Category: ICC

Weihua Zhou Receives PHF Seed Grant

The Michigan Tech Vice President for Research office has announced the Spring 2020 Research Excellence Fund (REF) awards. Among the recipients is Assistant Professor Weihua Zhou, Applied Computing/Health Informatics, who received a Portage Health Foundation Research Seed Grant.

Zhou’s areas of expertise include image processing and computer vision, machine learning, medical image analysis, health informatics, and text mining.

Read the full Tech Today announcement here.

Learn more about Michigan Tech REF awards here.


ICC Releases FY19 Annual Report

The Institute of Computing and Cybersystems has released its FY 19 Annual Report, which can be viewed and downloaded on the ICC website.

We had a strong year in 2018-19,” says Timothy Havens, director of the ICC and associate dean for research, College of Computing.

“In FY20, new awards and research expenditures were even stronger, and I look forward to sharing more accomplishments with you in the coming months.”

Tim Havens, ICC Director

Signature Research, Michigan Tech win $1 Million NGA Research Award

Signature Research Inc. has partnered with Michigan Technological University to accomplish a Phase II STTR project sponsored by the National Geospatial-Intelligence Agency. The two-year, $1 Million project is titled, “Algorithms for Look-Down Infrared Target Exploitation-Phase II.” Michigan Tech’s portion of the $1 million contract is $400K.


Principal investigator of the project is Dr. Timothy Havens, director of the Institute of Computing and Cyberystems (ICC) and associate dean of research for the College of Computing. Havens is joined by Signature Research, Inc. (SGR) Program Manager Matt Blanck, who will lead the SGR side of the project.

At Tech, Havens will be assisted in accomplishing the goals of this project by Research Scientist Adam Webb of the Michigan Tech Research Institute (MTRI) and Nicholas Hamilton, a Computer Science Ph.D. candidate.

“This project will identify physics-based novel signatures and data processing techniques to exploit overhead infrared (IR) imagery using machine learning algorithms.”

“The SGR/MTU Team will generate, collect, and label a wide body of data, implement learning algorithms, develop use cases and tests on those data, and perform a comprehensive study to determine ways in which learning algorithms can automate IR imagery recognition tasks.”

Dr. Timothy Havens

And while this effort is focused on overhead IR imagery, Havens says the methods and software developed will have applicability to other sensing modalities, leading to investigations of multi-modal fusion of all-source data.


Signature Research, Inc. (SGR) solutions to DoD and Intelligence Community customers, and specializes in in Signature Phenomenology, Analysis, and Modeling of items of military interest covering the breadth of the electromagnetic spectrum.

The National Geospatial-Intelligence Agency (NGA) is a combat support agency under the United States Department of Defense and a member of the United States Intelligence Community, with the primary mission of collecting, analyzing, and distributing geospatial intelligence in support of national security.

The Institute of Computing and Cybersystems (ICC) promotes research and learning experiences in the areas of cyber-physical systems, cybersecurity, data sciences, human-centered computing, and scalable architectures and systems for the benefit of Michigan Tech and society at large.

The Michigan Tech Research Institute (MTRI) is an innovator in building information from data through the marriage of phenomenological understanding and implementation of mathematically rigorous algorithms. Together with University and other national and international collaborators, MTRI researchers and scientists work to solve critical problems in national security, protecting and evaluating critical infrastructure, bioinformatics, Earth sciences, and environmental processes, according to their website.


Sergeyev, Students Earn ASEE Conference Awards

Professor Aleksandr Segeyev (DataS), Applied Computing, and a group of Michigan Tech students presented two papers at the 2020 American Society for Engineering Education (ASEE) Gulf-Southwest Annual conference, which was conducted online April 23-24, 2020. Both papers received conference awards.

Faculty Paper Award

“Pioneering Approach for Offering the Convergence MS Degree in Mechatronics and Associate Graduate Certificate”
by Sergeyev, Professor and Associate Chair John Irwin (MMET), and Dean Adrienne Minerick (CC).

