Tag: Modern GIS

GIScience for Natural Resources: New Online Grad Cert. From CFRES

Dr. Parth Bhattin the field doing GIScience work.

Dr. Parth Bhatt at work.

Coming in Fall 2024, the College of Forest Resources and Environmental Science (CFRES) will be offering a new online graduate certificate: Foundations in Geographic Information Science (GIScience) for Natural Resources. Taught by Dr. Parth Bhatt, Associate Teaching Professor / Researcher at CFRES, this certificate consists of three foundational courses. They are GIS for Natural Resource Management (4 credits), Map Design With GIS (3 credits), and GPS Field Techniques (2 credits).

This certificate is the first of three that will form CFRES’s new online master’s degree in GIScience (currently under development). The others will be Advanced Geographic Information Science for Natural Resources and Remote Sensing for Natural Resources. These two will comprise rigorous courses in Python, Applied Spatial Statistics, GIS Project Management, Advanced Terrestrial Remote Sensing, Photogrammetry, and more. In other words, this online MS degree will equip graduates with a rich, varied skill set in GIScience. They will also acquire a holistic, deep understanding of the spatial dimensions of the world.

For a decade, CFRES has offered a respected, in-person MGIS. Like its predecessor, this interdisciplinary online master’s degree will emphasize practical skills in spatial visualization and analysis. Students will use real-world datasets and state-of-the-art GIS software and techniques to take on challenges in forestry, natural resources, and other disciplines.

The reputation of CFRES, the program’s emphasis on natural resources, and its robust curriculum promise to make this program a highly esteemed online GIS master’s degree. Global Campus is thrilled to be involved with it!

Applying GIScience in Forestry and Natural Resources

If you’re not familiar with Geographic Information Science, it is an exciting, growing, multidisciplinary field. It focuses on the study of geographic information, spatial data, as well as their applications. Combining principles from geography, computer science, mathematics, and other disciplines, GIScience has the ambitious goal of understanding, analyzing, and modelling the spatial aspects of the world.

GIS, or Geographical Information Systems, focuses on the what: the hardware and software that capture geographic information. In contrast, GIScience, focuses on the why: finding practical ways to improve GIS data, software, and professional practice.

This certificate and upcoming MGIS will provide fundamental GIScience expertise to foresters and natural resource experts. In Natural Resource Management, for example, professionals use GIScience for several purposes:

  • resource inventory and mapping
  • environmental impact assessment
  • habitat modeling and conservation planning
  • natural disaster management
  • sustainable land use planning
A forest, which is often managed by natural resource experts with GIScience experience.
GIScience is often used in forest management.

Take resource inventory and mapping. Natural resource managers turn to GIScience to create detailed inventories and maps of natural resources. This data then allows them to analyze the distribution and abundance of resources within an area: forest stands, wetlands, mineral deposits, endangered species habitats, and other important ecological features.

Alternatively, in habitat modeling and conservation planning, experts use GIScience tools to analyze the suitability of habitats for different species. This suitability is based on environmental variables such as temperature, precipitation, elevation, and vegetation cover. GIScience, in short, is crucial to conservation planning. It can help identify critical habitats, corridors for wildlife movement, and areas for habitat restoration or protection.

Solving Multiple Problems With GIScience

First and foremost, GIScience offers practical skills and tools for professionals in several natural resource fields. These include GIS Analysts/Technicians, foresters, civil and environmental engineers, spatial/transportation planners, wildlife ecologists, forest analysts, surveyors, geospatial specialists, water resources analysts, environmental scientists, geologists, community forest specialists, and urban forestry technicians.

Several, in fact, turn to this toolkit regularly. One previous alum from the in-person MGIS now works as a Senior GIS Analyst. In this role for Pine Gate Renewables, he uses GIS and Remote Sensing daily. These tools help him to identify risks for setting up solar farms, creating hydrology models, and locating wetlands.

Another alum with broad responsibilities also confirmed the daily use of GIScience. He oversees the creation of maps, spatial data analysis, surveying projects, data checks on road segments, and storm water analysis “to create pervious and impervious classification.” This person also admits to “diligently maintaining maps detailing water infrastructure” and managing and reviewing “various city assets, ensuring their accuracy and reliability through spatial data analysis.”

