Category: Havens

Signature Research, Michigan Tech win $1 Million NGA Research Award

Signature Research Inc. has partnered with Michigan Technological University to accomplish a Phase II STTR project sponsored by the National Geospatial-Intelligence Agency. The two-year, $1 Million project is titled, “Algorithms for Look-Down Infrared Target Exploitation-Phase II.” Michigan Tech’s portion of the $1 million contract is $400K.


Principal investigator of the project is Dr. Timothy Havens, director of the Institute of Computing and Cyberystems (ICC) and associate dean of research for the College of Computing. Havens is joined by Signature Research, Inc. (SGR) Program Manager Matt Blanck, who will lead the SGR side of the project.

At Tech, Havens will be assisted in accomplishing the goals of this project by Research Scientist Adam Webb of the Michigan Tech Research Institute (MTRI) and Nicholas Hamilton, a Computer Science Ph.D. candidate.

“This project will identify physics-based novel signatures and data processing techniques to exploit overhead infrared (IR) imagery using machine learning algorithms.”

“The SGR/MTU Team will generate, collect, and label a wide body of data, implement learning algorithms, develop use cases and tests on those data, and perform a comprehensive study to determine ways in which learning algorithms can automate IR imagery recognition tasks.”

Dr. Timothy Havens

And while this effort is focused on overhead IR imagery, Havens says the methods and software developed will have applicability to other sensing modalities, leading to investigations of multi-modal fusion of all-source data.


Signature Research, Inc. (SGR) solutions to DoD and Intelligence Community customers, and specializes in in Signature Phenomenology, Analysis, and Modeling of items of military interest covering the breadth of the electromagnetic spectrum.

The National Geospatial-Intelligence Agency (NGA) is a combat support agency under the United States Department of Defense and a member of the United States Intelligence Community, with the primary mission of collecting, analyzing, and distributing geospatial intelligence in support of national security.

The Institute of Computing and Cybersystems (ICC) promotes research and learning experiences in the areas of cyber-physical systems, cybersecurity, data sciences, human-centered computing, and scalable architectures and systems for the benefit of Michigan Tech and society at large.

The Michigan Tech Research Institute (MTRI) is an innovator in building information from data through the marriage of phenomenological understanding and implementation of mathematically rigorous algorithms. Together with University and other national and international collaborators, MTRI researchers and scientists work to solve critical problems in national security, protecting and evaluating critical infrastructure, bioinformatics, Earth sciences, and environmental processes, according to their website.


GSG to Present Webinar Series in Computer Programming

The Graduate Student Government (GSG) Professional Development Committee has organized a free webinar series in Computer Programming, which begins Tuesday, July 14, 2020.

July 14: “Introduction to Machine Learning with Python,” by Timothy Havens (CC)

July 15: “Managing Data” (Data Mining)” by MS Data Science candidate Sneha Nimmagadda

July 16: “Introduction to Deep Learning,” by Timothy Havens (CC)

Seats are not limited, but participants are asked to register so webinar organizers know how many attendees to expect.

Find more information, including links to register and join Zoom meetings, visit the GSG website.


Computing Awards COVID-19 Research Seed Grants

The College of Computing is pleased to announce that it has awarded five faculty seed grants, which will provide immediate funding in support of research projects addressing critical needs during the current global pandemic.

Tim Havens, College of Computing associate dean for research, said that the faculty seed grants will enable progress in new research that has the potential to make an impact on the current research. Additional details will be shared soon.


Congratulations to the winning teams!

Guy Hembroff (AC, HI): “Development of a Novel Hospital Use Resource Prediction Model to Improve Local Community Pandemic Disaster Planning”

Leo Ureel (CS) and Charles Wallace (CS): “Classroom Cyber-Physical Simulation of Disease Transmission”

Bo Chen (CS): “Mobile Devices Can Help Mitigate Spreading of Coronavirus”

Nathir Rawashdeh (AC, MERET): “A Tele-Operated Mobile Robot for Sterilizing Indoor Space Using UV Light” (A special thanks to Paul Williams, who’s generous gift to support AI and robotics research made this grant possible)

