Category: CPS

Chee-Wooi Ten’s Research Is Subject of Advisor News Article

Associate Professor Chee-Wooi Ten, Electrical and Computer Engineering, was cited in the article, “Reports Summarize Engineering Study Results from Electrical & Computer Engineering Department (Premium Calculation for Insurance Businesses Based On Cyber Risks In IP-based Power Substations),” published August 11, 2020 in Advisor News.

Ten is a member of the Institute of Computing and Cybersystems (ICC) at Michigan Tech and the ICC’s Center for Cyber-Physical Systems.

The paper emphasizes a framework of premium calculation for cyber insurance businesses by modeling potential electronic intrusion with steady-state simulation results and its direct hypothesized impacts, according to the article, citing a NewsRx press release.

The article discussed Ten’s National Science Foundation (NSF) Cyber-Physical Systems grant, “CPS: Medium: Collaborative Research: An Actuarial Framework of Cyber Risk Management for Power Grids.” Assistant Professor Yeonwoo Rho, Mathematical Sciences, is co-PI on the award. The three-year $349K project was awarded in August 2017. Read the abstract and view additional CPS and ICC research projects here, . View the award at NSF.com.

The Institute of Computing and Cybersystems, founded in 2015, promotes collaborative, cross-disciplinary research and learning experiences in the areas of computing education, cyber-physical systems, cybersecurity, data sciences, human-centered computing, and scalable architectures and systems for the benefit of Michigan Technological University and society at large.

It works to provide faculty and students the opportunity to work across organizational boundaries to create an environment that mirrors contemporary technological innovation.

Advisor News is published by InsuranceNewsNet, which describes itself as on the forefront of communicating breaking news and original insights to the industry. With thousands of news sources and hundreds of original articles, the site provides premium content typically only available through proprietary news outlets.


ICC Releases FY19 Annual Report

The Institute of Computing and Cybersystems has released its FY 19 Annual Report, which can be viewed and downloaded on the ICC website.

We had a strong year in 2018-19,” says Timothy Havens, director of the ICC and associate dean for research, College of Computing.

“In FY20, new awards and research expenditures were even stronger, and I look forward to sharing more accomplishments with you in the coming months.”

Tim Havens, ICC Director

ICC, ME-EM’s Bo Chen Named ASME Fellow

Bo Chen, the Michigan Tech Dave House Professor of Mechanical Engineering and Electrical Engineering, has received the designation of Fellow from the American Society of Mechanical Engineers (ASME).

The Fellow level of membership is conferred to worthy candidates by the ASME Committee of Past Presidents to recognize their outstanding engineering achievements.

Nominated by ASME Members and Fellows, an ASME Member nominee must have 10 or more years of active practice, and at least 10 years of active corporate membership in ASME.

Chen is the director of Michigan Tech’s Intelligent Mechatronics and Embedded Systems (IMES) Laboratory. She has a dual faculty appointment in the Department of Electrical and Computer Engineering. Visit Chen’s faculty webpage here.

A member of the Institute of Computing and Cybersystems (ICC)’s Center for Cyber-Physical Systems (CPS), Bo Chen conducts interdisciplinary research in the areas of mechatronics and embedded systems, agent technology, connected and autonomous vehicles, electric vehicle-smart grid integration, cyber-physical systems and automation.

William Predebon, chair of the the Department of Mechanical Engineering-Engineering Mechanics said, “Dr. Chen has made major contributions in her field of embedded systems with application to hybrid-electric and electric autonomous systems. Her course in Model-based Embedded Control System Design is regularly in high demand by not only ME students but also EE students. This is a testament to the importance of the topic and her teaching ability.”

ASME helps the global engineering community develop solutions to real world challenges. Founded in 1880 as the American Society of Mechanical Engineers, ASME is a not-for-profit professional organization that enables collaboration, knowledge sharing and skill development across all engineering disciplines, while promoting the vital role of the engineer in society. ASME codes and standards, publications, conferences, continuing education and professional development programs provide a foundation for advancing technical knowledge and a safer world.


Chee-Wooi Ten Awarded $25K Contract from Protect Our Power

Chee-Wooi Ten, associate professor, Electrical and Computer Engineering, and member of the ICC’s Center for Cyber-Physical Systems, was recently awarded a 6 month, $25K contract from the nonpartisan advisory panel, Protect Our Power. The title of the project is, “Consulting for Utilities on Cyber Risk Management.”

