Category: ICC

Faculty / Researcher Profile: Weihua Zhou

Faculty/Researcher Profile: Weihua Zhou, Multi-Disciplinary Digital Healthcare Solutions

By Karen Johnson, Communications Director, College of Computing and Institute of Computing and Cybersystems

How can the cost-effectiveness of healthcare be improved, especially for complicated chronic diseases? This is the overarching question Dr. Weihua Zhou is seeking to answer with his research. The multi-disciplinary solutions he is investigating merge the fields of medical imaging and informatics, computer vision, and machine learning. 

An assistant professor in Michigan Tech’s Health Informatics program, and an affiliated associate professor in the Biomedical Engineering department, Zhou is working with students on a number of research projects in Michigan Tech’s Medical Imaging and Informatics Lab, which he directs. He is a member of the Institute of Computing and Cybersystems’s Center for Data Science.

Zhou says his research is driven by clinical significance, and he is especially interested in developing practical solutions to improve the cost-effectiveness of treating complicated chronic diseases, such as coronary artery disease, heart failure and senile dementia. 

He is excited about his career, his international research, and his work at Michigan Tech. “We have a very productive team, including dedicated Ph.D. students, self-motivated graduate and undergraduate students, and a lot of experienced clinical and technical collaborators,” he says of his colleagues and collaborators at Michigan Tech and around the world.

Zhou feels that he can be dedicated to both his research and teaching at Michigan Tech. “I joined the Health Informatics program at Michigan Tech, both because health informatics is my research focus, and because Michigan Tech’s leading reputation among engineering schools opens opportunities to find new and respected technical collaborators. 

Zhou often calls himself a salesman. “I sell techniques to our clinical collaborators and ask them to design the projects with me, provide the patient data, and test our tools,” he explains. “I also sell my ideas about clinical problems to technical collaborators and ask them to work with us to solve the important clinical problems.”

And when he communicates with his Ph.D. students, “sometimes I also consider them as my buyers and let them appreciate my ideas so that they can be really inspired.”

Primary Research

Zhou identifies two of his research projects of as primary. 

“This first is exploring image-guided approaches to improving the treatment of heart failure, which has been supported by AHA grants, and is now being supported by a new faculty startup grant,” Zhou says. “The second main project is seeking to employ machine learning to improve the risk stratification for osteoporosis, which is supported by a National Institutes of Health (NIH) subcontract award from Tulane University.”

On the NIH grant, awarded in December 2019, Zhou is working with internationally renowned researcher and educator Dr. Hong-Wen Deng, an endowed chair and professor in the School of Public Health and Tropical Diseases at Tulane University, New Orleans, La. Zhou and Deng are studying trans-omics integration of multi-omics studies for male osteoporosis.

Zhou is also co-PI with Jinshan Tang, professor of Applied Computing at Michigan Tech, on a Portage Health Foundation Infrastructure Enhancement Grants titled, “High Performance Graphics Processing Units.” The project is focused on building big data computing capabilities toward advancing research and education. Several additional proposals are under review and revision. Zhou’s past research support includes an American Heart Association award, which studied a new image-guided approach for cardiac resynchronization therapy.

Teaching and Mentoring

Zhou, who started at Michigan Tech in fall 2019, instructed Introduction to Health Informatics in the fall semester, and Applied Artificial Intelligence in Health this spring.  He says that in the Medical Informatics program, the subjects he teaches are very practical.

“I believe the following strategies are very important and I practice them in my classes every day: 1) Make the class interactive; 2) Make the assignments and projects practical; 3) Emphasize the learning process; and 4) Keep the teaching materials up to date,” Zhou says.

Zhou supervises two Ph.D. candidates in the Department of Applied Computing, and a Health Informatics master’s student.

Applied Computing Ph.D. candidate Zhuo He’s primary research project concerns information fusion between electrical signal propagation and mechanical motion to improve the treatment of heart failure. Ph.D. candidate Chen Zhao’s primary research concerns using image fusion and computer vision to improve interventional cardiology. And Zhou’s Health Informatics master’s student, Rukayat Adeosun, is studying nuclear image-guided approaches to improving cardiac resynchronization therapy.

