Category: Grad Students

Volunteers Needed for Augmented Reality Study

by Department of Computer Science

We are looking for volunteers to take part in a study exploring how people may interact with future Augmented Reality (AR) interfaces. During the study, you will record videos of yourself tapping on a printed keyboard. The study takes approximately one hour, and you will be paid $15 for your time. You will complete the study at your home.

To participate you must meet the following requirements:

  • You must have access to an Android mobile phone
  • You must have access to a printer
  • You must be a fluent speaker of English
  • You must be 18 years of age or older
  • You must live in the United States

If you would like to take part, please contact rhabibi@mtu.edu

AI, Mobile Security Grad-level Research Assistant Needed

Dr. Xiaoyong (Brian) Yuan and Dr. Bo Chen are seeking an hourly paid graduate research assistant to work in the areas of artificial intelligence and mobile security. The project is expected to begin Summer 2021 (5/10/2021).

Preferred Qualifications:
1.     Passion for research in artificial intelligence and mobile security.
1.     Familiar with Android OS and Android app development.
2.     Basic knowledge of machine learning and deep learning.
3.     Solid programming skills in Java, Python, or related programming languages. 
4.     Experience with popular deep learning frameworks, such as Pytorch and Tensorflow is a plus.

To Apply: Please send a resume and a transcript to Dr. Yuan (xyyuan@mtu.edu).

Graduate Research Colloquium 2021

by Graduate Student Government

This year’s Graduate Research Colloquium organized by the Graduate Student Government was hosted virtually due to COVID restrictions. There were in total 48 presentations — 17 poster presenters and 31 oral presenters.

Poster presentations took place in a pre-recorded video style and the oral sessions were hosted live via Zoom. You can watch all the poster videos and recordings for the oral sessions here. Each presentation was scored by two judges from the same field of research.

Participants were able to gain valuable feedback from these judges before presenting their research at an actual conference. It was stiff competition amongst all presenters. Following are the winners for each of these sessions.

Of the many presentations were the following by two graduate students affiliated with the College of Computing.

Simulating the Spread of Infectious Diseases
Meara Pellar-Kosbar, Data Science

This simulation is designed to show how a fictional viral illness could spread among people in a virtual room. Over the course of the virtual simulation, a number of automatic simulated people called subjects will move about an adjustable virtual grid. During this time, subjects will come into contact with each other and with item cells in the virtual room. Subjects will be exposed to this fictional virus via contact with other subjects, items, and via the air when within a certain distance of a contagious subject. The viral counts of each subject will be tracked and shown as the simulation runs, showing how the actions of the subjects’ affects their viral counts.

Cultural Competence Effects of Repeated Implicit Bias Training
Karen Colbert, Social Sciences

Karen Colbert is a PhD student in the Computational Sciences and Engineering department.

Abstract: Diversity training literature suggests that mandatory and recurrent sessions should maximize training efficacy, but research has primarily focused on single, brief training sessions that are often voluntary. Michigan Tech is one of few universities to implement required and repeated diversity training for all faculty who serve on search, tenure, and promotion committees. The goal of this study is to evaluate the training’s effectiveness, as well as to fill the gap in research on mandatory recurring diversity training. To do this, we anonymously surveyed faculty members on their knowledge, attitudes, and skills related to content from the Diversity Literacy program and scored responses to create a single composite score for each participant. We hypothesized that composite Cultural Competency Score (CCS) would be higher for faculty who 1) have taken more refresher trainings, and 2) completed training more recently. This study included 130 total respondents (large sample), 69 of whom provided their Diversity Literacy completion information anonymously through Human Resources (small sample). Composite CCS did not differ significantly by frequency of training, H(2)=3.78, p=.151. CCS did differ significantly by years since last training, F(2,63)=4.436, p=.016. Results from both large and small groups showed no statistical significant relationship between CCS and faculty committee service. CCS was negatively correlated with years employed at Tech in both the large (r=-0.363, p=0.002) and small (r = -0.258, p=0.01) samples. This relationship between low CCS and longer employment at Tech may additionally be related to the Diversity Literacy program’s implementation in 2010. Qualitative responses were also collected regarding training material that faculty found most memorable (N=102) and most confident to put into practice (N=93).

View all the Research Colloquium abstracts here.

