Also In This Section
  • Categories

  • Recent News

  • Category: Grad Students

    Article by Tim Havens Published in Acoustical Society Journal


    Timothy Havens, the William and Gloria Jackson Associate Professor of Computer Systems, has co-authored a paper recently published in The Journal of the Acoustical Society of America, Volume 50, Issue 1.

    The paper is titled, “Recurrent networks for direction-of-arrival identification of an acoustic source in a shallow water channel using a vector sensor.” Havens’s co-authors are Steven Whitaker (EE graduate student), Andrew Barnard (ME-EM/GLRC), and George D, Anderson, US Naval Undersea Warfare Center (NUWC)-Newport.

    The work described in the paper was funded by the United States Naval Undersea Warfare Center and Naval Engineering Education Consortium (NEEC) (Grant No. N00174-19-1-0004) and the Office of Naval Research (ONR) (Grant No. N00014-20-1-2793). This is Contribution No. 76 of the Great Lakes Research Center at Michigan Technological University.

    Abstract

    Conventional direction-of-arrival (DOA) estimation algorithms for shallow water environments usually contain high amounts of error due to the presence of many acoustic reflective surfaces and scattering fields. Utilizing data from a single acoustic vector sensor, the magnitude and DOA of an acoustic signature can be estimated; as such, DOA algorithms are used to reduce the error in these estimations.

    Three experiments were conducted using a moving boat as an acoustic target in a waterway in Houghton, Michigan. The shallow and narrow waterway is a complex and non-linear environment for DOA estimation. This paper compares minimizing DOA errors using conventional and machine learning algorithms. The conventional algorithm uses frequency-masking averaging, and the machine learning algorithms incorporate two recurrent neural network architectures, one shallow and one deep network.

    Results show that the deep neural network models the shallow water environment better than the shallow neural network, and both networks are superior in performance to the frequency-masking average method.

    Citation: The Journal of the Acoustical Society of America 150, 111 (2021); https://doi.org/10.1121/10.0005536Steven Whitaker1,b)Andrew Barnard2George D. Anderson3, and Timothy C. Havens4


    Computer Science Faculty, Students Awarded Best Poster at ITiCSE


    Department of Computer Science faculty and students presented two posters, a paper, and chaired a session at the 26th Annual Conference on Innovation and Technology in Computer Science Education (ITiCSE), conducted online June 26 to July 1, 2021.

    “A Visualization for Teaching Integer Coercion,” a poster presented by James Walker with Steven Carr, Ahmed Radwan, Yu-Hsiang Hu, Yu Chin Cheng, Jean Mayo, and Ching-Kuang Shene, was one of three posters that received the conference’s Best Poster Award.

    The poster describes the Expression Evaluation (EE) visualization tool. The tool is designed to aid students in understanding type conversions that take place implicitly in C. Understanding type conversions is essential to avoid Integer errors in C which continue to be a source of security vulnerabilities.

    An additional paper and poster were presented at the conference, below. Dr. Linda Ott chaired a conference session on Students: Diversity.


    Poster: Modeling the Growth and Spread of Infectious Diseases to Teach Computational Thinking by Meara Pellar-Kosbar, Dylan Gaines, Lauren Monroe, Alec Rospierski, Alexander Martin, Ben Vigna, Devin Stewart, Jared Perttunen, Calvin Voss, Robert Pastel and Leo Ureel II

    The poster discusses a simulation model developed to teach middle school students about the spread of infectious diseases augmented with affordances to help students develop computational thinking skills. The simulation was partially developed as a Citizen Science project in the courses CS4760 and CS5760, User Interface Design and Human Computer Interaction.

    Presentation: Frozen in the Past: When it Comes to Analogy Fears, It’s Time For Us to “Let it Go” by Briana Bettin and Linda Ott

    This position paper describes a fundamental difference in attitudes toward the use of analogy in the computer science education community versus other STEM education communities. Additionally, it provides suggestions for how to address concerns in the CS education research community in order to advance research into the use of analogy in computing education

    The 26th annual conference on Innovation and Technology in Computer Science Education (ITiCSE) was sponsored by ACM, the ACM Special Interest Group on Computing Education (SIGCSE), the ACM Europe Council, and Informatics Europe.


    Virtual Poster Session at the 2021 Alumni Reunion

    by Graduate Student Government

    The Graduate Student Government (GSG) is pleased to announce a hybrid poster presentation session at Alumni Reunion 2021, which will be held Aug. 6.

    Due to the ongoing pandemic, GSG has decided to combine physical posters with prerecorded presentations from participants. This has been decided to keep in mind the health and safety of everyone who is going to be a part of this event, since the COVID-19 pandemic is still ongoing.

