1010 with … Dr. Alex Sergeyev, Applied Computing


Are you a high school student, current undergraduate student, or a recent BS graduate? Are you are interested in robotics, automation, and controls?

“If you’d like to learn more about the Mechatronics and the BS and MS programs at Michigan Tech, please join this 1010 conversation,” Professor Alex Sergeyev urges.

You are invited to spend one-zero-one-zero—that is, ten—minutes with Dr. Aleksandr Sergeyev on Thursday, April 15, from 4:30 to 4:40 p.m. EST.

Join the Zoom meeting here.


Dr. Sergeyev is a professor in the Applied Computing department and director of the Mechatronics graduate program. He also directs the FANUC Certified Industrial Robotics Training Center at Michigan Tech.

Dr. Sergeyev will discuss his research, the Applied Computing department, and the Mechatronics BS and MS programs. He will answer questions following his presentation.

Michigan Tech is a pioneer in Mechatronics education, having introduced a graduate degree program in 20xx, and a bachelor’s program in Fall 2019.

“Mechatronics is an industry buzzword synonymous with robotics, controls, automation, and electromechanical engineering,” Sergeyev says.

In his presentation, he will discuss Mechatronics in general, explain what the degree has to offer, job opportunities in Mechatronics, and some of the research he is conducting in this field.

In Spring 2021, a Mechatronics Playground was opened on campus. The hands-on learning lab and industry-grade equipment was funded by alumnus Mark Gauthier of Donald Engineering, Grand Rapids, MI, and other major companies.

A common degree in Europe, China, Japan, Russia, and India, advanced study in Mechatronics is an underdeveloped academic discipline in the United States, even though the industrial demand for these professionals is enormous, and continues to grow.

Sergeyev’s areas of expertise are in electrical and computer engineering, physics, and adaptive optics, and his professional interests include robotics. He is principal investigator for research grants totaling more that $1 million. He received both his MS and PhD degrees at Michigan Tech, in physics and electrical and computer engineering, respectively.

We look forward to spending 1010 minutes with you!

Call for Manuscripts: Fault Tolerance in Cloud/Edge/Fog Computing

Call for Manuscripts:

Special Issue on Fault Tolerance in Cloud/Edge/Fog Computing in Future Internet, an international peer-reviewed open access monthly journal published by MDPI.

Informational Flyer

https://blogs.mtu.edu/icc/files/2021/04/ali-ebnenasir-call-for-papers-032521-sm.pdf

Deadline

April 20, 2021

Author Notification

June 10, 2021

Website

mdpi.com/journal/futureinternet/special_issues/FT_CEFC

Collection Editors

Keywords

  • Fault tolerance
  • Cloud computing
  • Edge computing
  • Resource-constrained devices
  • Distributed protocols
  • State replication

Topics

Including, but not limited to:

  • Faults and failures in cloud and edge computing.
  • State replication on edge devices under the scarcity of resources.
  • Fault tolerance mechanism on the edge and in the cloud.
  • Models for the predication of service latency and costs in distributed fault-tolerant protocols on the edge and in the cloud.
  • Fault-tolerant distributed protocols for resource management of edge devices.
  • Fault-tolerant edge/cloud computing.
  • Fault-tolerant computing on low-end devices.
  • Load balancing (on the edge and in the cloud) in the presence of failures.
  • Fault-tolerant data intensive applications on the edge and the cloud.
  • Metrics and benchmarks for the evaluation of fault tolerance mechanisms in cloud/edge computing.

Background

The Internet of Things (IoT) has brought a new era of computing that permeates in almost every aspect of our lives. Low-end IoT devices (e.g., smart sensors) are almost everywhere, monitoring and controlling the private and public infrastructure (e.g., home appliances, urban transportation, water management system) of our modern life. Low-end IoT devices communicate enormous amount of data to the cloud computing centers through intermediate devices, a.k.a. edge devices, that benefit from stronger computational resources (e.g., memory, processing power).

To enhance the throughput and resiliency of such a three-tier architecture (i.e., low-end devices, edge devices and the cloud), it is desirable to perform some tasks (e.g., storing shared objects) on edge devices instead of delegating everything to the cloud. Moreover, any sort of failure in this three-tier architecture would undermine the quality of service and the reliability of services provided to the end users.

Scope

Theoretical and experimental methods that incorporate fault tolerance in cloud and edge computing, which have the potential to improve the overall robustness of services in three-tier architectures.