In other words, these alumni regularly manage several responsibilities with GIScience and Remote Sensing.

Contending With Climate Change

Regardless of their discipline, GIScience can also equip professionals with the tools and the strategies to predict and combat the effects of climate change.

This skillset is especially relevant now: 2023 was the warmest year on record. (The temperature was 1.18°C [2.12°F] above the 20th-century average of 13.9°C [57.0°F]. In fact, the last ten warmest years in the 174-year record have all occurred between 2014 and 2023. And with a heating planet come more impactful environmental events: floods, extreme weather, drought, and forest fires.

According to NOAA, 2023 also set another record–for natural disasters. During this year, there were 28 devastating weather and climate disasters. The price tag for these events was almost 93 billon dollars.

For contending with climate change’s effects, then, GIScience can aid with hazard mapping, risk assessment, and emergency response planning. For instance, by analyzing spatial data related to factors such as terrain, vegetation, hydrology, and population density, professionals can identify areas prone to natural hazards. Whether these are floods, wildfires, and landslides, experts can develop strategies to mitigate risks and respond effectively during emergencies.

The Pakistan Flood Events

Dr. Parth Bhatt, himself, used GI Science to document the effects of Pakistan’s historic floods, which lasted from June 15 to October 2022.

A map of the Pakistan floods made with GIScience.
Map of the area affected by the floods in Pakistan.
A flooded street in a Pakistani province.
Citizens traverse a flooded street in Pakistan.

In these devastating flood events, waters inundated more than one million homes. The flood hit all four of the country’s provinces, resulting in at least two million houses destroyed.

In total, 33 million people were directly affected with 20.6 million requiring urgent humanitarian assistance. (Unfortunately, nine months later, the monsoons brought more flooding, further exacerbating the crisis.)

Looking Ahead to the Future of GIScience

GIScience, in short, can help professionals in many fields manage the world’s resources, plan infrastructure, mitigate and plan for natural hazards, and combat (or prepare for) the effects of climate change, and more.

However, its tools are also becoming increasingly integral in fields beyond traditional domains like urban planning and environmental science.

As GIScience “continues to evolve and adapt to new demands, its impact on industries and disciplines worldwide is set to expand. As such, it will drive “transformative change and unlocking new possibilities for spatial analysis and decision-making” (GIS Analyst II). For instance, some of the newer industries hiring GIS experts are construction, engineering, insurance, real estate, and oil and gas.

One Senior GIS Specialist (Pine Gate Renewables) further confirmed that in the solar industry, there are more people being hired with a GIScience background than there were before. More professionals use “GIS and remote sensing to help identify issues, notice change over time, help drive decisions, and keep projects moving forward.”

Another expert stated that proficiencies in ArcGIS, QGIS, Python, R, and Javscript are becoming increasingly essential in GIS specialist roles.

From agriculture to healthcare, smart cities to disaster management, GIS and Remote Sensing are revolutionizing how we analyze spatial data, make informed decisions, and address complex challenges. Integration with emerging technologies like AI, along with a focus on environmental monitoring, public health, and conservation, underscores their pivotal role in shaping a more sustainable and interconnected world.

GIS Analyst II, Metro Consulting Associates

Learning From a Passionate Teacher

And it’s not just what you will learn in these programs but who you will learn it from. That is, Foundations in GI Science for Natural Resources (and the online MGIS) are both helmed and taught by Dr. Parth Bhatt, whose passion for the subject was covered in a previous blog.

Bhatt’s portfolio of GIScience skills is also diverse: he has expertise in Geographical Information Systems, remote sensing, digital image processing (Multispectral, LiDAR, UAV, Hyperspectral), land use/cover mapping, invasive species mapping, forest health and natural resource management, spatial data analysis, and Web GIS/ArcGIS Online.

Most recently, he has received a grant to put these skills to work: acting as a PI on research projects for The Nature Conservancy in Michigan.

Dr. Parth Bhatt in the classroom, teaching GI Science.
Dr. Parth Bhatt in the classroom

Bhatt has also been instructing the very popular, noncredit, professional development course, Python for Modern GIS and Remote Sensing. This course, which runs several times a year, has had rave reviews.