    The Alumni Reunion poster presentation session is a continued tradition designed to increase interaction between graduate students and MTU alumni. It is a unique opportunity for graduate students to share their research work and expand network connections. This event is also a great opportunity for students to work on their presentation skills and prepare for upcoming conferences. Alumni will be able to give valuable insight and feedback on the videos that appeal to them.

    Participation is open to graduate students from all departments. The event will consist of elevator-pitch-style poster presentations, with physical posters and prerecorded presentations by participants. This hybrid setup will allow alumni to take a closer look at the physical posters and everyone to view the video presentations for the respective posters. Registration closes on July 16 at 11:59 p.m. Limited seats only. Don’t wait — register today.

    Detailed instructions and guidelines for recording your presentation will be sent out to you once you have registered. Alternatively, you will also be able to find the instructions on the GSG website. The deadline for participants to submit their presentation videos is July 30.

    For more information, please contact Shreya Joshi at gsg-research@mtu.edu.


    NERC Seeking Cybersecurity Specialist


    The North American Electric Reliability Corporation (NERC) is hiring a Bulk Power System Cybersecurity Specialist to join a team working with industry to help advance the concepts of a cyber-physical system and integration of cyber and physical security into conventional grid planning, operations, design, and restoration activities.

    The position requires a bachelor’s degree from an accredited four-year college or university.

    Download more information about the position here.

    Visit the NERC Career Opportunities webpage here.

    Position Summary

    The Bulk Power System Cybersecurity Specialist is responsible for providing cyber and physical security subject matter expertise in support of the Electric Reliability Organization (ERO) Enterprise evaluation and management of risks to reliability, security, and resilience of the bulk power system (BPS). This role will assist, lead, and manage various projects related to supporting industry integration of cyber and physical security into all aspects of system planning, operations, and restoration. It will also help industry with integrating new technologies and addressing emerging reliability and security issues. The role will coordinate with other departments within NERC as well as with the E-ISAC. This position reports to the Senior Manager of Bulk Power System Security and Grid Transformation.


    The North American Electric Reliability Corporation (NERC) is a not-for-profit international regulatory authority whose mission is to assure the effective and efficient reduction of risks to the reliability and security of the grid. NERC develops and enforces Reliability Standards; annually assesses seasonal and long‐term reliability; monitors the bulk power system through system awareness; and educates, trains, and certifies industry personnel.


    Mechatronics Machining System Topic of New Video


    Michigan Tech Professor Alex Sergeyev and Chinmay Kondekar, ’21 (M.S. in ECE/Mechatronics) discuss the Mechatronics degree programs and Kondekar’s final system design project, in a new video produced by the Applied Computing department. Watch the video below.

    The system machines patterns on blocks of foam using various robotic attachments, a tricky manufacturing process to program and one of the more challenging applications for an industrial robot.

    The interconnected system is flexible, reconfigurable, and controlled from a central control interface to emulate a production process. Correct dimensions are assured using machine vision, and by transporting the workpiece between different stations.

    A number of industrial applications are employed by the system, and most industrial robotic work cells have similar control and communication layouts. Manufacturing system layouts like this one are commonly found in the automotive, pharmaceutical, and food industries. Other potential applications include use in data acquisition and analytics, cybersecurity, and future projects requiring interconnected systems.

    Read a blog article about Kondekar’s final master’s program project.

    Watch the video.

    Mechatronics: Dr. Alex Sergeyev and Chinmay Kondekar ’21: Demo of an Integrated Machining System

    Mechatronics at Michigan Tech

    Learn more about Mechatronics.


    MTRAC Advanced Computing Hub Requesting Proposals

    The Michigan Translational Research and Commercialization (MTRAC) Advanced Computing Technologies Innovation Hub, hosted at Wayne State University, has opened a Request for Proposal period lasting until Aug. 31.

    Commercialization-focused MTRAC grants provide funding to address the “valley of death” and guidance from an experienced oversight committee comprised of venture capitalists, seasoned entrepreneurs and industry experts. Eligible technologies include cognitive technologies, immersive technologies, cybersecurity, internet of things, industry x.o, blockchain and next-generation computing.

    If you have questions about specific project eligibility or the proposal process, please reach out to Nate Yenor at nryenor@mtu.edu

    For additional information about the program, please visit Wayne State’s MTRAC Advanced Computing Technologies web page.


    Soner Onder Awarded NSF RD Grant

    Soner Onder (CS/ICC) is the principal investigator on a project that has received a $149,996 research and development grant from the National Science Foundation (NSF).

    The project is titled “IRES: Track I: Collaborative Research: Supporting FSU and MTU Student Research with NTNU Faculty on Automatic Improvement of Application Performance.”


