Category: Conferences

Registration Open for Graduate Research Colloquium 2021

by Graduate Student Government

The Graduate Student Government announces that registration for this year’s virtual Graduate Research Colloquium (GRC) is now open. Due to the continuation of the SARS-CoV-19 pandemic, the event will be held virtually to avoid any community spread from taking place.

It is gearing up to be an exciting event, and we are excited to see what everyone has to present. The GRC will be held Thursday and Friday, April 1/2. The event is a great opportunity to work on your presentation skills and prepare for upcoming conferences. Students are free to give an oral presentation, a poster talk, or both. All talks will be scored by judges from the same field as the presenter, who will give valuable insight and feedback on how you to improve the presentation.

Cash prizes are available for the top three places in both oral and poster presentations ( 1st – $300, 2nd – $200, and 3rd – $100). Registration closes at 11:59 p.m., Tuesday March 2, at 11:59 p.m. Don’t wait, register today.

Poster presentations will take place in a pre-recorded video style. Video submission deadline is March 22, 2021. A short Q&A session will take place with judges between 4-6 p.m. on April 1st.

Oral presentation will be a 12 minute talk followed by Q&A session. The event will be capped off with a virtual GRC awards ceremony. All participants and judges are invited to attend. The ceremony will be held from 5 to 7 p.m. April 2, following the close of GRC. Full information can be found on our website.


Nathir Rawashdeh Presents, Publishes Research at Mechatronics Conference

A conference paper published in IEEE Xplore entitled, “Interfacing Computing Platforms for Dynamic Control and Identification of an Industrial KUKA Robot Arm” has been published by Assistant Professor Nathir Rawashdeh, Applied Computing.

In this work, a KUKA robotic arm controller was interfaced with a PC using open source Java tools to record the robot axis movements and implement a 2D printing/drawing feature.

The paper was presented at the 2020 21st International Conference on Research and Education in Mechatronics (REM). Details available at the IEEE Xplore database.


Research Day is Thurs., Jan. 7

by Research Development

The eighth annual research day event will be held Thursday (Jan. 7). We welcome research faculty from all ranks, research staff, postdocs, and staff who support research to join, learn, and share. The theme for the day is: Research Efficiency; Knowing the right things to optimize your research strategy.

All information and sessions happening on Research Day can be accessed through the Research Day site.

Interested participants are encouraged to RSVP for sessions here.


Celebrate Husky Innovation January 25-29

Husky Innovate is organizing Innovation Week, a series of innovation themed events the week of January 25 to 29, 2020. Our goal is to provide opportunities for students, faculty and alumni to meet virtually to engage around the topic of innovation.

We will host panel discussions, alumni office hours and the Bob Mark Business Model Pitch Competition from 5:30 to 7:30 p.m. on Thursday, January 28.

We will celebrate entrepreneurship, innovative research and projects on campus and within our extended MTU community.

If you are interested in hosting an innovation tour, participating in a panel discussion, leading a workshop or something else, sign-up here.

Faculty and staff are invited to celebrate innovation week with an innovation themed learning module or student activity.


Paper by Yakov Nekrich Accepted for ACM-SIAM SODA21 Symposium

A paper by Associate Professor Yakov Nekrich, Computer Science, has been accepted for the 61st ACM-SIAM Symposium on Discrete Algorithms 2021 (SODA21), which will take place virtually January 10-13, 2021.

Nekrich is sole author of the accepted article, “New Data Structures for Orthogonal Range Reporting and Range Minima Queries.” An extended version of the paper is available for download on ArXiv.

The annual ACM-SIAM Symposium on Discrete Algorithms (SODA) is an academic conference in the fields of algorithm design and discrete mathematics. It is considered among the top conferences for research in algorithms.


Paper Abstract

In this paper we present new data structures for two extensively studied variants of the orthogonal range searching problem.
First, we describe a data structure that supports two-dimensional orthogonal range minima queries in O(n) space and O(logεn) time, where n is the number of points in the data structure and ε is an arbitrarily small positive constant. Previously known linear-space solutions for this problem require O(log1+εn) (Chazelle, 1988) or O(lognloglogn) time (Farzan et al., 2012). A modification of our data structure uses space O(nloglogn) and supports range minima queries in time O(loglogn). Both results can be extended to support three-dimensional five-sided reporting queries.