Education and Post-Doc

Zhou was awarded his Ph.D. in computer engineering by the Department of Electrical and Computer Engineering at Southern Illinois University Carbondale in 2012; his dissertation is titled, “Image reconstruction and imaging configuration optimization with a novel nanotechnology enabled breast tomosynthesis multi-beam X-ray system.”

Following, Zhou was a post-doctoral researcher in the Department of Radiology and Imaging Sciences at Emory University, Atlanta, Georgia, then he was appointed a Nina Bell Suggs Endowed Professor at University of Southern Mississippi, where he was a tenure-track assistant professor. Zhou also completed an MSc.-Ph.D. in computer science (2007) and a B.E. in computer science and technology (2003), both at Wuhan University, China.

Achievement

Zhou received the USM College of Arts and Sciences Scholarly Research Award in March 2019, participated in the AHA Research Leaders Academy of the American Heart Association in September 2017 and August 2018, and received the USM Butch Oustalet Distinguished Professorship Research Award in April 2018.

University and Professional Service

Zhou serves on Michigan Tech’s Review Committee for Graduate Dean’s Awards Advisory Committee, and in October 2019 he served on the Review Committee for Research Excellence Fund (REF) – Research Seed Grants (RS).

He was an invited speaker at the Machine Learning in SPECT MPI Applications session at the Annual Scientific Session of the American Society of Nuclear Cardiology in Washington, D.C., in 2009.

Zhou is a member of the American Heart Association (AHA) and the American Society of Nuclear Cardiology (ASNC).

Peer-Review

Since Zhou joined Michigan Tech in August 2019, he has published five scholarly papers, in Journal of Nuclear Cardiology and the IEEE Journal of Translational Engineering in Health and Medicine. Two additional articles are under revision with Journal of Nuclear Cardiology and the journal Medical Physics, and one is under review by the Medical Image Computing and Computer Assisted Intervention (MICCAI) Conference 2020.

Since 2007, he has published more than 80 peer-reviewed journal and conference papers and book chapters in publications including JACC: Journal of The American College of Cardiology: Cardiovascular Imaging, Journal of Nuclear Cardiology, and IEEE Journal of Translational Engineering in Health and Medicine.

Zhou is a translator of featured papers and abstracts for the Journal of Nuclear Cardiology, and a paper reviewer for the Journal of Nuclear Cardiology, JACC: Journal of The American College of Cardiology, and JACC: Cardiovascular Imaging. He is a reviewer for American Heart Association data science grants. 

Commercial Success

Zhou holds a number of patents and invention disclosures, including new methods to 1) diagnose apical hypertrophic cardiomyopathy from gated single-photon emission computed tomography (SPECT), and 2) measure right-ventricular and interventricular mechanical dyssynchrony from gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI); and 3) the integration of fluoroscopy venogram and myocardial perfusion SPECT image with left-ventricular contraction sequence and scar distribution to guide the real-time surgery of cardiac resynchronization therapy. 

He and his colleagues have developed a number of software tools, some of which are being used in hospitals for research purposes, and he believes that the tools can be successfully validated and become commercially available. For example, Zhou’s nuclear image-guided software toolkit to improve cardiac resynchronization therapy is being validated by a large clinical trial. 

A personal note.

Zhou loves independent thinking, facts and exact numbers, and he values persistence, all of which express themselves in his teaching and research, and his life.

Follow Weihua Zhou on Twitter: @LabMiil

The College of Computing’s Department of Applied Computing officially starts on July 1, 2020. The new department will replace the CMH Division.


ROTC Cybersecurity Training for Tomorrow’s Officers

The U.S. Department of Defense, Office of Naval Research, has awarded Michigan Tech faculty researchers a $249,000 grant that supports the creation of an ROTC undergraduate science and engineering research program at Michigan Tech. The primary goal of the program is to supply prepared cadets to all military branches to serve as officers in Cyber commands.

