Dr. Jeremy Prokop begins the symposium with his presentation.

To disseminate as much research as possible, presenters kept their talks brief. In total, 12 researchers from MTU and 11 from MSU delivered rapid-fire, ten-minute presentations in six consequent sessions exploring the state of biomedicine in the era of Industry 4.0:

  • Computational Health Science (Session 1)
  • Big Data in Healthcare (Session 2)
  • Kinesiology and Physiology (Session 3)
  • Neural Control and Disease (Session 4)
  • Metabolic Disease (Session 5)
  • Chemical Biology (Session 6)

This structure provided opportunities for researchers not only to learn from each other, but also to explore possible connections between their fields.

And the fields were, indeed, diverse. That is, professionals at this multi-disciplinary event came from applied computing, biological sciences, biomedical engineering, chemical engineering, chemistry, computer science and engineering, kinesiology and integrated physiology, pediatrics and human development, and quantitative health sciences. Overall, the quality of the research and breadth of disciplines spoke to the depth of expertise at this symposium and to the challenges and opportunities facing the future of biomedicine.

There was also a concurrent combined poster session with the UPMC that featured research from several MSU and MTU students, as well as a few professors.

Exploring Connections Between MTU and MSU

Throughout the symposium, there were several salient connections both within and between sessions. For instance, many experts presented on novel treatments for conditions and/or diseases affecting public health, such as diabetes, cancer, cystic fibrosis, neurodegenerative disorders, and lack of activity. Dr. Ping “Peter” Wang (MSU, Session) tackled integrating bioengineering into Type-1 Diabetes treatment. And Dr. Marina Tanasova (Session 6, MTU), after summarizing the role of GLUTs (Glucose transporters) in various diseases, focused on targeting these GLUTs in cancer therapy. Dr. Ashutosh Tiwari (Session 4, MTU), analyzed the role of protein aggregates (misfolded proteins) in the cellular toxicity central to neurodegenerative diseases.

Another common thread was responding to the continuing public health crisis of Covid-19. For example, the symposium began with the long research project of Dr. Jeremy Prokop (MSU, Corewell Health) on genotyping various Covid variants. Then, he shifted to how the immunosuppression connected to Covid-19 is associated with the emergence of other viruses, such as Epstein-Barr (EB) and the Human Papillomavirus (HPV).

Throughout the symposium, several experts also assessed the leveraging of artificial intelligence and computational approaches to address health ailments. Dr. Hoda Hatoum (MTU, Session 1) presented on experimental and computational approaches to model cardiovascular diseases and therapies.

There were also presentations on more low-tech, but nonetheless impressive, methods for improving patient outcomes. Dr. William Cooke (MTU, Session 3) demonstrated how using a rather simple impedance-threshold breathing device can reduce hemorrhaging. Using Blood Flow Restriction (BFR) to increase exercise intensity without taxing joints (MTU, Session 3) was the topic of Dr. Steve Elmer’s presentation.

Dr. Matthew Harkey (MSU, Session 3) presented research on using ultrasound and biomechanics to assess arthritis.

Steve Elmer's poster at the MSU / MTU Symposium
Dr. Steve Elmer (MTU, Session 3) delivered both a talk and a poster.

Targeting the Youth Mental Health Crisis in Michigan

CHI Program Director Dr. Guy Hembroff spoke on using AI to improve the mental health of youth (MTU, Session 2). He began by stressing some startling statistics from Youthgov on suicide in the 15-24 age group. Most striking was the fact that “taking one’s life is the second leading cause of death for youths.”

Dr. Guy Hembroff in Session 2.

Hembroff proposed a number of strategies for using artificial intelligence to track, intervene on, and improve the mental health of youth.

First, he articulated that AI may be employed to not only enhance preventative mental health measures, but also provide safe, responsive data.

Or to put it another way, through wearables, daily mental health check-ins, and user feedback, youth could have personalized, responsive mental health treatment delivered right to them. In short, Hembroff outlined a protocol for providing inexpensive, effective tools that quickly monitor and respond to at-crisis youth, reduce the need for reactionary care, and prevent mental disease from spiraling into suicide.

There is another positive effect of this AI-assisted mental health plan: gamifying the activity of tracking one’s mental health. Youth are known for always interacting with their phones. Thus, this gamification could help reduce the stigma associated with reporting depression, anxiety, and other mental diseases.

Symposium Goals: Promoting Networking and Sharing Research

Hembroff’s talk captured one of the main threads of the symposium: using ingenious, cost-effective, computational approaches to solve crucial health issues. However, all of the research was impressive. That is, there were several expert scientific communicators, such as Zhiying “Jenny” Shan (MTU, Session 5), who walked the audience through her research on extracellular vesicles and blood pressure regulation.

But you can learn more about the depth and breadth of the research by examining the event schedule.

In the closing remarks for the symposium, Dr. Christopher Contag (MSU) further elaborated on the connections between these presentations and the opportunities for collaborative research. First, he summarized some commonalities, such as further analyzing cardiovascular disease, studying extracellular vesicles as diagnostic markers, developing strategies for early intervention, and creating a Long Covid research center.

In addition, Dr. Contag focused on the importance of learning the language of cells and communicating with them: that is, this research is about “not just asking them what they’re saying, but telling them what to do.” He saw this communication as central to modulating the immune system and to controlling disease states.

Dr. Contag delivers the closing remarks.
Dr. Christopher Contag (MSU) delivers the closing remarks.

“I think we’re all focused on distributed healthcare and using our approaches and innovation to reduce health disparities. It’s a theme that’s shared between the two universities.”

Dr. Christopher Contag, Director of the Institute for Quantitative Health Science and Engineering (IQ) and Chair of the Department of Biomedical Engineering in the College of Engineering (MSU)

Moving Beyond This Symposium

For Engineering the Future of Human Health II, MTU’s cosponsors were David Lawrence, vice president for Global Campus and continuing education; Dr. Sean J. Kirkpatrick, professor and department chair, Biomedical Engineering; Dr. Caryn Heldt, professor in Chemical Engineering and director of the Health Research Institute; and Dr. William H. Cooke, professor and department chair, Kinesiology and Integrative Physiology. And for MSU, Dr. Adam Alessio, Departments of Computational Mathematics, Science, and Engineering, Biomedical Engineering and Radiology; and Dr. Bin Chen, associate professor, Department of Pediatrics and Human Development took on the roles of cosponsors.

This collaborative symposium is crucial to the MTU Global Campus mission of helping Michigan Technological University grow partnerships with other higher-ed institutions and participate in multidisciplinary research that tackles pressing biomedical challenges.

The next step, then, is instituting these collaborative working research groups. Furthermore, the two universities hope to pool both talent and resources to build a MSU / MTU translational research center in Grand Rapids, MI. Of this center, David Lawrence further articulated its two main objectives: “first, developing cutting-edge health technologies through advanced applied biomedical research; and, second, but equally important, ultimately improving the health of the citizens of Michigan and those of the nation.”

Readers can also learn more about this event in the coverage by TV6.