Also In This Section
  • Categories

  • Recent News

  • Category: Conferences

    Recap: Virtual Parallel-in-Time Workshop 2020

    The virtual 2020 Parallel-in-Time conference, co-organized by Assistant Professor Benjamin Ong (DataS, Mathematics), took place June 8 to 12, 2020.

    The conference consisted of 20 presentations, including one by Mathematics department graduate student, Nadun Dissanayake.

    140 participants in more than a dozen countries registered and participated in the conference. View the conference video lectures and program information here.

    The primary focus of the Parallel-in-Time Workshop was to disseminate cutting-edge research and facilitate scientific discussions on the field of parallel time integration methods.

    Download the conference program booklet here.


    Bo Chen, Grad Students Present Posters at Security Symposium

    College of Computing Assistant Professor Bo Chen, Computer Science, and his graduate students presented two posters at the 41st IEEE Symposium on Security and Privacy, which took place online May 18 to 21, 2020.

    Since 1980, the IEEE Symposium on Security and Privacy has been the premier forum for presenting developments in computer security and electronic privacy, and for bringing together researchers and practitioners in the field.

    Chen leads the Security and Privacy (SnP) lab at Michigan Tech. He is a member of Michigan Tech’s Institute of Computing and Cybersystems (ICC) Center for Cybersecurity (CyberS).

    Chen’s research focuses on applied cryptography and data security and he investigates novel techniques to protect sensitive data in mobile devices/flash storage media and cloud infrastructures. Chen is also interested in designing novel techniques to ensure security and privacy of big data.

    Chen will serve as general chair for the First EAI International Conference on Applied Cryptography in Computer and Communications (AC3), which will be held in Xiamen, China, in May 2021.

    Visit Bo Chen’s faculty webpage here.

    Poster: A Secure Plausibly Deniable System for Mobile Devices against Multi-snapshot Adversaries
    Authors: Bo Chen, Niusen Chen
    Abstract: Mobile computing devices have been used broadly to store, manage and process critical data. To protect confidentiality of stored data, major mobile operating systems provide full disk encryption, which relies on traditional encryption and requires keeping the decryption keys secret. This however, may not be true as an active attacker may coerce victims for decryption keys. Plausibly deniable encryption (PDE) can defend against such a coercive attacker by disguising the secret keys with decoy keys. Leveraging concept of PDE, various PDE systems have been built for mobile devices. However, a practical PDE system is still missing which can be compatible with mainstream mobile devices and, meanwhile, remains secure when facing a strong multi- snapshot adversary. This work fills this gap by designing the first mobile PDE system against the multi-snapshot adversaries.

    Poster: Incorporating Malware Detection into Flash Translation Layer
    Authors: Wen Xie, Niusen Chen, Bo Chen
    Abstract: OS-level malware may compromise OS and obtain root privilege. Detecting this type of strong malware is challeng- ing, since it can easily hide its intrusion behaviors or even subvert the malware detection software (or malware detector). Having observed that flash storage devices have been used broadly by computing devices today, we propose to move the malware detector to the flash translation layer (FTL), located inside a flash storage device. Due to physical isolation provided by the FTL, the OS-level malware can neither subvert our malware detector, nor hide its access behaviors from our malware detector.

    The 41st IEEE Symposium on Security and Privacy was sponsored by the IEEE Computer Society Technical Committee on Security and Privacy in cooperation with the International Association for Cryptologic Research. The Symposium was May 18-20, 2020, and the Security and Privacy Workshops were May 21, 2020.


    Two Papers by Yakov Nekrich Accepted by SoCG 2020 Conference

    Yakov Nekrich, associate professor, Department of Computer Science, has been notified that two scholarly papers he has authored were accepted by the 36th International Symposium on Computational Geometry (SoCG 2020), which takes place June 23-26, 2020, in Zurich, Switzerland.

    Nekrich is a member of the ICC’s Center for Data Sciences.

    The two papers are “Further Results on Colored Range Searching,” by Timothy M. Chan, Qizheng He, and Nekrich, and “Four-Dimensional Dominance Range Reporting in Linear Space” by Nekrich alone.

