Category: ME-EM

Sun Named to Lou and Herbert Wacker Professorship in Mechanical Engineering

by Office of the Provost & Senior VP for Academic Affairs

Ye “Sarah” Sun (ME-EM) has accepted the Lou and Herbert Wacker Professorship in Mechanical Engineering, which was created to retain and attract high-quality faculty who are at the top of their profession, can excite students to think beyond the classroom material, and knows how to integrate their research into the classroom.

Sun was chosen for this position as she is recognized as a rising star and outstanding researcher in the area of wearable sensors, systems, and robotics and a respected member of the smart health community.

In recognition of her innovative research in wearable sensors, Sun’s NSF CAREER award was selected for presentation to congressional offices in April 2019.

Sun is the director of the Institute of Computing and Cybersystems’s Center for Cyber-Physical Systems.

Among her research honors is the prestigious National Science Foundation (NSF) CAREER Research Award on “System-on-Cloth: A Cloud Manufacturing Framework for Embroidered Wearable Electronics.”

Sun will use this recognition and support to enhance her research in wearable and soft robotics. Her goal is to develop flexible textile robotics by leveraging the physical understanding and modeling of textile materials and dynamics and the recent advances of morphological computing.

Textile robotics are not only able to enhance human capabilities via wearable design but also achieve autonomous locomotion. The controllable structures of textiles directly provide a unified platform that is capable of integrating sensing and actuating into textile robotics itself. The positioning support will be used to recruit graduate students and to set up the manufacturing platform.


Sarah Sun to Present ME-EM Graduate Seminar Dec. 3, 4 pm

by Mechanical Engineering – Engineering Mechanics

The next virtual Graduate Seminar Speaker will be held at 4 p.m. tomorrow (Dec. 3) via Zoom. Sarah Sun (ME-EM) will present “E-Logo: Embroidered Wearable Electronics.”

Sun is an associate professor in the Department of Mechanical Engineering-Engineering Mechanics and an affiliated associate professor in the Department of Biomedical Engineering at Michigan Tech since 2014.


Research Excellence Fund Awards Announced

by Vice President for Research Office

The Vice President for Research Office announces the Fall 2020 REF awards. Thanks to the individual REF reviewers and the REF review panelists, as well as the deans and department chairs, for their time spent on this important internal research award process.

Research Seed Grants:

  • Sajjad Bigham, Mechanical Engineering-Engineering Mechanics
  • Bo Chen, Computer Science
  • Daniel Dowden, Civil and Environmental Engineering
  • Ana Dyreson, Mechanical Engineering-Engineering Mechanics
  • Hassan Masoud, Mechanical Engineering-Engineering Mechanics
  • Xinyu Ye, Civil and Environmental Engineering

Sangyoon Han to Present Chemistry Seminar this Friday, Nov. 13, at 3 pm

A Chemistry Seminar will be presented Friday, September 13, 2020, at 3:00 p.m., via online meeting. View the Events Calendar entry and find the meeting link here.

Dr. Sangyoon Han will present his lecture, “Toward Discovery of the Initial Stiffness-Sensing Mechanism by Adherent Cells.” Han is an Assistant Professor in Biomedical Engineering, an Affiliate Assistant Professor in Mechanical Engineering-Engineering Mechanics, and advisor for the Korean Student Association. Han is a member of the ICC’s Center for Data Science.

Lecture Abstract

The stiffness of the extracellular matrix (ECM) determines nearly every aspect of cellular/tissue development and contributes to metastasis of cancer. Adherent cells’ stiffness-sensing of the ECM triggers intracellular signaling that can affect proliferation, differentiation, and migration of the cells. However, biomechanical and molecular mechanisms behind this stiffness sensing have been largely unclear. One critical early event during the stiff-sensing is believed to be a force transmission through integrin-based adhesions, changing the molecular conformation of the molecules comprising the adhesions that link the ECM to the cytoskeleton. To understand this force transmission, my lab develops experimental and computational techniques, which include soft-gel-based substrates, live-cell imaging, computer-vision-based analysis, and inverse mechanics, etc. In this talk, I will talk about how we use soft-gel to quantify the spatial distribution of mechanical force transmitted by a cell, how we use light microscopy and computer vision to analyze the focal adhesions, and how these techniques are related to stiffness sensing. In particular, I will show you new data where cells can transmit different levels of traction forces in response to varying stiffness, even when the activity of the major motor protein, myosin, is inhibited. At the end of the talk, potential molecules responsible for the differential transmission will be discussed. 

