Category: CPS

Research Excellence Fund Awards Announced

by Vice President for Research Office

The Vice President for Research Office announces the Fall 2020 REF awards. Thanks to the individual REF reviewers and the REF review panelists, as well as the deans and department chairs, for their time spent on this important internal research award process.

Research Seed Grants:

  • Sajjad Bigham, Mechanical Engineering-Engineering Mechanics
  • Bo Chen, Computer Science
  • Daniel Dowden, Civil and Environmental Engineering
  • Ana Dyreson, Mechanical Engineering-Engineering Mechanics
  • Hassan Masoud, Mechanical Engineering-Engineering Mechanics
  • Xinyu Ye, Civil and Environmental Engineering

ECE Doctoral Defense – Yongyu Wang

by Electrical and Computer Engineering

Computer Engineering doctoral candidate Yongyu Wang will defend at 10 a.m. Tuesday (Dec 1) via Zoom.

The title of his presentation is “High-Performance Spectral Methods for Graph-Based Machine Learning.” Co-advisors are Chee-Wooi Ten (ECE) and Zhuo Feng (ECE).

Chee-wooi Ten is a researcher with the ICC’s Cyber-Physical Systems group.


ME-EM’s Bo Chen is Co-PI of New DoE Grant

by Sponsored Programs

Darrell Robinette (ME-EM/APSRC) is the principal investigator on a project that has received a $1,348,109 research and development co-op/joint agreement from the Department of Energy.

The project is entitled, ” Energy Optimization of Light and Heavy Duty Vehicle Cohorts of Mixed Connectivity, Automation and Propulsion System Capabilities via Meshed V2V-V2I and Expanded Data.”

Jeff Naber (ME-EM/APSRC), Bo Chen (ME-EM/APSRC), Jung Yun Bae (ME-EM/APSRC) and Chris Morgan (PHC/APSRC) are Co-PI’s on this potential 2.3-year project. Bo Chen is a researcher with the ICC’s Cyber-Physical Systems research group.


Hongyu An: Curious About the World and Exploring the Unknown

by Karen S. Johnson, Communications Director, ICC

“A scientist should be a person who is always curious about nature and the world, and who tries to explore the unknown.” –Hongyu An, Assistant Professor, Electrical and Computer Engineering

Hongyu An, Assistant Professor, ECE

Exploring science and technology is always exciting for new Assistant Professor Hongyu An, Electrical and Computer Engineering. He says he is “very pleased to have the chance to mentor the next generation and share my knowledge and experience with undergraduate and graduate students.”

Several things drew Hongyu An to Michigan Tech, including his observation that as an institution Michigan Tech cares about its employees. “The excellent professors, smart students, and the supportive environment are the main reasons I joined Michigan Tech,” he says. “As a new faculty member, I am facing a lot of new challenges. There is great support in my department (ECE) and through the ICC.”

Hongyu is a member of two Institute of Computing and Cybersystems (ICC) research centers: Human-Centered Computing and Scalable Architectures and Systems. He also sees synergies with the Center for Cyber-Physical Systems.

“It is my great pleasure and honor to be a member of the ICC,” Hongyu says. “ I can collaborate with the experts in HCC for exploring the brain and artificial intelligence, and the professors in SAS for hardware and architecture designs. Moreover, the neuromorphic chips I am working on can potentially be applied to Cyber-Physical Systems.”

Hongyu’s primary research area is hardware design for AI and neuromorphic systems. He believes that Artificial Intelligence is probably one of the most challenging research topics in science, noting that recent work in deep learning and artificial neural networks is demonstrating great progress in approaching artificial intelligence. 

“But the traditional computers under von Neumann architecture cannot keep up with the development of neural networks and deep learning,” he cautions. “My research is addressing this challenge by using a new hardware design, from device to architecture levels.”