    The Annual Symposium on Computational Geometry (SoCG) is an academic conference in computational geometry. Founded in 1985, it was originally sponsored by the SIGACT and SIGGRAPH Special Interest Groups of the Association for Computing Machinery (ACM). It dissociated from the ACM in 2014. Since 2015 the conference proceedings have been published by the Leibniz International Proceedings in Informatics Since 2019 the conference has been organized by the Society for Computational Geometry. (Wikipedia)

    Visit the SoCG 2020 website.


    Thomas Oommen Presents Lecture at TRB Annual Meeting

    Members of the Michigan Tech Transportation Institute (MTTI) were active at the

    Among the many Michigan Tech students and faculty who attended and presented at the 2020 Transportation Research Board (TRB) Annual Meeting held recently in Washington, DC. was Thomas Oommen (GMES), who gave a lecture on “Remote terrain Strength for Mobility Characterization” at the meeting’s lectern Session 1384: Integration of Remote Sensing Techniques and Classical Instrumentation. Oommen is a member of the ICC’s Center for Data Sciences.

    The Transportation Research Board (TRB) 99th Annual Meeting was held January 12–16, 2020, in Washington, D.C. More than 13,000 transportation professionals from around the world were expected to attendd.

    The meeting program covered all transportation modes, with more than 5,000 presentations in nearly 800 sessions and workshops, addressing topics of interest to policy makers, administrators, practitioners, researchers, and representatives of government, industry, and academic institutions. A number of sessions and workshops focused on the spotlight theme for the 2020 meeting: A Century of Progress: Foundation for the Future.

    Learn more about the TRB.

    Read the full Tech Today On the Road article.


    Technical Paper by Nathir Rawashdeh Accepted for SAE World Congress

    An SAE technical paper, co-authored by Nathir Rawashdeh, assistant professor, CMH Division, College of Computing, has been accepted for publication at the WCX SAE World Congress Experience, April 21-23, 2020, in Detroit, MI.  The title of the paper is “Mobile Robot Localization Evaluations with Visual Odometry in Varying Environments using Festo-Robotino.” 

    Abstract: Autonomous ground vehicles can use a variety of techniques to navigate the environment and deduce their motion and location from sensory inputs. Visual Odometry can provide a means for an autonomous vehicle to gain orientation and position information from camera images recording frames as the vehicle moves. This is especially useful when global positioning system (GPS) information is unavailable, or wheel encoder measurements are unreliable. Feature-based visual odometry algorithms extract corner points from image frames, thus detecting patterns of feature point movement over time. From this information, it is possible to estimate the camera, i.e. the vehicle’s motion. Visual odometry has its own set of challenges, such as detecting an insufficient number of points, poor camera setup, and fast passing objects interrupting the scene. This paper investigates the effects of various disturbances on visual odometry. Moreover, it discusses the outcomes of several experiments performed utilizing the Festo-Robotino robotic platform. The experiments are designed to evaluate how changing the system’s setup will affect the overall quality and performance of an autonomous driving system. Environmental effects such as ambient light, shadows, and terrain are also investigated. Finally, possible improvements including varying camera options and programming methods are discussed.

    Learn more.


    All Researchers Invited to Research Development Day 2020

    by Research Development Office

    All Michigan Tech researchers are invited to participate in the 2020 Research Development Day at Michigan Tech. The event will be held Thursday, Jan. 9. The content of the 2020 event is new and designed for both new and returning attendees.

    Multiple sessions are planned for faculty at all career stages and from all disciplines. Research staff and post-docs from any discipline are also likely to find sessions of interest. We are excited to welcome Jose Fuentes as our keynote speaker.

    Fuentes is an experienced faculty researcher at Penn State, with a significant track record of international work and broad research impact. As in previous years, we will end the day with research recognitions, celebrating accomplishments from across the university over the past year, followed by a networking social.