Cyber Forum With MTU Army ROTC

by Major Daniel F. Gwosch, Professor of Military Science

Are you interested in a DoD career in Cyber Security after Michigan Tech? Join the Arctic Warrior Cadets and learn about DoD Cyber from a panel of subject matter experts.  The presentation will be held at 1 p.m. tomorrow (April 9).

Presenting are:

  • Colonel Silas Calhoun (US Army, Cyber)
  • 1LT Lisa Hozey (Army Reserve, Cyber)
  •  CPT Scott Ardis (Army Reserve, Cyber)
  • Capt. Chris Jamison (USAF, Cyber)

This event will be a virtual event and is intended to provide information on current Cyber activities being conducted by US Army Cyber and the Joint DoD community of experts

Weihua Zhou, CC, to Present Lecture April 8

by Mechanical Engineering-Engineering Mechanics

The net virtual graduate Seminar Speaker will be held at 4 p.m. tomorrow (April 8) via Zoom.

Weihua Zhou (CC) will present “Artificial intelligence for medical image analysis: our approaches. “

Zhou, is an assistant professor of applied computing at Michigan Tech. He has been doing research on medical imaging and informatics since 2008. Attend virtually.

View the University Events Calendar, which includes a registration link and additional information about Dr. Zhou and his research.

Human Factors Grad Student Wins Hackathon, Cites Pandemic for Opportunity

One Michigan Tech graduate student found a silver lining of the pandemic-driven shift to remote study: the ability to gain experiences previously prevented by distance. And “gained experience” is an understatement, as Brooke Poyhonen recently was on the winning team in the Texas Health Care Challenge, an online hackathon that sought solutions to problems in health care.

The winning project, from Team WatsonCares, focused on women’s postpartum health and proposed a suite of services for new mothers:

  • A natural-language chatbot, powered by IBM Watson’s AI, to answer patient questions about both mental and physical health
  • A community feature allowing postpartum women to support one another
  • Deep informational and support resources

Poyhonen said the team came together because after hearing initial “problem pitches,” in which existing teams outline the projects they want to tackle, some were uninterested in the originally pitched ideas. So they created their own team. “Ideally, we want the chatbot to be personalized to the patient’s history,” she said. “And we wanted to create a safe space for women to talk to each other.”

Poyhonen will complete her accelerated M.S. in applied cognitive science and human factors this spring. She earned a B.S. in psychology from Michigan Tech in 2020. Both degrees are offered by the Cognitive and Learning Sciences department in the University’s College of Sciences and Arts.

The Texas challenge is normally on-site only, and she appreciated the chance to participate and urges other students to seek out similar opportunities. “It was great to meet people from around the country and work with a team on a real-world goal,” Poyhonen said. “It’s a great networking opportunity and gives me a concrete project to discuss in interviews. It was just so rewarding.”

The team’s prize included $120,000 in credits toward IBM products and services, a smaller cash award, and temporary office space with a Dallas venture capital firm. Poyhonen is working with team members on the project as a start-up while also pursuing other opportunities.

She got her first taste of hackathons over the winter in the Work Related Musculoskeletal Disorders Grand Challenge, run by the American Registry for Diagnostic Medical Sonography. The challenge was to help the up to 90% of sonographers who develop disorders such as occupational overuse syndrome. Her team, which included a sonography mentor, an engineering student and two sonography students, created the Air Buddy, a device to help sonographers apply pressure to a probe with reduced physical stress. Poyhonen’s team won first place after judges deliberated for an entire week after the month-long window for teams to work on the problem.

Kelly Steelman, interim chair of the Cognitive and Learning Sciences Department, said hackathons are great supplements to classroom experiences. “I commend Brooke for taking the initiative to seek out design challenges as a way to build her portfolio of experiences and hone the skills she’s learned in our program,” Steelman said. “Brooke took advantage of opportunities through outside organizations, but we also offer hack-a-thons right here on campus.”

She said Husky Innovate is currently planning their inaugural hack-a-thon as part of an initiative to grow the human-centered design community at Michigan Tech. For more information on this, contact Lisa Casper.

Dr. Steelman is a member of the Human-Centered Computing research group of the Institute of Computing and Cybersystems (ICC).

Michigan Tech’s graduate program in Applied Cognitive Science and Human Factors teaches students how to apply principles of psychology to the design and evaluation of human-technological systems. Steelman said Beth Veinott, director of the Center for Human-Centered Computing, frequently reinforces for students that, “If you get the psychology right first, you design the right system, it is easier to train, and people are more likely to adopt it.”