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website (https://www.mdpi.com/user/login/). Once you are registered, click here to go to the submission form (https://susy.mdpi.com/user/manuscripts/upload/?journal=futureinternet).

Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page.

Please visit the Instructions for Authors page before submitting a manuscript.

The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English.

Authors may use MDPI’s English editing service prior to publication or during author revisions.

Our Stories: Dr. Robert Pastel, Assoc. Prof., Computer Science

This is part of a series of short introductions about College students, faculty, and staff that we would like to include in the Weekly Download. Would you like to be featured? Send a photo and some background info about yourself to computing@mtu.edu.

Dr. Robert Pastel, Associate Professor of Computer Science

  • Advisor to Humane Interface Design Enterprise (HIDE)
  • Has been teaching at Michigan Tech for about 20 years, and teaching for 30 years.
  • Researcher with the Human-Centered Computing group of the Institute of Computing and Cybersystems (ICC)

Education

  • PhD, University of New Mexico, Physics
  • MS, Computer Science, Michigan Tech

Faculty Profile


Classes Dr. Pastel teaches: 
o    CS5760 – Human-Computer Interaction – Usability Evaluation and Testing 
o    CS4791 and CS4792 – Senior Design
o    ENT1960 – ENT5960 – Humane Interface Design Enterprise

The “coolest” class you teach, and why: All my classes are “cool” because they all involve making applications that will be used by people. The “coolest” class is CS4760 – User Interface – Design and Implementation where students work with scientists across the world to make citizen science applications.

The importance of your class topics to the overall understanding of Computing and your discipline: In all my classes, students learn to design and implement usable applications for people.

Your teaching philosophy: My teaching philosophy is that students learn best by experience and working with others. Consequently students work in teams on project for clients. 

Research projects in which students are assisting: 

  • StreamCLIMES – Large collaborative project studying bio diversity of intermittent streams. I’m responsible for developing a web applications monitoring the stream.
  • FloodAware – Large collaborative project recording and modelling flooding in urban areas. I’m responsible for developing the citizen science effort.
  • KeTT – Keweenaw Time Traveler – Historical geospatial information citizen science website for user to record region’s history and explore the maps and stories. 

Interests beyond teaching and research: The outdoors: skiing, biking and hiking. Every summer, he takes a one-month backpacking trip. 

CS Dept. Lecture: Tim Frick, Mightybytes

The Department of Computer Science will present a lecture by Tim Frick, founder and president of Mightybytes, on Friday, April 9, 2021, at 3:00 p.m.

In his talk, “People, Planet, Pixels: Toward Sustainable Digital Products and Practices,” Frick will discuss how sustainable web design and responsible digital practices can help create an internet that is clean, efficient, open, honest, regenerative, and resilient.

Join the Zoom meeting here.

Lecture Title

“People, Planet, Pixels: Toward Sustainable Digital Products and Practices”

Speaker Bio

Tim Frick started his digital agency Mightybytes in 1998 to help purpose-driven companies, social enterprises, and large nonprofits solve problems, amplify their impact, and drive measurable results. He is the author of four books, including Designing for Sustainability: A Guide to Building Greener Digital Products and Services. Tim regularly presents at conferences and offers workshops on sustainable design, measuring impact, and problem solving in the digital economy.

Lecture Abstract

The internet has a larger environmental impact than the commercial airline industry. It currently produces approximately 3.8% of global carbon emissions, which are rising in line with our hunger to consume more data. Increasingly, web technologies are also being used to sow discontent, erode privacy, prompt unethical decisions, and, in some countries, undermine personal freedoms and the well-being of society. Web technology has the potential to bring huge benefits to society and the environment, but only if we use it wisely.

In this talk, author and digital agency owner Tim Frick will discuss how sustainable web designand responsible digital practices can help us create an internet that is clean, efficient, open, honest, regenerative, and resilient—principles outlined in the Sustainable Web Manifesto, of which Tim is a co-author. Elements of this talk are also based on Tim’s book, Designing for Sustainability: A Guide to Building Greener Digital Products and Services. Creating an internet that works for people and planet is possible. The methods described in this talk will show you how.

ICC Distinguished Lecture: Alina Zare, Univ. of Florida

The Institute of Computing and Cybersystems will present a Distinguished Lecture by Dr. Alina Zare on Friday, April 16, 2021, at 3:00 p.m.