Hongyu’s teaching interests include VLSI, Circuits, and Electromagnetics. Desribing his teaching philosophy, he notes that making complicated things simple is more challenging than making simple things complicated, and that he strives for the former. This academic year, An is teaching EE 4271 VLSI Design and mentoring ECE master’s student, Sarvani Marthi Sarvani, whose project aims to design a silicon retina through CMOS and Memristors.

Hongyu and his research team are also investigating associative memory learning, a new learning method that aims to create a neuromorphic system that can learn from its surroundings directly. 

“Associative memory is a widespread self-learning method in biological livings, which enables the nervoussystem to remember the relationship between two concurrent events,” Hongyu explains. “Through this learning method, dogs can learn the sound of bells as a sign of food; people can remember a word representing an object.”

“The significance of rebuilding associative memory at a behavioral level not only reveals a way of designing a brain-like, self-learning neuromorphic system, it is also to explore a method of comprehending the learning mechanism of a nervous system,” he adds.

And finally, beyond his work as a professor and scientist Hongyu hopes that he is “a good husband to my wife, a good father to my sons, and a good son to my parents.”

Hongyu completed his Ph.D. in electrical engineering at Virginia Tech, his M.S. in electrical engineering at Missouri University of Science and Technology, and his B.S. in electrical engineering at Shenyang University of Technology.

Recent Publications

An, Hongyu, Mohammad Shah Al-Mamun, Marius K. Orlowski, Lingjia Liu, and Yang Yi. “Robust Deep Reservoir Computing through Reliable Memristor with Improved Heat Dissipation Capability. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2020).

An, Hongyu, Qiyuan An, and Yang Yi. “Realizing Behavior Level Associative Memory Learning Through Three-Dimensional Memristor-Based Neuromorphic Circuits. IEEE Transactions on Emerging Topics in Computational Intelligence (2019).

Founded in 2015, the Institute of Computing and Cybersystems (ICC) promotes collaborative, cross-disciplinary research and learning experiences in the areas of computing education, cyber-physical systems, cybersecurity, data sciences, human-centered computing, and scalable architectures and systems, for the benefit of Michigan Technological University and society at large.

The ICC creates and supports an arena in which faculty and students work collaboratively across organizational boundaries in an environment that mirrors contemporary technological innovation. The ICC’s 55 members represent more than 20 academic disciplines at Michigan Tech.


Sajjad Bigham Named Quarterfinalist in DOE Solar Desalination Prize Contest

Assistant Professor Sajjad Bigham, Mechanical Engineering-Engineering Mechanics, and his team have advanced to the second phase of the American-Made Challenges Solar Desalination Prize contest for his project, “Sorption-Based ZLD Technology.”

The contest is sponsored by the Solar Energy Technologies Office (SETO) at the U.S. Department of Energy (DOE).

Bigham is one of 19 quarterfinalists. Each receives a $50,000 cash prize.

Selected from among 162 applicants, the quarterfinalists now advance to the second, Teaming phase of the competition, for which each research team will develop and successfully validate an operational prototype of their solar-thermal desalination system.

Bigham is a heat transfer and energy systems specialist studying the scientific and engineering challenges at the intersection of thermal-fluid, material and energy sciences.

His Michigan Tech research lab, Energy-X, is focused on understanding the fundamental transport science of important energy carriers at micro, nano and molecular scales. He is a member of the Institute of Computing and Cybersystems’ Center for Cyber-Physical Systems.

Project Title: Sorption-Based ZLD Technology
Location: Houghton, MI
Project Summary: State-of-the-art zero liquid discharge (ZLD) technologies are currently bound with either intensive use of high-grade electrical energy such as mechanical vapor compressors or high capital cost with environmental concerns such as evaporation ponds. A team of researchers from Michigan Technological University, Oak Ridge National Laboratory, and the company Artic Solar proposes to address these issues by an innovative desiccant-based ZLD desalination system in which a multiple-effect distillation (MED) unit is uniquely embedded at the heart of an absorption-desorption system. The technology employs an absorption-based thermally-driven vapor compressor concept to pressurize the vaporized brine of the ZLD crystallizer unit from a low-pressure absorber to a high-pressure desorber module. This eliminates the need for energy-intensive electrically-driven mechanical vapor compressors currently employed in advanced brine crystallizers.