Student Paper Award

“Efficient Way of Converting outdated Allen Bradley PLC-5 System into Modern ControlLogix 5000 suit”, by Spencer Thompson (pictured), Larry Stambeck, Andy Posa, Sergeyev, and Lecturer Paniz Hazaveh, Applied Computing.

Sergeyev is director of the Michigan Tech Mechatronics Graduate Program and FANUC Certified Industrial Robotics Training Center.

Founded in 1893, the American Society for Engineering Education is a nonprofit organization of individuals and institutions committed to furthering education in engineering and engineering technology.


Recap: Virtual Parallel-in-Time Workshop 2020

The virtual 2020 Parallel-in-Time conference, co-organized by Assistant Professor Benjamin Ong (DataS, Mathematics), took place June 8 to 12, 2020.

The conference consisted of 20 presentations, including one by Mathematics department graduate student, Nadun Dissanayake.

140 participants in more than a dozen countries registered and participated in the conference. View the conference video lectures and program information here.

The primary focus of the Parallel-in-Time Workshop was to disseminate cutting-edge research and facilitate scientific discussions on the field of parallel time integration methods.

Download the conference program booklet here.


Havens, Yazdanparast Publish Article in IEEE Transactions on Big Data

Timothy Havens

An article by Audrey Yazdanparast (2019, PhD, Electrical Engineering) and Dr. Timothy Havens, “Linear Time Community Detection by a Novel Modularity Gain Acceleration in Label Propagation,” has been accepted for publication in the journal, IEEE Transactions on Big Data.

The paper presents an efficient approach for detecting self-similar communities in weighted graphs, with applications in social network analysis, online commodity recommendation systems, user clustering, biology, communications network analysis, etc.

Paper Abstract: Community detection is an important problem in complex network analysis. Among numerous approaches for community detection, label propagation (LP) has attracted a lot of attention. LP selects the optimum community (i.e., label) of a network vertex by optimizing an objective function (e.g., Newman’s modularity) subject to the available labels in the vicinity of the vertex. In this paper, a novel analysis of Newman’s modularity gain with respect to label transitions in graphs is presented. Here, we propose a new form of Newman’s modularity gain calculation that quantifies available label transitions for any LP based community detection.

The proposed approach is called Modularity Gain Acceleration (MGA) and is simplified and divided into two components, the local and global sum-weights. The Local Sum-Weight (LSW) is the component with lower complexity and is calculated for each candidate label transition. The General Sum-Weight (GSW) is more computationally complex, and is calculated only once per each label. GSW is updated by leveraging a simple process for each node-label transition, instead of for all available labels. The MGA approach leads to significant efficiency improvements by reducing time consumption up to 85% relative to the original algorithms with the exact same quality in terms of modularity value which is highly valuable in analyses of big data sets.

Timothy Havens is director of Michigan Tech’s Institute of Computing and Cybersystems (ICC), the associate dean for research for the College of Computing , and the William and Gloria Jackson Associate Professor of Computer Systems.

View the article abstract here.


Ford Mobility Funds AI, Acoustics Research

Imagine if your car could tell you when you are passing by an area occupied by rare migratory birds, or it could listen to roads and bridges to determine when infrastructure repairs need to be made.

A recent gift from Mobility Research at Ford Motor Company recently provided a $149,518 gift to fund research that could make this possible.

Dr. Timothy Havens, Institute of Computing and Cybersystems, and Dr. Andrew Barnard, Great Lakes Research Center, will lead an exploration of how future connected vehicles could use AI and acoustics to detect, classify, and localize external sound events, and evaluate and monitor transportation infrastructure.

The gift will fund a Ph.D. student fellowship, a team of undergraduate students in the SENSE Enterprise, and build and develop a mobile acoustics test bed that will allow students, Havens, and Barnard to conduct cutting-edge research in AI and acoustics.

Michigan Tech would like to thank Chad Esselink (’94, Computer Science) and Tavan Eftekhar at Ford Mobility Research for making this possible.

The Institute of Computing and Cybersystems (ICC) is the research arm of the College of Computing at Michigan Tech. The ICC provides faculty and students the opportunity to work across organizational boundaries to create an environment that is a reflection of contemporary technological innovation. This collaboration allows for a convergence in communication, control and computing that mirrors today’s industry and society.