Her talk is titled, “Multiple Instance Learning for Plant Root Phenotyping.”

Dr. Zare is a professor in the Electrical and Computer Engineering department at University of Florida. She teaches and conducts research in the areas of pattern recognition and machine learning.

Join the virtual lecture here.

Lecture Title

Multiple Instance Learning for Plant Root Phenotyping

Lecture Abstract

In order to understand how to increase crop yields, breed drought tolerant plants, investigate relationships between root architecture and soil organic matter, and explore how roots can play in a role in greenhouse gas mitigation, we need to be able to study plant root systems effectively. However, we are lacking high-throughput, high-quality sensors, instruments and techniques for plant root analysis. Techniques available for analyzing root systems in field conditions are generally very labor intensive, allow for the collection of only a limited amount of data and are often destructive to the plant. Once root data and imagery have been collected using current root imaging technology, analysis is often further hampered by the challenges associated with generating accurate training data.

Most supervised machine learning algorithms assume that each training data point is paired with an accurate training label. Obtaining accurate training label information is often time consuming and expensive, making it infeasible for large plant root image data sets. Furthermore, human annotators may be inconsistent when labeling a data set, providing inherently imprecise label information. Given this, often one has access only to inaccurately labeled training data. To overcome the lack of accurately labeled training, an approach that can learn from uncertain training labels, such as Multiple Instance Learning (MIL) methods, is required. In this talk, I will discuss our team’s approaches to characterizing and understanding plant roots using methods that focus on alleviating the labor intensive, expensive and time consuming aspects of algorithm training and testing.

Speaker Bio

Dr. Zare earned her Ph.D. in December 2008 from the University of Florida. Prior to joining the faculty at the University of Florida in 2016, she was a faculty member at the University of Missouri.

Zare’s research has focused primarily on developing machine learning and pattern recognition algorithms to autonomously understand and process non-visual imagery. Her research work has included automated plant root phenotyping using visual and X-ray imagery, 3D reconstruction and analysis of X-ray micro-CT imagery, sub-pixel hyperspectral image analysis, target detection and underwater scene understanding using synthetic aperture sonar, LIDAR data analysis, Ground Penetrating Radar analysis, and buried landmine and explosive hazard detection.

MS Defense: Vijay Pathak

by Mechanical Engineering

Vijay Pathak (advisor Ghosh Susantra) a master’s in Mechanical Engineering student will present his master’s defense at 2 p.m. tomorrow (April 14) via Zoom.

The title of the presentation is “Studying the Effects of Initial Crack Angle on the Crack Propagation in Graphene Nano-Ribbon Through Molecular Dynamics Simulations.”


Master’s Defense: Chinmay Kondekar

Electrical Engineering Master’s candidate Chinmay Kondekar (advisor: Aleksandr Sergeyev), will present his master’s defense at 11 a.m. tomorrow (April 13) via Zoom.

The title of his presentation is “Integration of Robotic and Electro-Pneumatic Systems Using Advanced Control and Communication Schemes.”


ECE Doctoral Defense – Adam Webb

by Electrical and Computer Engineering Department

Electrical Engineering doctoral candidate Adam Webb will present his PhD defence at 3:30 p.m. Thursday (April 15) via Zoom.

The title of his presentation is “Novel Methods in Computational Imaging with Applications in Remote Sensing.”

Webb’s co-advisors are Timothy Schulz (ECE) and Timothy Havens (CC).


GenCyber Cybersecurity Teacher Camp Is July 19-23

by Yu Cai, College of Computing

A GenCyber Cybersecurity Teacher Camp for K-12 teachers will be held at Michigan Tech during the week of July 19 – 23. Participants will learn cyber hygiene and fundamental security knowledge including email phishing, password management, and cyber ethics. Participants will also learn how to develop lesson plans to teach cybersecurity in K-12.

This is a residential camp (commuting optional), and is offered at NO COST to all participants. Room and board is included. Each teacher participant will receive a stipend of $500 for attending and completing camp activities. Camp activities will count for 25 State Continuing Education Clock Hours (SCECH).

Click here for more information and to apply. The application deadline is May.

Funding for the camp is provided jointly by the National Security Agency (NSA) and the National Science Foundation (NSF) through an award led by Yu Cai and Tim Van Wagner from the College of Computing.