Next, we turn to the four-dimensional orthogonal range reporting problem and present a data structure that answers queries in optimal O(logn/loglogn+k) time, where k is the number of points in the answer. This is the first data structure that achieves the optimal query time for this problem. Our results are obtained by exploiting the properties of three-dimensional shallow cuttings.


The Society for Industrial and Applied Mathematics (SIAM) is an international community of 14,500+ individual members. Almost 500 academic, manufacturing, research and development, service and consulting organizations, government, and military organizations worldwide are institutional members.


Kelly Steelman Presents at ASEE

Kelly Steelman, interim department chair and associate professor, Cognitive and Learning Sciences, presented her paper, “Work in Progress: Student Perception of Computer Programming Within Engineering Education: An Investigation of Attitudes, Beliefs, and Behaviors” at the 2020 ASEE Virtual Conference, June 22-26, 2020.

Co-authors of the paper are Michelle Jarvie-Eggart (EF), Kay Tislar (CLS), Charles Wallace (CC), Nathan Naser (GMES), Briana Bettin (CS) and Leo Ureel (CS), all from Michigan Tech.

Abstract
Although most engineering faculty and professionals view computer programming as an essential part of an undergraduate engineering curriculum, engineering students do not always share this viewpoint. In fact, engineering students—especially those outside of computer and electrical engineering—may not realize the value of computer programming skills until after they have graduated and advanced in their career (Sterian, Dunne, & Blauch, 2005). Failure to find value in computer programming may have negative consequences for learning. Indeed, engineering students who do not view programming as interesting or useful show poorer performance on tests of programming concepts than students who do (Lingar, Williams, and McCord, 2017). This finding is consistent with theories of technology acceptance (e.g., Davis, 1989, Venkatesh, et al., 2003) that emphasize perceived usefulness as a key determinant of attitudes toward a technology and subsequent use or disuse of it. Accordingly, to better support student learning, engineering coursework should include specific interventions that emphasize the utility of programming skills for a career in engineering. Intervention effectiveness, however, may depend in part on the characteristics of the individual learners, including their prior programming experience, their openness to new experiences, and their beliefs about the nature of intelligence. The purpose of the current work is to understand engineering students’ attitudes toward and experiences with computer programming as well as to assess the relationship between their attitudes and experiences and their mindset toward their own intelligence. 101 engineering students participated in the study as part of a general education psychology course. Participants completed a computer language inventory and three surveys. The first survey inquired about students’ computer programming experiences and attitudes (Hoegh and Moskal, 2009). The second survey posed questions related to different aspects of openness to experience (Woo et al., 2014): intellectual efficiency, ingenuity, curiosity, aesthetics, tolerance, and depth. Finally, the third survey probed participants’ beliefs about the nature of intelligence and whether it is fixed or can be developed (Dweck, 1999). This paper will present the results of these surveys and explore the correlations among the various scales. The implications for engineering education interventions will be discussed.

Download the paper here.

Citation
Steelman, K. S., & Jarvie-Eggart, M. E., & Tislar, K. L., & Wallace, C., & Manser, N. D., & Bettin, B. C., & Ureel, L. C. (2020, June), Work in Progress: Student Perception of Computer Programming within Engineering Education: An Investigation of Attitudes, Beliefs, and Behaviors Paper presented at 2020 ASEE Virtual Annual Conference Content Access, Virtual On line . https://peer.asee.org/35683


Sergeyev, Students Earn ASEE Conference Awards

Professor Aleksandr Segeyev (DataS), Applied Computing, and a group of Michigan Tech students presented two papers at the 2020 American Society for Engineering Education (ASEE) Gulf-Southwest Annual conference, which was conducted online April 23-24, 2020. Both papers received conference awards.

Faculty Paper Award

“Pioneering Approach for Offering the Convergence MS Degree in Mechatronics and Associate Graduate Certificate”
by Sergeyev, Professor and Associate Chair John Irwin (MMET), and Dean Adrienne Minerick (CC).

Student Paper Award

“Efficient Way of Converting outdated Allen Bradley PLC-5 System into Modern ControlLogix 5000 suit”, by Spencer Thompson (pictured), Larry Stambeck, Andy Posa, Sergeyev, and Lecturer Paniz Hazaveh, Applied Computing.

Sergeyev is director of the Michigan Tech Mechatronics Graduate Program and FANUC Certified Industrial Robotics Training Center.

Founded in 1893, the American Society for Engineering Education is a nonprofit organization of individuals and institutions committed to furthering education in engineering and engineering technology.