The principal investigator (PI) of the project is Andrew Barnard, Mechanical Engineering-Engineering Mechanics. Co-PIs are Timothy Havens, College of Computing; Laura Brown , Computer Science, and Yu Cai, Applied Computing. The title of the project is, “Defending the Nation’s Digital Frontier: Cybersecurity Training for Tomorrow’s Officers.”

The curriculum will be developed over the summer, and instruction associated with the award will begin in the fall 2020 semester. Cadets interested in joining the new program are urged to contact Andrew Barnard.

Initially, the program will focus on topics in cybersecurity, machine learning and artificial intelligence, data science, and remote sensing systems, all critical to the The Naval Science and Technology (S&T) Strategic Plan and the Navy’s Force of the Future, and with equal relevance in all branches of the armed forces.

The plan of work focuses on on engaging ROTC students in current and on-going Cyber research, and supports recruitment of young ROTC engineers and scientists to serve in Navy cybersecurity and cyber-systems commands. The program will compel cadets to seek positions within Cyber commands upon graduation, or pursue graduate research in Cyber fields.

“Our approach develops paid, research-based instruction for ROTC students through the existing Michigan Tech Strategic Education Naval Systems Experiences (SENSE) program,” said principal investigator Andrew Barnard, “ROTC students will receive one academic year of instruction in four Cyber domains: cybersecurity, machine learning and artificial intelligence (ML/AI), data science, and remote sensing systems.”

Barnard says the cohort-based program will enrich student learning through deep shared research experiences. He says the program will be designed with flexibility and agility in mind to quickly adapt to new and emerging Navy science and technology needs in the Cyber domain. 

Placement of officers in Cyber commands is of critical long-term importance to the Navy (and other DoD branches) in maintaining technological superiority, says the award abstract, noting that technological superiority directly influences the capability and safety of the warfighter.

Also closely involved in the project are Michigan Tech Air Force and Army ROTC officers Lt. Col. John O’Kane and LTC Christian Thompson, respectively.

“Unfortunately, many ROTC cadets are either unaware of Cyber related careers, or are unprepared for problems facing Cyber officers,” said Lt. Col. O’Kane. “This proposal aims to provide a steady flow of highly motivated and trained uniformed officers to the armed-services, capable of supporting the warfighter on day-one.”

Andrew Barnard is director of Michigan Tech’s Great Lakes Research Center, an associate professor of Mechanical Engineering-Engineering Mechanics, and faculty advisor to the SENSE Enterprise.

Tim Havens is director of the Institute of Computing and Cybersystems, associate dean for research, College of Computing, and the William and Gloria Jackson Associate Professor of Computer Systems.

Laura Brown is an associate professor, Computer Science, director of the Data Science graduate program, and a member of the ICC’s Center for Data Sciences.

Yu Cai is a professor of Applied Computing, an affiliated professor of Computational Science and Engineering, a member of the ICC’s Center for Cybersecurity, and faculty advisor for the Red Team, which competes in the National Cyber League (NCL).

The Great Lakes Research Center (GLRC) provides state-of-the-art laboratories to support research on a broad array of topics. Faculty members from many departments across Michigan Technological University’s campus collaborate on interdisciplinary research, ranging from air–water interactions to biogeochemistry to food web relationships.

The Army and Air Force have active ROTC programs on Michigan Tech’s campus.

The Office of Naval Research (ONR) coordinates, executes, and promotes the science and technology programs of the United States Navy and Marine Corps.


ICC Seeks Assistant Director for Research Development

The Michigan Tech Institute of Computing and Cybersytems (ICC) has announced a search for an Assistant Director, Research Development, an administrative position.

The new position will support ICC researchers as they collectively work to create and implement activities to grow and support ICC-affiliated research and graduate programs.

By collaborating with, coaching/mentoring, and supporting the work of researchers at all levels, this individual will be integral to the business development and outreach of the ICC. The successful candidate will provide pre- and post-award support to institute members, assist with the financial processes for the institute, and help lead daily administrative functions.