Taking the Next Steps

If you’d like to learn more about GIScience or you require more information about the Online GIS Certificate from CFRES, please contact Program Director Parth Bhatt (ppbhatt@mtu.edu).

Alternatively, reach out to Program Assistant Marjorie Banovetz (marjorie@mtu.edu).

There is still plenty of time to get started for Fall 2024 and develop your versatile GIS toolkit! And accelerated options are also available.

Parth Bhatt Powers Through With Python

 A high-resolution, drone-captured image of seagulls gathering on the beach in St. Ignace, Michigan.

Above: A high-resolution, drone-captured image of seagulls gathering on the beach in St. Ignace, Michigan.

Dr. Parth Bhatt is definitely making his mark at Michigan Tech’s College of Forest Resources and Environmental Science. Arriving in only 2016, he quickly earned both his master’s degree and then his doctorate from the CFRES. And on important projects, too. That is, during his PhD, he worked with the Nature Conservancy and the U.S. Forest Service to map the Hiawatha National Forest according to its natural habitat communities. To do so, he used both sensing and machine learning techniques.

Parth Bhatt in the classroom teaching a Python with GIS class.
Dr. Parth Bhatt in the classroom.

But this was not his first use of machine learning to depict and analyze complex natural phenomenon. Before coming to Tech, Parth Bhatt worked with the Indian Space Research Organization (ISRO).

Currently, Parth (which he prefers to be called) is a Teaching Assistant Professor / Researcher in the CFRES, who has a passion for Python, remote sensing, and more.

Recently, I’ve collaborated with him to help promote his courses and to grow with Global Campus.

Discovering Python’s Capabilities

But let’s take a step back for a second. Despite his current expertise in and enthusiasm for Python , it was at Michigan Tech that Parth first developed his passion for this programming tool.

As an MS student, he took the class Python Programming for ArcGIS. Here, he learned more about Python and applying some of its techniques to automate repetitive tasks. Impressed with this tool, Parth then attended a GIS conference in which he saw people using Python in almost every field. At this event, he thought to himself, “I need to get better at this.” So he buckled down on his studying, taking in several NASA sponsored online webinars.

And get better he did. And quickly!

He ended up teaching several courses at the undergraduate and graduate level. He was enthusiastically in the classroom for Introduction to GIS, Introduction to GIS for Natural Resources Management, GIS Project Management, and Seminar in GIS.

It is obvious that Parth is a very busy and motivated professional. That is, he is currently instructing a non-credit, 7-week course (Python for Modern GIS and Remote Sensing). And while doing so, he is also developing a for-credit graduate certificate for Spring 2024.

Because this programming language is his passion, I asked him to explain it to me.

Q. Summarize Python for a layperson.

A. Python is a popular programming language for making a person’s day to day work/research life easier and efficient. It has gained widespread popularity in the past decade. Overall, it is extremely useful in the field of GIS and Remote Sensing (or any field for that matter) due to its dynamic nature, ease of use, and versatile, large open community support.

Q. What distinguishes Python from other programming languages when it comes to being used in GIS environments?

A. Well, as I said before, Python is easy to use and implement. It is also very efficient and powerful for data visualization and processing.

Due to Python’s open-source nature, it can be combined with all the major GIS softwares like ArcGIS Pro, ArcGIS Online, QGIS etc. Therefore, it offers a great amount of working flexibility. And from a developer’s perspective, all the major advances are occurring within Python, as compared to other languages such as R. Over the last decade, Python has emerged as a winner in terms of the most liked and used programming languages by the GIS community.

Q: What excites you about applying Python in GIS environments? What is this tool best used for? How have you used it?

A. The possibilities are endless. Python can be used in anything from opening a simple excel sheet filled with various GIS data to visualizing, manipulating, and handling big data. It also has hundreds of useful libraries that are applicable for various geospatial analysis. To me, any modern GIS and Remote Sensing curriculum is incomplete without this language and tool.

In my work, I have used Python to automate various GIS tasks: updating a dataset attribute table with hundreds of rows and columns (basically data cleaning); classifying complex forest ecosystems using machine learning; as well as analyzing data, making charts, conducting accuracy assessments, and performing various geospatial analysis tasks. Furthermore, I have assessed change in terms of urbanization, detected algal blooms, and calculated fire burn ratios.