Recap: Virtual Parallel-in-Time Workshop 2020

The virtual 2020 Parallel-in-Time conference, co-organized by Assistant Professor Benjamin Ong (DataS, Mathematics), took place June 8 to 12, 2020.

The conference consisted of 20 presentations, including one by Mathematics department graduate student, Nadun Dissanayake.

140 participants in more than a dozen countries registered and participated in the conference. View the conference video lectures and program information here.

The primary focus of the Parallel-in-Time Workshop was to disseminate cutting-edge research and facilitate scientific discussions on the field of parallel time integration methods.

Download the conference program booklet here.


Bo Chen, Grad Students Present Posters at Security Symposium

College of Computing Assistant Professor Bo Chen, Computer Science, and his graduate students presented two posters at the 41st IEEE Symposium on Security and Privacy, which took place online May 18 to 21, 2020.

Since 1980, the IEEE Symposium on Security and Privacy has been the premier forum for presenting developments in computer security and electronic privacy, and for bringing together researchers and practitioners in the field.

Chen leads the Security and Privacy (SnP) lab at Michigan Tech. He is a member of Michigan Tech’s Institute of Computing and Cybersystems (ICC) Center for Cybersecurity (CyberS).

Chen’s research focuses on applied cryptography and data security and he investigates novel techniques to protect sensitive data in mobile devices/flash storage media and cloud infrastructures. Chen is also interested in designing novel techniques to ensure security and privacy of big data.

Chen will serve as general chair for the First EAI International Conference on Applied Cryptography in Computer and Communications (AC3), which will be held in Xiamen, China, in May 2021.

Visit Bo Chen’s faculty webpage here.

Poster: A Secure Plausibly Deniable System for Mobile Devices against Multi-snapshot Adversaries
Authors: Bo Chen, Niusen Chen
Abstract: Mobile computing devices have been used broadly to store, manage and process critical data. To protect confidentiality of stored data, major mobile operating systems provide full disk encryption, which relies on traditional encryption and requires keeping the decryption keys secret. This however, may not be true as an active attacker may coerce victims for decryption keys. Plausibly deniable encryption (PDE) can defend against such a coercive attacker by disguising the secret keys with decoy keys. Leveraging concept of PDE, various PDE systems have been built for mobile devices. However, a practical PDE system is still missing which can be compatible with mainstream mobile devices and, meanwhile, remains secure when facing a strong multi- snapshot adversary. This work fills this gap by designing the first mobile PDE system against the multi-snapshot adversaries.

Poster: Incorporating Malware Detection into Flash Translation Layer
Authors: Wen Xie, Niusen Chen, Bo Chen
Abstract: OS-level malware may compromise OS and obtain root privilege. Detecting this type of strong malware is challeng- ing, since it can easily hide its intrusion behaviors or even subvert the malware detection software (or malware detector). Having observed that flash storage devices have been used broadly by computing devices today, we propose to move the malware detector to the flash translation layer (FTL), located inside a flash storage device. Due to physical isolation provided by the FTL, the OS-level malware can neither subvert our malware detector, nor hide its access behaviors from our malware detector.

The 41st IEEE Symposium on Security and Privacy was sponsored by the IEEE Computer Society Technical Committee on Security and Privacy in cooperation with the International Association for Cryptologic Research. The Symposium was May 18-20, 2020, and the Security and Privacy Workshops were May 21, 2020.


Two Papers by Yakov Nekrich Accepted by SoCG 2020 Conference

Yakov Nekrich, associate professor, Department of Computer Science, has been notified that two scholarly papers he has authored were accepted by the 36th International Symposium on Computational Geometry (SoCG 2020), which takes place June 23-26, 2020, in Zurich, Switzerland.

Nekrich is a member of the ICC’s Center for Data Sciences.

The two papers are “Further Results on Colored Range Searching,” by Timothy M. Chan, Qizheng He, and Nekrich, and “Four-Dimensional Dominance Range Reporting in Linear Space” by Nekrich alone.

The Annual Symposium on Computational Geometry (SoCG) is an academic conference in computational geometry. Founded in 1985, it was originally sponsored by the SIGACT and SIGGRAPH Special Interest Groups of the Association for Computing Machinery (ACM). It dissociated from the ACM in 2014. Since 2015 the conference proceedings have been published by the Leibniz International Proceedings in Informatics Since 2019 the conference has been organized by the Society for Computational Geometry. (Wikipedia)

Visit the SoCG 2020 website.