    Health Informatics Online Master’s Degree Ranked #6


    The Michigan Tech Master’s in Health Informatics program has been ranked 6th on the list, ” Top 10 Online Master’s In Healthcare Informatics Programs 2021,” published recently by BestOnlineSchools.org. The Michigan Tech Health Informatics MS program is the only university in Michigan to appear on the top ten list.

    The Michigan Tech Master of Science in Health Informatics prepares students for careers as data and information professionals in clinical and medical fields.

    In the flexible, 30-credit program, which can be completed entirely online, graduate students choose courses from areas such as artificial intelligence in healthcare, cybersecurity and privacy, clinical decision modeling, and big data analytics to earn a M.S. of Health Informatics degree. Students will also earn graduate certificates in the specialized and growing areas of Artificial Intelligence in Healthcare and Security and Privacy in Healthcare through this coursework.


    View the TheBestSchools.org ranking here.



    Mechatronics Master of Science, Class of ‘21


    The Michigan Tech Master of Science in Mechatronics, launched in 2019, has congratulated its first graduates this spring: Chinmay Kondekar (EE), Chukwuemeka George Ochieze, and Ahmat Oumar. Read their stories below.


    Ahmat Oumar


    Ahmat Oumar was very interested in finding an engineering discipline combining the new engineering principles of the age of automation.

    “I was looking for a discipline that will combine principles in electrical engineering, mechanical engineering and computer science,” he explains. “And the College of Computing Mechatronics program has been the right answer.”

    “Michigan Tech Mechatronics has been a great learning experience for me,” Oumar says. “The frequent lab practices to apply the principles learned in class especially enhanced my learning. This will make it easier to make a smooth transition into industry.”

    Oumar also credits his professors as instrumental in his success. “They make themselves available to students, not only in teaching and guiding, but also through mentoring.”


    Chukwuemeka George Ochieze


    Chukwuemeka George Ochieze—now enrolled in a Ph.D. program at Michigan Tech—checked out the College of Computing Mechatronics master of science program a few years ago.

    He was intrigued by the equipment available to students and the many research projects that could be accomplished within the program. Both aligned perfectly with his interests. And he regards the location of Michigan Tech and the region’s weather conditions as a good atmosphere for study.

    “Mechatronics is important in this century because every system consists of different subsystems that require a particular mechatronics application,” says Ochieze. “For example, people who work on fluid power systems should understand automation and controls.”

    Ochieze says that working with faculty and researchers in the various fields of mechatronics helped him to think differently with respect to the subject of application.

    “I pursued so many projects while here on campus,” he adds. “My work with wearable devices shaped my interests and allowed me to apply what I’ve learned so far in the Mechatronics program. His current focus is on the robotics field, which Ochieze says stems from his exposure to robotics and programming in the Mechatronics M.S. program.

    Ochieze was a mechatronics instructor in the 2020-21 academic year for the Career Technical Education (CTE) program in Mechatronics, recently launched by Michigan Tech and the Copper Country Intermediate School District (CCISD). The 12-month Career CTE program is for high school juniors or seniors. Read the story.

    And Ochieze tried many indoor and outdoor events that includes, “skiing, indoor and outdoor soccer, skating, tubing, winter carnivals, career fairs, late nights in the library trying to figure out projects, passport to the world, to mention but a few.”

    “Personally, I think the best memories I have was the career fairs events, having the opportunity to exchange information with people who have similar interests and also sharing your thoughts to people who have worked for a long time in the industry,” Ochieze says.

    Chinmay Kondekar


    Read Chinmay Kondekar’s story.

    Graduate student Chinmay Kondekar heard about Michigan Tech during his undergraduate studies. Sometime later he read a social media post about work opportunities in the robotic and automation labs, and Michigan Tech again came to his attention.

    “At that time, I was working as a controls engineer in India,” he says. “Robotics and automation interest me, and when I saw who had written the post (a former graduate student of Sergeyev’s), I knew I had found the perfect degree program.”

    Kondekar’s final design project was to create an interconnected system that is flexible, reconfigurable, and controlled from a central control interface to emulate a production process. The system is used to machine different patterns on a block of foam.

    “I enjoy solving problems and coming up with a solution to make things work,” he shares. “When starting the [final] project, I had a lot of unknown variables but I knew how to approach them and, eventually, I came up with solutions and made the system work. It’s highly rewarding to watch the finished system come together, and then to see it work automatically after pressing just three buttons.”

    Kondekar’s project would not have been possible without generous support from Mr. Mark Gauthier and his team at Donald Engineering. “Mark has helped the department acquire the best industry-grade hardware, and his expertise in pneumatics helped the project concept become reality,” Kondekar says.

    Kondekar says he has enjoyed his learning and life experiences at Michigan Tech. Plus, he loves the outdoors. “I am an outdoors guy and I love the UP, especially the summers. It’s full of good people and great beer!”