Master’s Defense: Ashwini Arvind Nikumbh

April 9, 3:00 p.m–4:00 p.m

Mechanical Engineering Advisor: Susanta Ghosh

“Atomistic Continuum Simulations for Nano-Indentation and Compression of Multi-Layer Graphene”

Attend Virtually

Atomistic Continuum Simulations for Nano-Indentation and Compression of Multi-Layer Graphene

View the Events Calendar item here.


ECE Master’s Defense: Chinmay Rajaram Kondekar

by Electrical and Computer Engineering

Electrical Engineering Master’s candidate Chinmay Kondekar (advisor: Aleksandr Sergeyev), will present his master’s defense at 11 a.m. Tuesday (April 13) via Zoom

The title of his presentation is “Integration of Robotic and Electro-Pneumatic Systems Using Advanced Control and Communication Schemes.” 


Graduate Research Colloquium 2021

by Graduate Student Government

This year’s Graduate Research Colloquium organized by the Graduate Student Government was hosted virtually due to COVID restrictions. There were in total 48 presentations — 17 poster presenters and 31 oral presenters.

Poster presentations took place in a pre-recorded video style and the oral sessions were hosted live via Zoom. You can watch all the poster videos and recordings for the oral sessions here. Each presentation was scored by two judges from the same field of research.

Participants were able to gain valuable feedback from these judges before presenting their research at an actual conference. It was stiff competition amongst all presenters. Following are the winners for each of these sessions.

Of the many presentations were the following by two graduate students affiliated with the College of Computing.

Simulating the Spread of Infectious Diseases
Meara Pellar-Kosbar, Data Science

This simulation is designed to show how a fictional viral illness could spread among people in a virtual room. Over the course of the virtual simulation, a number of automatic simulated people called subjects will move about an adjustable virtual grid. During this time, subjects will come into contact with each other and with item cells in the virtual room. Subjects will be exposed to this fictional virus via contact with other subjects, items, and via the air when within a certain distance of a contagious subject. The viral counts of each subject will be tracked and shown as the simulation runs, showing how the actions of the subjects’ affects their viral counts.

Cultural Competence Effects of Repeated Implicit Bias Training
Karen Colbert, Social Sciences

Karen Colbert is a PhD student in the Computational Sciences and Engineering department.

Abstract: Diversity training literature suggests that mandatory and recurrent sessions should maximize training efficacy, but research has primarily focused on single, brief training sessions that are often voluntary. Michigan Tech is one of few universities to implement required and repeated diversity training for all faculty who serve on search, tenure, and promotion committees. The goal of this study is to evaluate the training’s effectiveness, as well as to fill the gap in research on mandatory recurring diversity training. To do this, we anonymously surveyed faculty members on their knowledge, attitudes, and skills related to content from the Diversity Literacy program and scored responses to create a single composite score for each participant. We hypothesized that composite Cultural Competency Score (CCS) would be higher for faculty who 1) have taken more refresher trainings, and 2) completed training more recently. This study included 130 total respondents (large sample), 69 of whom provided their Diversity Literacy completion information anonymously through Human Resources (small sample). Composite CCS did not differ significantly by frequency of training, H(2)=3.78, p=.151. CCS did differ significantly by years since last training, F(2,63)=4.436, p=.016. Results from both large and small groups showed no statistical significant relationship between CCS and faculty committee service. CCS was negatively correlated with years employed at Tech in both the large (r=-0.363, p=0.002) and small (r = -0.258, p=0.01) samples. This relationship between low CCS and longer employment at Tech may additionally be related to the Diversity Literacy program’s implementation in 2010. Qualitative responses were also collected regarding training material that faculty found most memorable (N=102) and most confident to put into practice (N=93).

View all the Research Colloquium abstracts here.


Cyber Forum With MTU Army ROTC

by Major Daniel F. Gwosch, Professor of Military Science

Are you interested in a DoD career in Cyber Security after Michigan Tech? Join the Arctic Warrior Cadets and learn about DoD Cyber from a panel of subject matter experts.  The presentation will be held at 1 p.m. tomorrow (April 9) via Zoom.

Presenting are:

  • Colonel Silas Calhoun (US Army, Cyber)
  • 1LT Lisa Hozey (Army Reserve, Cyber)
  •  CPT Scott Ardis (Army Reserve, Cyber)
  • Capt. Chris Jamison (USAF, Cyber)

This event will be a virtual event and is intended to provide information on current Cyber activities being conducted by US Army Cyber and the Joint DoD community of experts