Timely updates about the American-Made Challenges Solar Desalination Prize are posted here.

The American-Made Challenges are a series of prize competitions that incentivize the nation’s entrepreneurs to strengthen American leadership in energy innovation and domestic manufacturing.

The Solar Desalination Prize is a multi-stage prize competition intended to accelerate the development of low-cost desalination systems that use solar-thermal power to produce clean drinking water from saltwater. It is intended to help achieve the goals of the Water Security Grand Challenge.

Each stage of the competition has increasing prize amounts, totaling millions of dollars.


Chee-Wooi Ten Negotiates Two Book Contracts with CRC Press

By Karen S. Johnson, Communications Director, Institute of Computing and Cybersystems

Associate Professor Chee-Wooi Ten, Electrical and Computer Engineering, recently finalized contracts to write two books for CRC Press, a major publisher of humanities, social science, and STEM books and textbooks. Ten is a member of the Institute of Computing and Cybersystems’s Center for Cyber-Physical Systems.

The first book is titled, Electric Power Distribution System Engineering, 4th edition. Ten has been teaching EE5250 Distribution Engineering I at Michigan Tech for 10 years.

The second book, Modern Power System Analysis, 3rd Edition, is used to accompany a senior-level power engineering elective. Both books are tentatively scheduled to be published in January 2022.

The new editions continue the work of the late Professor Turan Gönen, a leading expert and popular professor of electrical engineering at California State University, Sacramento. Gönen devoted his life to the writing of four textbooks. One of them, “Electric Power Distribution System Engineering,” published in 2013, is still taught in college classrooms worldwide. Ten notes that it is one of only a few Distribution Engineering textbooks that remains highly regarded by the international research community.

Book contract negotiations were initiated by Nora Konopka, editorial director of engineering at CRC Press/Taylor & Francis. Konopka worked with Ten on a previous book published by the company.

And although Ten did not personally know Prof. Gönen, he has used Gönen’s books in his courses. Ten says he believes Konopka contacted him because she has confidence that he will do an excellent job in carrying on Gönen ‘s work and legacy.

“As a course instructor, especially when you’ve just started, you explore the textbook and master the materials while teaching,” Ten reflects. “Written and revised throughout his long career, the contents of Gönen’s books are enriched from his decades of experience in pedagogy.”

Konopka’s original proposal was for Ten to write four new editions of books by Prof. Gönen. Ten told her, “I cannot do four books, but I can find two other authors who have the expertise to complete those books.”

So, with collaborators at University of Hong Kong and Virginia Tech, all four books will be completed and published. Two of them written by Ten, one each by his collaborators.

“My colleagues on this project are research-active faculty, and I am very proud to have an opportunity to collaborate with them,” Ten says, noting that they represent two of the best engineering programs in the world.

“These books are collaborative, and we will work together to ensure the next editions of these textbooks reflect today’s industrial and academic knowledge and best practices,” Ten says.

But there are challenges associated with this kind of project. Ten explains that the book materials he has inherited, which are in Microsoft Word, must be converted to the typesetting format he prefers, LaTeX. Only then can he begin editing the books. Fortunately, Ten was able to hire a few students; he expects them to complete the conversions by year-end.

“Then, for the next year, I can focus on qualitative development of the content,” Ten predicts. “I plan to ‘test drive’ some of the new content in the power engineering courses I have been teaching.”

Read an obituary of Prof. Turan Gönen here.

CRC Press. is an imprint of Taylor & Francis Group, part of Informa PLC, one of the world’s leading business intelligence and academic publishing businesses. The company publishes more than 2,700 journals and 5,000 new books each year. CRC Press specializes in Science, Technology and Medical books.