View the complete position description here.


University Research: A Multifaceted Endeavor

University Research: A Multifaceted Endeavor

The following commentary is part five of a six-part series featuring updates, national trends and personal perspectives from the University’s leadership team regarding the future of higher education and Michigan Tech. All questions or comments may be directed to the author of the article (ddreed@mtu.edu).    

Michigan Tech receives most of its research funding from the federal government. The federal research environment is challenging, with low and even declining funding rates, regulatory changes and the evolving federal budget climate, but Michigan Tech has managed to hold its own. Even in this difficult environment, in the last fiscal year Michigan Tech researchers achieved all-time highs in new sponsored awards ($63.5 million) and in research expenditures ($80.4 million). This was only possible through the outstanding creativity of our faculty and staff, a concentration on the development of outstanding proposals and a focus on areas where we can be recognized as one of the world’s leading institutions.

The campus developed these focus areas through the Tech Forward process last academic year. Several of the initiative areas include a significant research component. In particular, the Institute for Computing and Cybersystems (ICC, Tim Havens, director), the Health Research Institute (HRI, Caryn Heldt, director), and the Institute for Policy, Ethics, and Culture (IPEC, Jennifer Daryl Slack, director) were identified as highly exciting opportunities for future growth.  The Vice President for Research Office (VPR) is working with all three throughout this academic year to develop plans for continuing growth and eventual maturation as vibrant, self-supporting centers of scholarly activity.

Michigan Tech is well-positioned to reach $100 million in annual research expenditures within the next five years. To reach this will require continual work to improve the research environment on campus. There are several such initiatives underway this academic year:

  • Financial Services and Operations has removed the 3.5% annual administrative fee from all IRAD accounts, allowing all of these funds to be used to support and grow our research and graduate programs.

  • Our Shared Facilities were established five years ago. The associate vice president for research development is working with them to review their activities over the last five years and to formulate plans for their continued success and growth over the next five years.

  • Michigan Tech has made significant strides over the last few years in reducing the administrative workload associated with sponsored research activities. According to the Federal Demonstration Partnership’s 2012 and 2018 Faculty Workload Surveys, we have reduced the proportion of investigator’s research time spent on administrative tasks from more than 50% to 43%, below the national average of 44%. Many people in VPR and elsewhere on campus have worked to achieve this significant accomplishment. I think we can all agree, though, that there is still too much effort on administrative work when researcher’s efforts would be better spent on the creative activities involved in research and scholarship.  Thanks very much to all on campus who participated in the survey; the results shed light on a number of areas ripe for further process improvement, and we will prioritize and address them over the next few months and coming years.

  • Lastly, many of you may be aware that a number of cases have emerged nationally where university and other researchers have exhibited egregious behavior that has resulted in federal criminal charges of fraud and abuse. My understanding is that over 1,000 researchers across the country are under investigation. Many of these relate to failure to disclose financial conflicts of interest and also unfunded conflicts of commitment.  We expect there to be new federal requirements to change our disclosure practices at some point. In the meantime, it’s important for all to disclose any commitment and financial conflicts through our internal processes, as well as externally in technical reports and funding applications. When in doubt, the best practice is to disclose.

In closing, I would again like to recognize the outstanding efforts of all members of the University community, including researchers and the personnel who support them, both centrally and in their units, in developing and supporting a vibrant and creative environment. This improves our educational activities and strengthens our ongoing research efforts. Michigan Tech is in a great position with our outstanding strengths in areas of state, national and international significance.  Through progress in the Tech Forward initiatives and continued growth in our research and graduate programs, we will continue to increase our contributions to areas of great societal need.


Weihua Zhou to Present Friday Seminar Talk

Weihua Zhou

The College of Computing (CC) will present a Friday Seminar Talk on November 15, at 3:00 p.m. in Rekhi 214. Featured this week is Weihua Zhou, assistant professor of Health Informatics and member of the ICC’s Center for Data Sciences. He will present his research titled: “Information retrieval and knowledge discovery from cardiovascular images to improve the treatment of heart failure.” Refreshments will be served.