Researcher Bio

Sangyoon Han received his Ph.D. in Mechanical Engineering at the University of Washington (UW) in 2012 and did postdoctoral training with Dr. Gaudenz Danuser in the Department of Cell Biology at Harvard Medical School and the University of Texas Southwestern Medical Center for five years until 2017. Before the Ph.D., he received B.S and M.S. degree from Mechanical Engineering at Seoul National University, Seoul, Korea in 2002 and 2004.

He joined Michigan Tech, Biomedical Engineering from fall 2017, and started Mechanobiology Laboratory. His lab’s interests are in understanding the dynamic nature of force modulation occurring across cell adhesions and cytoskeleton that regulate cells’ environmental sensing. His lab develops a minimally-perturbing experimental approach and computational techniques, including soft-gel fabrication, nano-mechanical tools, live-cell microscopy, and image data modeling, to capture the coupling between force modulation and cellular molecular dynamics.


Sajjad Bigham Named Quarterfinalist in DOE Solar Desalination Prize Contest

Assistant Professor Sajjad Bigham, Mechanical Engineering-Engineering Mechanics, and his team have advanced to the second phase of the American-Made Challenges Solar Desalination Prize contest for his project, “Sorption-Based ZLD Technology.”

The contest is sponsored by the Solar Energy Technologies Office (SETO) at the U.S. Department of Energy (DOE).

Bigham is one of 19 quarterfinalists. Each receives a $50,000 cash prize.

Selected from among 162 applicants, the quarterfinalists now advance to the second, Teaming phase of the competition, for which each research team will develop and successfully validate an operational prototype of their solar-thermal desalination system.

Bigham is a heat transfer and energy systems specialist studying the scientific and engineering challenges at the intersection of thermal-fluid, material and energy sciences.

His Michigan Tech research lab, Energy-X, is focused on understanding the fundamental transport science of important energy carriers at micro, nano and molecular scales. He is a member of the Institute of Computing and Cybersystems’ Center for Cyber-Physical Systems.

Project Title: Sorption-Based ZLD Technology
Location: Houghton, MI
Project Summary: State-of-the-art zero liquid discharge (ZLD) technologies are currently bound with either intensive use of high-grade electrical energy such as mechanical vapor compressors or high capital cost with environmental concerns such as evaporation ponds. A team of researchers from Michigan Technological University, Oak Ridge National Laboratory, and the company Artic Solar proposes to address these issues by an innovative desiccant-based ZLD desalination system in which a multiple-effect distillation (MED) unit is uniquely embedded at the heart of an absorption-desorption system. The technology employs an absorption-based thermally-driven vapor compressor concept to pressurize the vaporized brine of the ZLD crystallizer unit from a low-pressure absorber to a high-pressure desorber module. This eliminates the need for energy-intensive electrically-driven mechanical vapor compressors currently employed in advanced brine crystallizers.

Timely updates about the American-Made Challenges Solar Desalination Prize are posted here.

The American-Made Challenges are a series of prize competitions that incentivize the nation’s entrepreneurs to strengthen American leadership in energy innovation and domestic manufacturing.

The Solar Desalination Prize is a multi-stage prize competition intended to accelerate the development of low-cost desalination systems that use solar-thermal power to produce clean drinking water from saltwater. It is intended to help achieve the goals of the Water Security Grand Challenge.

Each stage of the competition has increasing prize amounts, totaling millions of dollars.


ICC, ME-EM’s Bo Chen Named ASME Fellow

Bo Chen, the Michigan Tech Dave House Professor of Mechanical Engineering and Electrical Engineering, has received the designation of Fellow from the American Society of Mechanical Engineers (ASME).

The Fellow level of membership is conferred to worthy candidates by the ASME Committee of Past Presidents to recognize their outstanding engineering achievements.

Nominated by ASME Members and Fellows, an ASME Member nominee must have 10 or more years of active practice, and at least 10 years of active corporate membership in ASME.