Weihua Zhou (AC, HI) and Jinshan Tang (AC, MERET): “KD4COVID19: An Open Research Platform Using Feature Engineering and Machine Learning for Knowledge Discovery and Risk Stratification of COVID-19″

Weihua Zhou

Nathir Rawashdeh

Jinshan Tang

Guy Hembroff

Leo Ureel

Charles Wallace

Bo Chen


Tim Havens Quote in Enterprisers Project Article

Tim Havens, associate dean for research, College of Computing, and director of the Institute of Computing and Cybersystems, was quoted in the article, “Artificial intelligence (AI) vs. machine learning (ML): 8 common misunderstandings,” published May 19, 2020, in the online publication, The Enterprisers Project.

In there article, Havens likens the way AI works to learning to ride a bike: “You don’t tell a child to move their left foot in a circle on the left pedal in the forward direction while moving your right foot in a circle… You give them a push and tell them to keep the bike upright and pointed forward: the overall objective. They fall a few times, honing their skills each time they fail,” Havens says. “That’s AI in a nutshell.”

Link to the article here.

The Enterprisers Project is a community and online publication built to discuss the evolving role of the CIO and how IT leaders drive business value in a digital world. It is a collaborative effort between Harvard Business Review and Red Hat that delivers daily analysis and advice on topics ranging from emerging technologies to IT talent. Articles in the publication are written by CIOs, for CIOs and other IT executives, who share lessons learned from innovating in true partnership with the business.


Havens, Yazdanparast Publish Article in IEEE Transactions on Big Data

Timothy Havens

An article by Audrey Yazdanparast (2019, PhD, Electrical Engineering) and Dr. Timothy Havens, “Linear Time Community Detection by a Novel Modularity Gain Acceleration in Label Propagation,” has been accepted for publication in the journal, IEEE Transactions on Big Data.

The paper presents an efficient approach for detecting self-similar communities in weighted graphs, with applications in social network analysis, online commodity recommendation systems, user clustering, biology, communications network analysis, etc.

Paper Abstract: Community detection is an important problem in complex network analysis. Among numerous approaches for community detection, label propagation (LP) has attracted a lot of attention. LP selects the optimum community (i.e., label) of a network vertex by optimizing an objective function (e.g., Newman’s modularity) subject to the available labels in the vicinity of the vertex. In this paper, a novel analysis of Newman’s modularity gain with respect to label transitions in graphs is presented. Here, we propose a new form of Newman’s modularity gain calculation that quantifies available label transitions for any LP based community detection.

The proposed approach is called Modularity Gain Acceleration (MGA) and is simplified and divided into two components, the local and global sum-weights. The Local Sum-Weight (LSW) is the component with lower complexity and is calculated for each candidate label transition. The General Sum-Weight (GSW) is more computationally complex, and is calculated only once per each label. GSW is updated by leveraging a simple process for each node-label transition, instead of for all available labels. The MGA approach leads to significant efficiency improvements by reducing time consumption up to 85% relative to the original algorithms with the exact same quality in terms of modularity value which is highly valuable in analyses of big data sets.

Timothy Havens is director of Michigan Tech’s Institute of Computing and Cybersystems (ICC), the associate dean for research for the College of Computing , and the William and Gloria Jackson Associate Professor of Computer Systems.

View the article abstract here.


Ford Mobility Funds AI, Acoustics Research

Imagine if your car could tell you when you are passing by an area occupied by rare migratory birds, or it could listen to roads and bridges to determine when infrastructure repairs need to be made.

A recent gift from Mobility Research at Ford Motor Company recently provided a $149,518 gift to fund research that could make this possible.

Dr. Timothy Havens, Institute of Computing and Cybersystems, and Dr. Andrew Barnard, Great Lakes Research Center, will lead an exploration of how future connected vehicles could use AI and acoustics to detect, classify, and localize external sound events, and evaluate and monitor transportation infrastructure.

The gift will fund a Ph.D. student fellowship, a team of undergraduate students in the SENSE Enterprise, and build and develop a mobile acoustics test bed that will allow students, Havens, and Barnard to conduct cutting-edge research in AI and acoustics.