The Great Lakes Research Center (GLRC) provides state-of-the-art laboratories to support research on a broad array of topics. Faculty members from many departments across Michigan Technological University’s campus collaborate on interdisciplinary research, ranging from air–water interactions to biogeochemistry to food web relationships.


Faculty / Researcher Profile: Weihua Zhou

Faculty/Researcher Profile: Weihua Zhou, Multi-Disciplinary Digital Healthcare Solutions

By Karen Johnson, Communications Director, College of Computing and Institute of Computing and Cybersystems

How can the cost-effectiveness of healthcare be improved, especially for complicated chronic diseases? This is the overarching question Dr. Weihua Zhou is seeking to answer with his research. The multi-disciplinary solutions he is investigating merge the fields of medical imaging and informatics, computer vision, and machine learning. 

An assistant professor in Michigan Tech’s Health Informatics program, and an affiliated associate professor in the Biomedical Engineering department, Zhou is working with students on a number of research projects in Michigan Tech’s Medical Imaging and Informatics Lab, which he directs. He is a member of the Institute of Computing and Cybersystems’s Center for Data Science.

Zhou says his research is driven by clinical significance, and he is especially interested in developing practical solutions to improve the cost-effectiveness of treating complicated chronic diseases, such as coronary artery disease, heart failure and senile dementia. 

He is excited about his career, his international research, and his work at Michigan Tech. “We have a very productive team, including dedicated Ph.D. students, self-motivated graduate and undergraduate students, and a lot of experienced clinical and technical collaborators,” he says of his colleagues and collaborators at Michigan Tech and around the world.

Zhou feels that he can be dedicated to both his research and teaching at Michigan Tech. “I joined the Health Informatics program at Michigan Tech, both because health informatics is my research focus, and because Michigan Tech’s leading reputation among engineering schools opens opportunities to find new and respected technical collaborators. 

Zhou often calls himself a salesman. “I sell techniques to our clinical collaborators and ask them to design the projects with me, provide the patient data, and test our tools,” he explains. “I also sell my ideas about clinical problems to technical collaborators and ask them to work with us to solve the important clinical problems.”

And when he communicates with his Ph.D. students, “sometimes I also consider them as my buyers and let them appreciate my ideas so that they can be really inspired.”

Primary Research

Zhou identifies two of his research projects of as primary. 

“This first is exploring image-guided approaches to improving the treatment of heart failure, which has been supported by AHA grants, and is now being supported by a new faculty startup grant,” Zhou says. “The second main project is seeking to employ machine learning to improve the risk stratification for osteoporosis, which is supported by a National Institutes of Health (NIH) subcontract award from Tulane University.”

On the NIH grant, awarded in December 2019, Zhou is working with internationally renowned researcher and educator Dr. Hong-Wen Deng, an endowed chair and professor in the School of Public Health and Tropical Diseases at Tulane University, New Orleans, La. Zhou and Deng are studying trans-omics integration of multi-omics studies for male osteoporosis.

Zhou is also co-PI with Jinshan Tang, professor of Applied Computing at Michigan Tech, on a Portage Health Foundation Infrastructure Enhancement Grants titled, “High Performance Graphics Processing Units.” The project is focused on building big data computing capabilities toward advancing research and education. Several additional proposals are under review and revision. Zhou’s past research support includes an American Heart Association award, which studied a new image-guided approach for cardiac resynchronization therapy.

Teaching and Mentoring

Zhou, who started at Michigan Tech in fall 2019, instructed Introduction to Health Informatics in the fall semester, and Applied Artificial Intelligence in Health this spring.  He says that in the Medical Informatics program, the subjects he teaches are very practical.

“I believe the following strategies are very important and I practice them in my classes every day: 1) Make the class interactive; 2) Make the assignments and projects practical; 3) Emphasize the learning process; and 4) Keep the teaching materials up to date,” Zhou says.

Zhou supervises two Ph.D. candidates in the Department of Applied Computing, and a Health Informatics master’s student.