Founded in 2015, the Institute of Computing and Cybersystems (ICC) promotes collaborative, cross-disciplinary research and learning experiences in the areas of computing education, cyber-physical systems, cybersecurity, data sciences, human-centered computing, and scalable architectures and systems, for the benefit of Michigan Technological University and society at large.

The ICC creates and supports an arena in which faculty and students work collaboratively across organizational boundaries in an environment that mirrors contemporary technological innovation. The ICC’s 55+ members working in six research centers represent more than 20 academic disciplines at Michigan Tech. Member scientists are collaborating to conduct impactful research, make valuable contributions in the field of computing, and solve problems of critical national importance.

Full Citations

Turan Gönen, Chee-Wooi Ten**, and Ali Mehrizi-Sani, “Electric Power Distribution System Engineering,” 4th Edition CRC, January 2022 (tentatively).

Turan Gönen, Chee-Wooi Ten**, and Yunhe Hou, “Modern Power System Analysis,” 3rd Edition, CRC, January 2022 (tentatively).


CEE’s Zhen Liu Is PI of $689K Dept. of Transportation R-D Contract

Zhen Liu

Associate Professor Zhen Liu, Civil and Environmental Engineering, is the principal investigator on a project that has received a $689,239 research and development contract from the U.S. Department of Transportation, Federal Highway Administration.

Liu is a member of the ICC’s Center for Cyber-Physical Systems.

The project is titled, “Autonomous Winter Road Maintenance Decision Making Enabled by Boosting Existing Transportation Data Infrastructure with Deep and Reinforcement Learning.”

Yongchao Yang (ME-EM), Tim Colling (CEE) and Michael Billmire (MTRI) are Co-PI’s on this three-year project.


What Lies Ahead: Cooperative, Data-Driven Automated Driving

Kuilin Zhang

Associate Professor Kuilin Zhang, Civil and Environmental Engineering and affiliated associate professor, Computer Science, was featured in a recent article on Michigan Tech News. The article appears below. Link to the original article here.


By Kelley Christensen, September 28, 2020.

Networked data-driven vehicles can adapt to road hazards at longer range, increasing safety and preventing slowdowns.

Vehicle manufacturers offer smart features such as lane and braking assist to aid drivers in hazardous situations when human reflexes may not be fast enough. But most options only provide immediate benefits to a single vehicle. What if entire groups of vehicles could respond? What if instead of responding solely to the vehicle immediately in front of us, our cars reacted proactively to events happening hundreds of meters ahead?

What if, like a murmuration of starlings, our cars and trucks moved cooperatively on the road in response to each vehicle’s environmental sensors, reacting as a group to lessen traffic jams and protect the humans inside?

This question forms the basis of Kuilin Zhang’s National Science Foundation CAREER Award research. Zhang, an associate professor of civil and environmental engineering at Michigan Technological University, has published “A distributionally robust stochastic optimization-based model predictive control with distributionally robust chance constraints for cooperative adaptive cruise control under uncertain traffic conditions” in the journal Transportation Research Part B: Methodological.

The paper is coauthored with Shuaidong Zhao ’19, now a senior quantitative analyst at National Grid, where he continues to conduct research on the interdependency between smart grid and electric vehicle transportation systems.

Vehicle Platoons Operate in Sync

Creating vehicle systems adept at avoiding traffic accidents is an exercise in proving Newton’s First Law: An object in motion remains so unless acted on by an external force. Without much warning of what’s ahead, car accidents are more likely because drivers don’t have enough time to react. So what stops the car? A collision with another car or obstacle — causing injuries, damage and in the worst case, fatalities.

But cars communicating vehicle-to-vehicle can calculate possible obstacles in the road at increasing distances — and their synchronous reactions can prevent traffic jams and car accidents.

“On the freeway, one bad decision propagates other bad decisions. If we can consider what’s happening 300 meters in front of us, it can really improve road safety. It reduces congestion and accidents.”Kuilin Zhang

Zhang’s research asks how vehicles connect to other vehicles, how those vehicles make decisions together based on data from the driving environment and how to integrate disparate observations into a network.