Abstract: More than 5 million Americans live with heart failure, and the annual new incidence is about 670,000. Once diagnosed, around 50% of patients with heart failure will die within 5 years. Cardiac resynchronization therapy (CRT) is a standard treatment for heart failure. However, based on the current guidelines, 30-40% of patients who have CRT do not benefit from CRT. One of Zhou’s research projects is to improve CRT favorable response by information retrieval and knowledge discovery from clinical records and cardiovascular images. By applying statistical analysis, machine learning, and computer vision to his unique CRT patient database, Zhou has made a number of innovations to select appropriate patients and navigate the real-time surgery. His CRT software toolkit is being validated by 17 hospitals in a large prospective clinical trial.


Keith Vertanen Is PI on $225K NSF Grant, “Improving Mobile Device Input for Users Who are Blind or Low Vision”

Keith Virtanen
Keith Vertanen

Keith Vertanen (CS/ICC-HCC) is the principal investigator on a three-year project that has received a $225,663 research and development grant from the National Science Foundation. The project is entitled, “CHS: Small: Collaborative Research: Improving Mobile Device Input for Users Who are Blind or Low Vision.”

Abstract: Smartphones are an essential part of our everyday lives. But for people with visual impairments, basic tasks like composing text messages or browsing the web can be prohibitively slow and difficult. The goal of this project is to develop accessible text entry methods that will enable people with visual impairments to enter text at rates comparable to sighted people. This project will design new algorithms and feedback methods for today’s standard text entry approaches of tapping on individual keys, gesturing across keys, or dictating via speech. The project aims to:  1) help users avoid errors by enabling more accurate input via audio and tactile feedback, 2) help users find errors by providing audio and visual annotation of uncertain portions of the text, and 3) help users correct errors by combining the probabilistic information from the original input, the correction, and approximate information about an error’s location. Improving text entry methods for people who are blind or have low vision will enable them to use their mobile devices more effectively for work and leisure. Thus, this project represents an important step to achieving equity for people with visual impairments.

This project will contribute novel interface designs to the accessibility and human-computer interaction literature. It will advance the state-of-the-art in mobile device accessibility by: 1) studying text entry accessibility for low vision in addition to blind people, 2) studying and developing accessible gesture typing input methods, and 3) studying and developing accessible speech input methods.  This project will produce design guidelines, feedback methods, input techniques, recognition algorithms, user study results, and software prototypes that will guide improvements to research and commercial input systems for users who are blind or low-vision. Further, the project’s work on the error correction and revision process will improve the usability and performance of touchscreen and speech input methods for everyone.


Kuilin Zhang is PI on $567K Federal Railroad Administration Project

Khuilin Zhang

Kuilin Zhang (CEE/MTTI), a member of the ICC Center for Cyber-Physical Systems (CPS), is the primary investigator on a project that has received a $567,230 contract with the Federal Railroad Administration. This project is entitled, “Developing Safe and Efficient Driving and Routing Strategies at Railroad Grade Crossings Based on Highway-Railway Connectivity.” Pasi Lautala (CEE) is the Co-PI on this potential two-year project.


Alex Sergeyev Wins ASEE Best Paper Award

Alex Sergeyev

College of Computing Professor Alex Sergeyev (DataS) presented his research article, “University, Community College and Industry Partnership: Revamping Robotics Education to Meet 21st Century Workforce Needs – NSF Sponsored Project Final Report,” at the 2019 American Society of Engineering Education (ASEE) annual conference, receiving the Best Paper Award in the Engineering Technology Division.

The conference took place June 16-19 in Tampa, Florida.

Co-authors of the publication are S. Kuhl, N. Alaraje, M. Kinney, M. HIghum, and P. Mehandiratta. The paper will be published in the fall issue of the prestigious Journal of Engineering Technology (JET).