The activities Ten will undertake for the project include identifying security vendors for industrial harden security hardware and software, and conducting a survey of each of the identified security vendors to enumerate their strengths and weaknesses.

Ten will talk with vendors and utilities to understand their needs, identify product niches, and prepare a conclusion report that discusses the pros and cons of each vendor product and how each niche will contribute to general solutions for deploying security solutions for U.S. power utilities.

Project deliverables include a literature review, vendor discovery search, criteria identification and definition, comparative analysis matrix, and best practices conclusion paper.

Protect Our Power is a nonpartisan advisory panel with the single focus of strengthening the nation’s electrical power grid. The panel is composed of experts from industry, the physical and cyber defense communities, and finance and government. Its mission is to build consensus among key stakeholders and public policy influencers to launch a coordinated and adequately funded effort to make the nation’s electric grid and the country’s more than 3,000 utility companies prepared and protected against all cyberthreats.


Kuilin Zhang Awarded $58K Contract

Kuilin Zhang (CEE/MTTI), a member of the ICC’s Center for Cyber-Physical Systems, is the principal investigator on a project that has received a $58,556 research and development contract from the University of Illinois Urbana Champaign. The one-year project is entitled, “Leveraging Connected Highway Vehicle Platooning Technology to Improve the Efficiency and Effectiveness of Train Fleeting.”


Jinshan Tang Receives Research Excellence Fund Award

Jinshan Tang

The Vice President for Research Office recently announced the Fall 2019 Research Excellence Fund (REF) awards. The awardees included College of Computing Professor Jinshan Tang, a member of the ICC’s Center for Cyber-Physical Systems, who was awarded a Portage Health Foundation (PHF) Infrastructure Enhancement (IE) Grants for his proposal, “High Performance Graphics Processing Units.”

The REF Infrastructure Enhancement (REF-IE) grants are designed to provide resources to develop the infrastructure necessary to support sponsored research and graduate student education. Funded projects typically focus on acquisition of equipment, enhancement of laboratory facilities, or enhancement of administrative support structure to expand the research capability of the unit.

For additional information about the Research Excellence Funds, visit the REF website.


Chee-Wooi Ten is PI of R and D Agreement with University of California Riverside

Chee-Wooi Ten

Chee-Wooi Ten (ECE), a member of Michigan Tech’s Center for Agile and Interconnected Microgrids and the ICC’s Center for Cyber-Physical Systems, is the principal investigator on a 17-month project that has received a $99,732 research and development cooperative agreement with the University of California Riverside. The project is entitled, “Discovery of Signatures, Anomalies, and Precursors in Synchrophasor Data with Matrix Profile and Deep Recurrent Neural Networks.”


Kuilin Zhang is PI on $567K Federal Railroad Administration Project

Khuilin Zhang

Kuilin Zhang (CEE/MTTI), a member of the ICC Center for Cyber-Physical Systems (CPS), is the primary investigator on a project that has received a $567,230 contract with the Federal Railroad Administration. This project is entitled, “Developing Safe and Efficient Driving and Routing Strategies at Railroad Grade Crossings Based on Highway-Railway Connectivity.” Pasi Lautala (CEE) is the Co-PI on this potential two-year project.


Zhen Liu Co-author of Publication in Cold Regions Science and Technology

Zhen Liu, associate professor of civil and environmental engineering and member of the ICC’s Center for Cyber-Physical Systems (CPS), is co-author of the article, “A multivariate freezing-thawing depth prediction model for spring load restriction,” which was published August 6, 2019, in the journal Cold Regions Science and Technology, which is published by Elsevier. Co-authors of the article are Ting Bio and John Bland.

Abstract: Road damages induced by heavily loaded truck traffic during the spring thaw are a major road distress in cold regions. To minimize these damages, Spring Load Restriction (SLR) is widely applied in the U.S., Canada, and other countries during the early thawing season by controlling the movement of freight-carrying trucks and heavy equipment travel until the thawing ends. Most SLR policies rely on the Freezing Depth (FD) and Thawing Depth (TD), especially the latter one. Therefore, accurate predictions of FD and TD are important to prevent both the extensive damage to the pavement due to the late placement or early removal of SLR and the economic loss of road users due to an unnecessarily long SLR period. Here, we propose a new multivariate model for predicting FD and TD in support of SLR decision-making. The model gives a curving surface of FD and TD in a 3-dimensional space, instead of 2-dimensional in traditional methods, by considering both the freezing and thawing indices in the entire freeze-thaw cycle. For model evaluations, yearly field data measured at five typical sites from 104 sites in Michigan were adopted. The evaluation results showed that the proposed model is accurate in predicting FD and TD for most sites. Compared to the previous TD predictions in the existing study, the TD predictions with the proposed model have been significantly improved. In addition, this study provides field data that have not been reported earlier in the literature and that can be used for validating other prediction models. The reported work is ready for practice for roadways in cold regions to support SLR decision-making.