Q. You’re teaching a non-credit course “Python for Modern GIS and Remote Sensing.” Please briefly explain what this course is about and who should take it.

A: I’m excited about this course, which is new to Michigan Tech. No one has taught Python for GIS in either an online or non-credit format before.

In a nutshell, this course teaches beginning and intermediate-level Python skills as they are applied in the GIS environment. It is suitable for anyone who deals with (or is planning to deal with) GIS and Remote Sensing on a daily basis. Of course, anyone who wants to add to their skill set and make their work more efficient should take it.

As you know, Coding/Programming is an essential skill set to have in our current times, especially for fields such as GIS, Forestry, Ecology, Geology, Civil and Environmental Engineering, and Data Science.

For example, right now in my course, I have students from diverse backgrounds, as well as professionals working in the GIS Industry. They are enjoying the asynchronous class format and the assignments. I am looking forward to incorporating their feedback in the next edition of the course, which will be in Spring 2024.

On a broader scale, Python is basically used in every application that’s related to the the five earth elements (Air, Water, Land, Fire, and Space). For example, it’s playing a big part in NASA’s first ever Mars drone application

Dr. Parth Bhatt
Dr. Parth Bhatt in the field, doing GIS work with Python.
Dr. Parth Bhatt in the field, doing GIS work.

Q. How can professionals use Python to manage or solve prevailing environmental and sustainability challenges, such as land use, forest fires, and the effects of climate change?

A. Python offers hundreds of unique libraries, which can be implemented to any/all kind of GIS and Remote Sensing datasets. Developers can make useful tools according to their needs and applications. As a result, they can enhance their decision making processes.

For example, professionals at the multidisciplinary Michigan Tech Research Institute (MTRI) use Python programming to address complex ecological problems, make wildfire prediction models, analyze efficient road networks, asses infrastructure, and map and monitor land use/cover and pristine wetlands.

Overall, this is an exciting time to teach this course. We are living in a world where climate change is happening rapidly and things surrounding us are constantly changing (whether they are environmental, economical, or political).

Q. I agree that we need all hands on deck when it comes to solving climate change and sustainability issues. But what is a personal example of your use of Python to contend with pressing environmental problems?

This image, which shows the extent of the damage after the flood, was created with a change detection algorithm and Python.
This image, which shows the extent of the damage after the flood, was created using a change detection algorithm.

In my own work, I have used this tool to document the effects of the historic flood in Pakistan. The flood, which was in mid-June ’22, affected more than 33 million people and destroyed or damaged more than one million houses.

In fact, the floods affected all four of the country’s provinces or about 15% of the country’s population.

Floodwaters inundated tens of thousands of square kilometers of the country, causing at least 1,100 deaths. Because of the 2023 monsoon season, Pakistan is still struggling to recover from this event.

Q. What motivates you? And what is next on your journey at Michigan Tech?

A. I love teaching, doing research, and solving complex problems. These drives require me stay current with, if not slightly ahead of, my field. Furthermore, I believe that if I am not up to date with my knowledge, I won’t be able to offer anything new and beneficial to students.

As Gandhi so eloquently said, “You must be the change you wish to see in the world.” In other words, I have to keep updating and offering advanced skills, not only for my personal growth, but also for students so they can succeed in their careers.

And for the College of Forest Resources and Environmental Sciences, I’m glad to help grow its online offerings. My non-credit course marks the beginning of our online education program. That is, we are designing other useful and applied courses, such as ArcGIS Online. Also, starting in 2024, we plan to be offering the first ever Master’s of Geographical Information Science online degree certification. Look out for it on Michigan Tech’s Global Campus.

One more thing: I’m holding an information session on Oct. 20 at 10:30 AM for Carthage College in Kenosha, Wisconsin. The session will introduce the Online GIS programs from the CFRES. However, the Michigan Tech community is also welcome to attend. You will be asked to sign in with your MTU email (or the email associated with your Zoom account) to join the session. If you have any questions about this session or anything else, email me at ppbhatt@mtu.edu.

Q. Any final thoughts?

As excited as I am about learning new materials and tools, the biggest reward of teaching occurs when you run into or hear from a student and they say, “Thank you for teaching me that GIS thing, it’s helping me big time in my job or research.”