Chen is the director of Michigan Tech’s Intelligent Mechatronics and Embedded Systems (IMES) Laboratory. She has a dual faculty appointment in the Department of Electrical and Computer Engineering. Visit Chen’s faculty webpage here.

A member of the Institute of Computing and Cybersystems (ICC)’s Center for Cyber-Physical Systems (CPS), Bo Chen conducts interdisciplinary research in the areas of mechatronics and embedded systems, agent technology, connected and autonomous vehicles, electric vehicle-smart grid integration, cyber-physical systems and automation.

William Predebon, chair of the the Department of Mechanical Engineering-Engineering Mechanics said, “Dr. Chen has made major contributions in her field of embedded systems with application to hybrid-electric and electric autonomous systems. Her course in Model-based Embedded Control System Design is regularly in high demand by not only ME students but also EE students. This is a testament to the importance of the topic and her teaching ability.”

ASME helps the global engineering community develop solutions to real world challenges. Founded in 1880 as the American Society of Mechanical Engineers, ASME is a not-for-profit professional organization that enables collaboration, knowledge sharing and skill development across all engineering disciplines, while promoting the vital role of the engineer in society. ASME codes and standards, publications, conferences, continuing education and professional development programs provide a foundation for advancing technical knowledge and a safer world.


ROTC Cybersecurity Training for Tomorrow’s Officers

The U.S. Department of Defense, Office of Naval Research, has awarded Michigan Tech faculty researchers a $249,000 grant that supports the creation of an ROTC undergraduate science and engineering research program at Michigan Tech. The primary goal of the program is to supply prepared cadets to all military branches to serve as officers in Cyber commands.

The principal investigator (PI) of the project is Andrew Barnard, Mechanical Engineering-Engineering Mechanics. Co-PIs are Timothy Havens, College of Computing; Laura Brown , Computer Science, and Yu Cai, Applied Computing. The title of the project is, “Defending the Nation’s Digital Frontier: Cybersecurity Training for Tomorrow’s Officers.”

The curriculum will be developed over the summer, and instruction associated with the award will begin in the fall 2020 semester. Cadets interested in joining the new program are urged to contact Andrew Barnard.

Initially, the program will focus on topics in cybersecurity, machine learning and artificial intelligence, data science, and remote sensing systems, all critical to the The Naval Science and Technology (S&T) Strategic Plan and the Navy’s Force of the Future, and with equal relevance in all branches of the armed forces.

The plan of work focuses on on engaging ROTC students in current and on-going Cyber research, and supports recruitment of young ROTC engineers and scientists to serve in Navy cybersecurity and cyber-systems commands. The program will compel cadets to seek positions within Cyber commands upon graduation, or pursue graduate research in Cyber fields.

“Our approach develops paid, research-based instruction for ROTC students through the existing Michigan Tech Strategic Education Naval Systems Experiences (SENSE) program,” said principal investigator Andrew Barnard, “ROTC students will receive one academic year of instruction in four Cyber domains: cybersecurity, machine learning and artificial intelligence (ML/AI), data science, and remote sensing systems.”

Barnard says the cohort-based program will enrich student learning through deep shared research experiences. He says the program will be designed with flexibility and agility in mind to quickly adapt to new and emerging Navy science and technology needs in the Cyber domain. 

Placement of officers in Cyber commands is of critical long-term importance to the Navy (and other DoD branches) in maintaining technological superiority, says the award abstract, noting that technological superiority directly influences the capability and safety of the warfighter.

Also closely involved in the project are Michigan Tech Air Force and Army ROTC officers Lt. Col. John O’Kane and LTC Christian Thompson, respectively.

“Unfortunately, many ROTC cadets are either unaware of Cyber related careers, or are unprepared for problems facing Cyber officers,” said Lt. Col. O’Kane. “This proposal aims to provide a steady flow of highly motivated and trained uniformed officers to the armed-services, capable of supporting the warfighter on day-one.”

Andrew Barnard is director of Michigan Tech’s Great Lakes Research Center, an associate professor of Mechanical Engineering-Engineering Mechanics, and faculty advisor to the SENSE Enterprise.

Tim Havens is director of the Institute of Computing and Cybersystems, associate dean for research, College of Computing, and the William and Gloria Jackson Associate Professor of Computer Systems.

Laura Brown is an associate professor, Computer Science, director of the Data Science graduate program, and a member of the ICC’s Center for Data Sciences.