Michigan Tech would like to thank Chad Esselink (’94, Computer Science) and Tavan Eftekhar at Ford Mobility Research for making this possible.

The Institute of Computing and Cybersystems (ICC) is the research arm of the College of Computing at Michigan Tech. The ICC provides faculty and students the opportunity to work across organizational boundaries to create an environment that is a reflection of contemporary technological innovation. This collaboration allows for a convergence in communication, control and computing that mirrors today’s industry and society.

The Great Lakes Research Center (GLRC) provides state-of-the-art laboratories to support research on a broad array of topics. Faculty members from many departments across Michigan Technological University’s campus collaborate on interdisciplinary research, ranging from air–water interactions to biogeochemistry to food web relationships.


ROTC Cybersecurity Training for Tomorrow’s Officers

The U.S. Department of Defense, Office of Naval Research, has awarded Michigan Tech faculty researchers a $249,000 grant that supports the creation of an ROTC undergraduate science and engineering research program at Michigan Tech. The primary goal of the program is to supply prepared cadets to all military branches to serve as officers in Cyber commands.

The principal investigator (PI) of the project is Andrew Barnard, Mechanical Engineering-Engineering Mechanics. Co-PIs are Timothy Havens, College of Computing; Laura Brown , Computer Science, and Yu Cai, Applied Computing. The title of the project is, “Defending the Nation’s Digital Frontier: Cybersecurity Training for Tomorrow’s Officers.”

The curriculum will be developed over the summer, and instruction associated with the award will begin in the fall 2020 semester. Cadets interested in joining the new program are urged to contact Andrew Barnard.

Initially, the program will focus on topics in cybersecurity, machine learning and artificial intelligence, data science, and remote sensing systems, all critical to the The Naval Science and Technology (S&T) Strategic Plan and the Navy’s Force of the Future, and with equal relevance in all branches of the armed forces.

The plan of work focuses on on engaging ROTC students in current and on-going Cyber research, and supports recruitment of young ROTC engineers and scientists to serve in Navy cybersecurity and cyber-systems commands. The program will compel cadets to seek positions within Cyber commands upon graduation, or pursue graduate research in Cyber fields.

“Our approach develops paid, research-based instruction for ROTC students through the existing Michigan Tech Strategic Education Naval Systems Experiences (SENSE) program,” said principal investigator Andrew Barnard, “ROTC students will receive one academic year of instruction in four Cyber domains: cybersecurity, machine learning and artificial intelligence (ML/AI), data science, and remote sensing systems.”

Barnard says the cohort-based program will enrich student learning through deep shared research experiences. He says the program will be designed with flexibility and agility in mind to quickly adapt to new and emerging Navy science and technology needs in the Cyber domain. 

Placement of officers in Cyber commands is of critical long-term importance to the Navy (and other DoD branches) in maintaining technological superiority, says the award abstract, noting that technological superiority directly influences the capability and safety of the warfighter.

Also closely involved in the project are Michigan Tech Air Force and Army ROTC officers Lt. Col. John O’Kane and LTC Christian Thompson, respectively.

“Unfortunately, many ROTC cadets are either unaware of Cyber related careers, or are unprepared for problems facing Cyber officers,” said Lt. Col. O’Kane. “This proposal aims to provide a steady flow of highly motivated and trained uniformed officers to the armed-services, capable of supporting the warfighter on day-one.”

Andrew Barnard is director of Michigan Tech’s Great Lakes Research Center, an associate professor of Mechanical Engineering-Engineering Mechanics, and faculty advisor to the SENSE Enterprise.

Tim Havens is director of the Institute of Computing and Cybersystems, associate dean for research, College of Computing, and the William and Gloria Jackson Associate Professor of Computer Systems.

Laura Brown is an associate professor, Computer Science, director of the Data Science graduate program, and a member of the ICC’s Center for Data Sciences.

Yu Cai is a professor of Applied Computing, an affiliated professor of Computational Science and Engineering, a member of the ICC’s Center for Cybersecurity, and faculty advisor for the Red Team, which competes in the National Cyber League (NCL).

