Day: September 19, 2019

Laura Monroe to Speak About High-performance Computing, Tues. Sept. 24

The Department of Mathematical Sciences and the College of Computing will present a lecture on high-performance computing by Dr. Laura Monroe from the Ultrascale Systems Research Center (USRC) at Los Alamos National Laboratory on Tuesday, September 24, from 5:00 to 6:00 p.m., in Fisher Hall, Room 133. The lecture is titled “The Mathematical Analysis of Faults and the Resilience of Applications.” Discussion will follow the lecture, and pizza and refreshments will be served.

Abstract: As the post-Moore’s-Law era advances, faults are expected to increase in number and in complexity on emerging novel devices. This will happen on exascale and post-exascale architectures due to smaller feature sizes, and also on new devices with unusual fault models. Attention to error-correction and resilience will thus be needed in order to use such devices effectively. Known mathematical error-correction methods may not suffice under these conditions, and an ad hoc approach will not cover the cases likely to emerge, so mathematical approaches will be essential. We will discuss the mathematical underpinnings behind such approaches, illustrate with examples, and emphasize the interdisciplinary approaches that combine experimentation, simulation, mathematical theory and applications that will be needed for success.

Dr. Monroe has spent most of her career focused on unconventional approaches to difficult computing problems, specifically researching new technologies to enable better performance as processor-manufacturing techniques reach the limits of the atomic scale, also known as the end of Moore’s Law. Dr. Monroe received her PhD in the theory of error-correcting codes, working with Dr.Vera Pless. She worked at NASA Glenn, then joined Los Alamos National Laboratory in 2000. She has contributed on the design teams on the LANL Cielo and Trinity supercomputers, and originated and leads the Laboratory’s inexact computing project that is meant to address Moore’s Law challenges in a unique way. She also provides mathematical and theoretical support to LANL’s HPC Resilience project.

Download the event flyer

ACIA Networking Mixer is Tues., Sept. 24, 4-6 pm

The Alliance for Computing, Information, and Automation (ACIA) and Michigan Tech Career Services invite students to a casual networking mixer with industry employment recruiters on Tuesday, September 24, 2019, from 4:00 to 6:00 p.m., in the Rozsa Center lobby. The event is free and appetizers and refreshments will be served.
Students in the following majors are encouraged to attend: Computer Network and System Administration (CNSA), Computer Engineering, Computer Science, Cybersecurity, Data Sciences, Electrical Engineering, Electrical Engineering Technology (EET), and Software Engineering.
Recruiters interested in hiring Michigan Tech students and graduates in the above majors will be in attendance.

The Alliance for Computing, Information, and Automation (ACIA) at Michigan Technological University is a collaborative effort between the Department of Electrical and Computer Engineering and the College of Computing. The mission of the ACIA is to provide faculty and students the opportunity to work across organizational boundaries to create an environment that is a reflection of contemporary technological innovation. The research arm of the ACIA is the Institute of Computing and Cybersystems (ICC).

Download the event flyer

Recruiters interested in hiring Michigan Tech students and graduates in the above majors will be in attendance. Invited companies include the following:

3M
Amcor (fka Bemis)
ArcelorMittal
Black & Veatch
Caterpillar
CCI Iron Mountain
Continental
Cummins
Denso
Dow
DTE Energy
Fiat Chrysler Automobiles (FCA)
Ford Motor Company
Georgia-Pacific
Gerdau
Greenheck
Kimberly-Clark
Kohler
Leidos
Los Alamos National Lab (LANL)
Marathon Petroleum
Mercury Marine
Michigan Scientific Corporation
Milwaukee Tool
National Air and Space Intelligence Center
Nexteer Automotive
Nucor
Oshkosh Corporation
Palantir
Plexus
Schneider
Superior Technologies
Systems Control