ACIA Networking Mixer is Tues., Sept. 24, 4-6 pm

The Alliance for Computing, Information, and Automation (ACIA) and Michigan Tech Career Services invite students to a casual networking mixer with industry employment recruiters on Tuesday, September 24, 2019, from 4:00 to 6:00 p.m., in the Rozsa Center lobby. The event is free and appetizers and refreshments will be served.
Students in the following majors are encouraged to attend: Computer Network and System Administration (CNSA), Computer Engineering, Computer Science, Cybersecurity, Data Sciences, Electrical Engineering, Electrical Engineering Technology (EET), and Software Engineering.
Recruiters interested in hiring Michigan Tech students and graduates in the above majors will be in attendance.

The Alliance for Computing, Information, and Automation (ACIA) at Michigan Technological University is a collaborative effort between the Department of Electrical and Computer Engineering and the College of Computing. The mission of the ACIA is to provide faculty and students the opportunity to work across organizational boundaries to create an environment that is a reflection of contemporary technological innovation. The research arm of the ACIA is the Institute of Computing and Cybersystems (ICC).

Download the event flyer

Recruiters interested in hiring Michigan Tech students and graduates in the above majors will be in attendance. Invited companies include the following:

3M
Amcor (fka Bemis)
ArcelorMittal
Black & Veatch
Caterpillar
CCI Iron Mountain
Continental
Cummins
Denso
Dow
DTE Energy
Fiat Chrysler Automobiles (FCA)
Ford Motor Company
Georgia-Pacific
Gerdau
Greenheck
Kimberly-Clark
Kohler
Leidos
Los Alamos National Lab (LANL)
Marathon Petroleum
Mercury Marine
Michigan Scientific Corporation
Milwaukee Tool
National Air and Space Intelligence Center
Nexteer Automotive
Nucor
Oshkosh Corporation
Palantir
Plexus
Schneider
Superior Technologies
Systems Control

Zhen Liu Co-author of Publication in Cold Regions Science and Technology

Zhen Liu, associate professor of civil and environmental engineering and member of the ICC’s Center for Cyber-Physical Systems (CPS), is co-author of the article, “A multivariate freezing-thawing depth prediction model for spring load restriction,” which was published August 6, 2019, in the journal Cold Regions Science and Technology, which is published by Elsevier. Co-authors of the article are Ting Bio and John Bland.

Abstract: Road damages induced by heavily loaded truck traffic during the spring thaw are a major road distress in cold regions. To minimize these damages, Spring Load Restriction (SLR) is widely applied in the U.S., Canada, and other countries during the early thawing season by controlling the movement of freight-carrying trucks and heavy equipment travel until the thawing ends. Most SLR policies rely on the Freezing Depth (FD) and Thawing Depth (TD), especially the latter one. Therefore, accurate predictions of FD and TD are important to prevent both the extensive damage to the pavement due to the late placement or early removal of SLR and the economic loss of road users due to an unnecessarily long SLR period. Here, we propose a new multivariate model for predicting FD and TD in support of SLR decision-making. The model gives a curving surface of FD and TD in a 3-dimensional space, instead of 2-dimensional in traditional methods, by considering both the freezing and thawing indices in the entire freeze-thaw cycle. For model evaluations, yearly field data measured at five typical sites from 104 sites in Michigan were adopted. The evaluation results showed that the proposed model is accurate in predicting FD and TD for most sites. Compared to the previous TD predictions in the existing study, the TD predictions with the proposed model have been significantly improved. In addition, this study provides field data that have not been reported earlier in the literature and that can be used for validating other prediction models. The reported work is ready for practice for roadways in cold regions to support SLR decision-making.

https://digitalcommons.mtu.edu/michigantech-p/406

Citation: Bao, T., Liu, Z., & Bland, J. (2019). A multivariate freezing-thawing depth prediction model for spring load restriction. Cold Regions Science and Technology, 167.http://dx.doi.org/10.1016/j.coldregions.2019.102856