The Great Lakes Research Center (GLRC) provides state-of-the-art laboratories to support research on a broad array of topics. Faculty members from many departments across Michigan Technological University’s campus collaborate on interdisciplinary research, ranging from air–water interactions to biogeochemistry to food web relationships.

The Army and Air Force have active ROTC programs on Michigan Tech’s campus.

The Office of Naval Research (ONR) coordinates, executes, and promotes the science and technology programs of the United States Navy and Marine Corps.


Article by Tim Havens in IEEE Transactions on Fuzzy Systems

An article co-authored by Tim Havens, associate dean for research, College off Computing, “Soft Overlapping Community Detection in Large-Scale Networks via Fast Fuzzy Modularity Maximization,” was published in the March 2020 issue of IEEE Transactions on Fuzzy Systems.

Havens’s co-authors are Audrey Yazdanparast (ECE) and Mohsen Jamalabdollahi of Cisco Systems.

Article Abstract: Soft overlapping clustering is one of the notable problems of community detection. Extensive research has been conducted to develop efficient methods for non-overlapping and crisp-overlapping community detection in large-scale networks. In this paper, Fast Fuzzy Modularity Maximization (FFMM) for soft overlapping community detection is proposed.

FFMM exploits novel iterative equations to calculate the modularity gain associated with changing the fuzzy membership values of network vertices. The simplicity of the proposed scheme enables efficient modifications, reducing computational complexity to a linear function of the network size and the number of communities. Moreover, to further reduce the complexity of FFMM for very large networks, Multi-cycle FFMM (McFFMM) is proposed.

The proposed McFFMM reduces complexity by breaking networks into multiple sub-networks and applying FFMM to detect their communities. Performance of the proposed techniques are demonstrated with real-world data and the Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks. Moreover, the performance of the proposed techniques is eval- uated versus some state-of-the-art soft overlapping community detection approaches. Results show that the McFFMM produces a remarkable performance in terms of overlapping modularity with fuzzy memberships, computational time, number of detected overlapping nodes, and Overlapping Normalized Mutual Informa- tion (ONMI).

View more info here.


Tim Havens Quoted in Enterprisers Project Article

Tim Havens, associate dean for research, College of Computing, and director of the Institute of Computing and Cybersystems, was quoted in the article, “Data science vs. machine learning: What’s the difference?” published March 10, 2020, in the online publication, The Enterprisers Project.

Havens’s quotation concerns machine learning models, which the article explains are only as good as the quality of the data they learn from. Havens says, “Luckily, there are many types of problems for which lots of data exist.”

Link to the article here.

The Enterprisers Project is a community and online publication built to discuss the evolving role of the CIO and how IT leaders drive business value in a digital world. It is a collaborative effort between Harvard Business Review and Red Hat that delivers daily analysis and advice on topics ranging from emerging technologies to IT talent. Articles in the publication are written by CIOs, for CIOs and other IT executives, who share lessons learned from innovating in true partnership with the business. 


Tim Havens Is Co-author of Article in IEEE Transactions on Fuzzy Systems

Timothy Havens, director of the Institute of Computing and Cybersystems (ICC), is co-author of the article, “A Similarity Measure Based on Bidirectional Subsethood for Intervals,” published in the March 2020 issue of IEEE Transactions on Fuzzy Systems.

Havens’s co-authors are Shaily Kabir, Christian Wagner, and Derek T. Anderson.

Havens is also associate dean for research, College of Computing, and the William and Gloria Jackson Associate Professor of Computer Systems.

Christian Wagner, an affiliated member of the ICC, was an ICC donor-sponsored visiting professor at Michigan Tech in the 2016-17 academic year. He is now with the School of Computer Science at University of Nottingham.

Shaily Kabir is with the School of Computer Science, University of Nottingham. Derek T. Anderson is with the Electrical Engineering and Computer Science Department, University of Missouri, Columbia.

S. Kabir, C. Wagner, T. C. Havens and D. T. Anderson, “A Similarity Measure Based on Bidirectional Subsethood for Intervals,” in IEEE Transactions on Fuzzy Systems.

https://ieeexplore.ieee.org/document/9019656