https://digitalcommons.mtu.edu/michigantech-p/406

Citation: Bao, T., Liu, Z., & Bland, J. (2019). A multivariate freezing-thawing depth prediction model for spring load restriction. Cold Regions Science and Technology, 167.http://dx.doi.org/10.1016/j.coldregions.2019.102856


Development of a Low-Cost Marine Mobile Networking Infrastructure

Zhaohui Wang

Researchers:

Zhaohui Wang, Assistant Professor, ECE

Nina Mahmoudian, Adjunct Professor, ME-EM

Sponsor: ECE alumnus Paul Williams ’61
Amount of Support: $50,000
Duration of Support: 1 year

Underwater acoustic communication has been in use for decades, but primarily for military applications. In recent years, private sectors such as environmental monitoring, off-shore oil and gas exploration, and aquaculture have become interested in its possibilities.

But existing research about underwater acoustic communication networks often relies on human-operated surface ships or cost-prohibitive autonomous underwater vehicles (AUVs). And these cost barriers can limit academic research evaluation to computer simulations, constraining research innovation towards practical applications.

Recognizing the above gap, Michigan Tech Institute of Computing and Cybersystems (ICC) researchers Zhaohui Wang, assistant professor, Electrical and Computer Engineering, and Nina Mahmoudian, adjunct professor, Mechanical Engineering-Engineering Mechanics,  saw an opportunity to combine their areas of expertise: for Wang, underwater acoustic communications, for Mahmoudian, low-cost marine robotics and AUVs.

Also part of the research team were PhD student Li Wei, Electrical and Computer Engineering, and post-doc research engineer Barzin Moridian, Mechanical Engineering-Engineering Mechanics. The team also collaborated with scientists at Michigan Tech’s Great Lakes Research Center.

With a $50K seed grant from Electrical and Computer Engineering alumnus Paul Williams ’61, the team took the research beneath the surface to develop a low-cost marine mobile infrastructure and investigate the challenges and possible solutions in engineering a leading-edge AUV communication network.

They broke it down into three areas: the development of low-cost, high-modularity autonomous surface vehicles (ASVs), each equipped with a collection of sensors and serving as surrogates for AUVs; equipping each ASV with an acoustic modem and implementing communication and networking protocols to facilitate underwater communication among the vessels; and conducting field experiments to collect data about the fundamental challenges in mobile acoustic communications and networking among AUVs.

The team’s outcomes included two low-cost, autonomous, on-the-water boats; an experimental data set, data analysis, and preliminary results; a technical paper presented at the 2018 IEEE OES Autonomous Underwater Vehicle Symposium; and a marine mobile wireless networking infrastructure for use in continued research.

Just half of their seed grant has been used, and this summer Wang and Mahmoudian will work to improve the boats and the communications system, and conduct more field research. In addition, they are planning to write two National Science Foundation proposals to take their research even further.

View a summary of the research here.

Seed grant donor Paul Williams is also the benefactor of the Paul and Susan Williams Center for Computer Systems Research, located on the fifth floor of the Electrical Energy Resources Center. The 10,000-square-foot, high-performance computing center—the home of the ICC—was established to foster close collaboration among researchers across multiple disciplines at Michigan Tech

The ICC, founded in 2015, promotes collaborative, cross-disciplinary research and learning experiences in the areas of cyber-physical systems, cybersecurity, data sciences, human-centered computing, and scalable architectures and systems. It provides faculty and students the opportunity to work across organizational boundaries to create an environment that mirrors contemporary technological innovation.

Five research centers comprise the ICC. The ICC’s 50 members, who represent 15 academic units at Michigan Tech, are collaborating to conduct impactful research, make valuable contributions in the field of computing, and solve problems of critical national importance.

Visit the ICC website at mtu.edu/icc. Contact the ICC at icc-contact@mtu.edu or 906-487-2518.

Download a summary of the research.