    A condensed agenda is found on the reservation form. Your RSVP is requested by Jan. 3 to finalize meal counts and room arrangements. If your schedule does not permit you to attend the full day, the RSVP allows you to sign up for morning, lunch, and/or afternoon sessions.

    The RSVP form should take only a minute or two to complete. A reminder and final agenda will be sent in the new year. Please contact rd-l@mtu.edu with any questions.


    Nathir Rawashdeh to Present Paper at Advances in Mechanical Engineering Conference

    Nathir Rawashdeh

    A conference paper co-authored by Nathir Rawashdeh (CC/MERET), has been accepted for presentation and publication at the 5th International Conference on Advances in Mechanical Engineering, December 17-19, 2019, in Istanbul, Turkey.

    The paper is entitled, “Effect of Camera’s Focal Plane Array Fill Factor on Digital Image Correlation Measurement Accuracy.” Co-authors are Ala L. Hijazi of German Jordanian University, and Christian J. Kähler of Universität der Bundeswehr München.

    Abstract: The digital image correlation (DIC) method is one of the most widely used non-invasive full-field methods for deformation and strain measurements. It is currently being used in a very wide variety of applications including mechanical engineering, aerospace engineering, structural engineering, manufacturing engineering, material science, non-destructive testing, biomedical and life sciences. There are many factors that affect the DIC measurement accuracy where that includes; the selection of the correlation algorithm and parameters, the camera, the lens, the type and quality of the speckle pattern, the lightening conditions and surrounding environment. Several studies have addressed the different factors influencing the accuracy of DIC measurements and the sources of error. The camera’s focal plane array (FPA) fill factor is one of the parameters for digital cameras, though it is not widely known and usually not reported in specs sheets. The fill factor of an imaging sensor is defined as the ratio of a pixel’s light sensitive area to its total theoretical area. For some types of imaging sensors, the fill factor can theoretically reach 100%. However, for the types of imaging sensors typically used in most digital cameras used in DIC measurements, such as the “interline” charge coupled device CCD and the complementary metal oxide semiconductor (CMOS) imaging sensors, the fill factor is much less than 100%. It is generally believed that the lower fill factor may reduce the accuracy of photogrammetric measurements. But nevertheless, there are no studies addressing the effect of the imaging sensor’s fill factor on DIC measurement accuracy. We report on research aiming to quantify the effect of fill factor on DIC measurements accuracy in terms of displacement error and strain error. We use rigid-body-translation experiments then numerically modify the recorded images to synthesize three different types of images with 1/4 of the original resolution. Each type of the synthesized images has different value of the fill factor; namely 100%, 50% and 25%. By performing DIC analysis with the same parameters on the three different types of synthesized images, the effect of fill factor on measurement accuracy may be realized. Our results show that the FPA’s fill factor can have a significant effect on the accuracy of DIC measurements. This effect is clearly dependent on the type and characteristics of the speckle pattern. The fill factor has a clear effect on measurement error for low contrast speckle patterns and for high contrast speckle patterns (black dots on white background) with small dot size (3 pixels dot diameter). However, when the dot size is large enough (about 7 pixels dot diameter), the fill factor has very minor effect on measurement error. In addition, the results also show that the effect of the fill factor is also dependent on the magnitude of translation between images. For instance, the increase in measurement error resulting from low fill factor can be more significant for subpixel translations than large translations of several pixels.
    Request the full paper here.


    Hembroff Attends KEEN Workshop

    Guy Hembroff, associate professor and director of the Medical Informatics graduate program (CC/CyberS), attended the three-day workshop, “Teaching With Impact – Innovating Curriculum With Entrepreneurial Mindset,” in Milwaukee, Wisc., this July.

    The workshop, presented by KEEN, a network of engineering faculty working to instill within student engineers an entrepreneurial mindset, introduced faculty participants to the framework of entrepreneurially minded learning (EML), which is centered on curiosity, connections, and creating value.  Hembroff and other participants identified opportunities for EML integration into existing coursework, developed a personal approach to integrating EML within the course design process, and learned how to implement continual improvement of their own EML practice.

    Visit https://engineeringunleashed.com for more information about KEEN.