Zhang and Zhao created a data-driven, optimization-based control model for a “platoon” of automated vehicles driving cooperatively under uncertain traffic conditions. Their model, based on the concept of forecasting the forecasts of others, uses streaming data from the modeled vehicles to predict the driving states (accelerating, decelerating or stopped) of preceding platoon vehicles. The predictions are integrated into real-time, machine-learning controllers that provide onboard sensed data. For these automated vehicles, data from controllers across the platoon become resources for cooperative decision-making. 

CAREER Award 

Kuilin Zhang won an NSF CAREER Award in 2019 for research on connected, autonomous vehicles and predictive modeling

Proving-Grounds Ready

The next phase of Zhang’s CAREER Award-supported research is to test the model’s simulations using actual connected, autonomous vehicles. Among the locations well-suited to this kind of testing is Michigan Tech’s Keweenaw Research Center, a proving ground for autonomous vehicles, with expertise in unpredictable environments.

Ground truthing the model will enable data-driven, predictive controllers to consider all kinds of hazards vehicles might encounter while driving and create a safer, more certain future for everyone sharing the road.

Tomorrow Needs Mobility

Michigan Technological University is a public research university, home to more than 7,000 students from 54 countries. Founded in 1885, the University offers more than 120 undergraduate and graduate degree programs in science and technology, engineering, forestry, business and economics, health professions, humanities, mathematics, and social sciences. Our campus in Michigan’s Upper Peninsula overlooks the Keweenaw Waterway and is just a few miles from Lake Superior.

Kuilin Zhang

About the Researcher: Kuilin Zhang

  • Data-driven optimization and control models for connected and automated vehicles (CAVs)
  • Big traffic data analytics using machine learning
  • Mobile and crowd sensing of dynamic traffic systems
  • Dynamic network equilibrium and optimization
  • Modeling and simulation of large-scale complex systems
  • Freight logistics and supply chain systems
  • Impact of plug-in electric vehicles to smart grid and transportation network systems
  • Interdependency and resiliency of large-scale networked infrastructure systems
  • Vehicular Ad-hoc Networks (VANETs)
  • Smart Cities
  • Cyber-Physical Systems

Chee-Wooi Ten’s Research Is Subject of Advisor News Article

Associate Professor Chee-Wooi Ten, Electrical and Computer Engineering, was cited in the article, “Reports Summarize Engineering Study Results from Electrical & Computer Engineering Department (Premium Calculation for Insurance Businesses Based On Cyber Risks In IP-based Power Substations),” published August 11, 2020 in Advisor News.

Ten is a member of the Institute of Computing and Cybersystems (ICC) at Michigan Tech and the ICC’s Center for Cyber-Physical Systems.

The paper emphasizes a framework of premium calculation for cyber insurance businesses by modeling potential electronic intrusion with steady-state simulation results and its direct hypothesized impacts, according to the article, citing a NewsRx press release.

The article discussed Ten’s National Science Foundation (NSF) Cyber-Physical Systems grant, “CPS: Medium: Collaborative Research: An Actuarial Framework of Cyber Risk Management for Power Grids.” Assistant Professor Yeonwoo Rho, Mathematical Sciences, is co-PI on the award. The three-year $349K project was awarded in August 2017. Read the abstract and view additional CPS and ICC research projects here, . View the award at NSF.com.

The Institute of Computing and Cybersystems, founded in 2015, promotes collaborative, cross-disciplinary research and learning experiences in the areas of computing education, cyber-physical systems, cybersecurity, data sciences, human-centered computing, and scalable architectures and systems for the benefit of Michigan Technological University and society at large.

It works to provide faculty and students the opportunity to work across organizational boundaries to create an environment that mirrors contemporary technological innovation.

Advisor News is published by InsuranceNewsNet, which describes itself as on the forefront of communicating breaking news and original insights to the industry. With thousands of news sources and hundreds of original articles, the site provides premium content typically only available through proprietary news outlets.