Applied Computing Ph.D. candidate Zhuo He’s primary research project concerns information fusion between electrical signal propagation and mechanical motion to improve the treatment of heart failure. Ph.D. candidate Chen Zhao’s primary research concerns using image fusion and computer vision to improve interventional cardiology. And Zhou’s Health Informatics master’s student, Rukayat Adeosun, is studying nuclear image-guided approaches to improving cardiac resynchronization therapy.

Education and Post-Doc

Zhou was awarded his Ph.D. in computer engineering by the Department of Electrical and Computer Engineering at Southern Illinois University Carbondale in 2012; his dissertation is titled, “Image reconstruction and imaging configuration optimization with a novel nanotechnology enabled breast tomosynthesis multi-beam X-ray system.”

Following, Zhou was a post-doctoral researcher in the Department of Radiology and Imaging Sciences at Emory University, Atlanta, Georgia, then he was appointed a Nina Bell Suggs Endowed Professor at University of Southern Mississippi, where he was a tenure-track assistant professor. Zhou also completed an MSc.-Ph.D. in computer science (2007) and a B.E. in computer science and technology (2003), both at Wuhan University, China.

Achievement

Zhou received the USM College of Arts and Sciences Scholarly Research Award in March 2019, participated in the AHA Research Leaders Academy of the American Heart Association in September 2017 and August 2018, and received the USM Butch Oustalet Distinguished Professorship Research Award in April 2018.

University and Professional Service

Zhou serves on Michigan Tech’s Review Committee for Graduate Dean’s Awards Advisory Committee, and in October 2019 he served on the Review Committee for Research Excellence Fund (REF) – Research Seed Grants (RS).

He was an invited speaker at the Machine Learning in SPECT MPI Applications session at the Annual Scientific Session of the American Society of Nuclear Cardiology in Washington, D.C., in 2009.

Zhou is a member of the American Heart Association (AHA) and the American Society of Nuclear Cardiology (ASNC).

Peer-Review

Since Zhou joined Michigan Tech in August 2019, he has published five scholarly papers, in Journal of Nuclear Cardiology and the IEEE Journal of Translational Engineering in Health and Medicine. Two additional articles are under revision with Journal of Nuclear Cardiology and the journal Medical Physics, and one is under review by the Medical Image Computing and Computer Assisted Intervention (MICCAI) Conference 2020.

Since 2007, he has published more than 80 peer-reviewed journal and conference papers and book chapters in publications including JACC: Journal of The American College of Cardiology: Cardiovascular Imaging, Journal of Nuclear Cardiology, and IEEE Journal of Translational Engineering in Health and Medicine.

Zhou is a translator of featured papers and abstracts for the Journal of Nuclear Cardiology, and a paper reviewer for the Journal of Nuclear Cardiology, JACC: Journal of The American College of Cardiology, and JACC: Cardiovascular Imaging. He is a reviewer for American Heart Association data science grants. 

Commercial Success

Zhou holds a number of patents and invention disclosures, including new methods to 1) diagnose apical hypertrophic cardiomyopathy from gated single-photon emission computed tomography (SPECT), and 2) measure right-ventricular and interventricular mechanical dyssynchrony from gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI); and 3) the integration of fluoroscopy venogram and myocardial perfusion SPECT image with left-ventricular contraction sequence and scar distribution to guide the real-time surgery of cardiac resynchronization therapy. 

He and his colleagues have developed a number of software tools, some of which are being used in hospitals for research purposes, and he believes that the tools can be successfully validated and become commercially available. For example, Zhou’s nuclear image-guided software toolkit to improve cardiac resynchronization therapy is being validated by a large clinical trial. 

A personal note.

Zhou loves independent thinking, facts and exact numbers, and he values persistence, all of which express themselves in his teaching and research, and his life.

Follow Weihua Zhou on Twitter: @LabMiil

The College of Computing’s Department of Applied Computing officially starts on July 1, 2020. The new department will replace the CMH Division.


ROTC Cybersecurity Training for Tomorrow’s Officers

The U.S. Department of Defense, Office of Naval Research, has awarded Michigan Tech faculty researchers a $249,000 grant that supports the creation of an ROTC undergraduate science and engineering research program at Michigan Tech. The primary goal of the program is to supply prepared cadets to all military branches to serve as officers in Cyber commands.