Yu Cai is a professor of Applied Computing, an affiliated professor of Computational Science and Engineering, a member of the ICC’s Center for Cybersecurity, and faculty advisor for the Red Team, which competes in the National Cyber League (NCL).

The Great Lakes Research Center (GLRC) provides state-of-the-art laboratories to support research on a broad array of topics. Faculty members from many departments across Michigan Technological University’s campus collaborate on interdisciplinary research, ranging from air–water interactions to biogeochemistry to food web relationships.

The Army and Air Force have active ROTC programs on Michigan Tech’s campus.

The Office of Naval Research (ONR) coordinates, executes, and promotes the science and technology programs of the United States Navy and Marine Corps.


Development of a Low-Cost Marine Mobile Networking Infrastructure

Zhaohui Wang

Researchers:

Zhaohui Wang, Assistant Professor, ECE

Nina Mahmoudian, Adjunct Professor, ME-EM

Sponsor: ECE alumnus Paul Williams ’61
Amount of Support: $50,000
Duration of Support: 1 year

Underwater acoustic communication has been in use for decades, but primarily for military applications. In recent years, private sectors such as environmental monitoring, off-shore oil and gas exploration, and aquaculture have become interested in its possibilities.

But existing research about underwater acoustic communication networks often relies on human-operated surface ships or cost-prohibitive autonomous underwater vehicles (AUVs). And these cost barriers can limit academic research evaluation to computer simulations, constraining research innovation towards practical applications.

Recognizing the above gap, Michigan Tech Institute of Computing and Cybersystems (ICC) researchers Zhaohui Wang, assistant professor, Electrical and Computer Engineering, and Nina Mahmoudian, adjunct professor, Mechanical Engineering-Engineering Mechanics,  saw an opportunity to combine their areas of expertise: for Wang, underwater acoustic communications, for Mahmoudian, low-cost marine robotics and AUVs.

Also part of the research team were PhD student Li Wei, Electrical and Computer Engineering, and post-doc research engineer Barzin Moridian, Mechanical Engineering-Engineering Mechanics. The team also collaborated with scientists at Michigan Tech’s Great Lakes Research Center.

With a $50K seed grant from Electrical and Computer Engineering alumnus Paul Williams ’61, the team took the research beneath the surface to develop a low-cost marine mobile infrastructure and investigate the challenges and possible solutions in engineering a leading-edge AUV communication network.

They broke it down into three areas: the development of low-cost, high-modularity autonomous surface vehicles (ASVs), each equipped with a collection of sensors and serving as surrogates for AUVs; equipping each ASV with an acoustic modem and implementing communication and networking protocols to facilitate underwater communication among the vessels; and conducting field experiments to collect data about the fundamental challenges in mobile acoustic communications and networking among AUVs.

The team’s outcomes included two low-cost, autonomous, on-the-water boats; an experimental data set, data analysis, and preliminary results; a technical paper presented at the 2018 IEEE OES Autonomous Underwater Vehicle Symposium; and a marine mobile wireless networking infrastructure for use in continued research.

Just half of their seed grant has been used, and this summer Wang and Mahmoudian will work to improve the boats and the communications system, and conduct more field research. In addition, they are planning to write two National Science Foundation proposals to take their research even further.

View a summary of the research here.

Seed grant donor Paul Williams is also the benefactor of the Paul and Susan Williams Center for Computer Systems Research, located on the fifth floor of the Electrical Energy Resources Center. The 10,000-square-foot, high-performance computing center—the home of the ICC—was established to foster close collaboration among researchers across multiple disciplines at Michigan Tech

The ICC, founded in 2015, promotes collaborative, cross-disciplinary research and learning experiences in the areas of cyber-physical systems, cybersecurity, data sciences, human-centered computing, and scalable architectures and systems. It provides faculty and students the opportunity to work across organizational boundaries to create an environment that mirrors contemporary technological innovation.

Five research centers comprise the ICC. The ICC’s 50 members, who represent 15 academic units at Michigan Tech, are collaborating to conduct impactful research, make valuable contributions in the field of computing, and solve problems of critical national importance.

Visit the ICC website at mtu.edu/icc. Contact the ICC at icc-contact@mtu.edu or 906-487-2518.

Download a summary of the research.