The principal investigator (PI) of the project is Andrew Barnard, Mechanical Engineering-Engineering Mechanics. Co-PIs are Timothy Havens, College of Computing; Laura Brown , Computer Science, and Yu Cai, Applied Computing. The title of the project is, “Defending the Nation’s Digital Frontier: Cybersecurity Training for Tomorrow’s Officers.”

The curriculum will be developed over the summer, and instruction associated with the award will begin in the fall 2020 semester. Cadets interested in joining the new program are urged to contact Andrew Barnard.

Initially, the program will focus on topics in cybersecurity, machine learning and artificial intelligence, data science, and remote sensing systems, all critical to the The Naval Science and Technology (S&T) Strategic Plan and the Navy’s Force of the Future, and with equal relevance in all branches of the armed forces.

The plan of work focuses on on engaging ROTC students in current and on-going Cyber research, and supports recruitment of young ROTC engineers and scientists to serve in Navy cybersecurity and cyber-systems commands. The program will compel cadets to seek positions within Cyber commands upon graduation, or pursue graduate research in Cyber fields.

“Our approach develops paid, research-based instruction for ROTC students through the existing Michigan Tech Strategic Education Naval Systems Experiences (SENSE) program,” said principal investigator Andrew Barnard, “ROTC students will receive one academic year of instruction in four Cyber domains: cybersecurity, machine learning and artificial intelligence (ML/AI), data science, and remote sensing systems.”

Barnard says the cohort-based program will enrich student learning through deep shared research experiences. He says the program will be designed with flexibility and agility in mind to quickly adapt to new and emerging Navy science and technology needs in the Cyber domain. 

Placement of officers in Cyber commands is of critical long-term importance to the Navy (and other DoD branches) in maintaining technological superiority, says the award abstract, noting that technological superiority directly influences the capability and safety of the warfighter.

Also closely involved in the project are Michigan Tech Air Force and Army ROTC officers Lt. Col. John O’Kane and LTC Christian Thompson, respectively.

“Unfortunately, many ROTC cadets are either unaware of Cyber related careers, or are unprepared for problems facing Cyber officers,” said Lt. Col. O’Kane. “This proposal aims to provide a steady flow of highly motivated and trained uniformed officers to the armed-services, capable of supporting the warfighter on day-one.”

Andrew Barnard is director of Michigan Tech’s Great Lakes Research Center, an associate professor of Mechanical Engineering-Engineering Mechanics, and faculty advisor to the SENSE Enterprise.

Tim Havens is director of the Institute of Computing and Cybersystems, associate dean for research, College of Computing, and the William and Gloria Jackson Associate Professor of Computer Systems.

Laura Brown is an associate professor, Computer Science, director of the Data Science graduate program, and a member of the ICC’s Center for Data Sciences.

Yu Cai is a professor of Applied Computing, an affiliated professor of Computational Science and Engineering, a member of the ICC’s Center for Cybersecurity, and faculty advisor for the Red Team, which competes in the National Cyber League (NCL).

The Great Lakes Research Center (GLRC) provides state-of-the-art laboratories to support research on a broad array of topics. Faculty members from many departments across Michigan Technological University’s campus collaborate on interdisciplinary research, ranging from air–water interactions to biogeochemistry to food web relationships.

The Army and Air Force have active ROTC programs on Michigan Tech’s campus.

The Office of Naval Research (ONR) coordinates, executes, and promotes the science and technology programs of the United States Navy and Marine Corps.


ICC Seeks Assistant Director for Research Development

The Michigan Tech Institute of Computing and Cybersytems (ICC) has announced a search for an Assistant Director, Research Development, an administrative position.

The new position will support ICC researchers as they collectively work to create and implement activities to grow and support ICC-affiliated research and graduate programs.

By collaborating with, coaching/mentoring, and supporting the work of researchers at all levels, this individual will be integral to the business development and outreach of the ICC. The successful candidate will provide pre- and post-award support to institute members, assist with the financial processes for the institute, and help lead daily administrative functions.

View the complete position description here.