Category: CPS

Biocomputing, Digital Health Focus of New Research Center


The Institute of Computing and Cybersystems (ICC) and the Health Research Institute (HRI) have established the Joint Center of Biocomputing and Digital Health (BDH).

The new research institute was co-founded by HRI member Jingfeng Jiang (BME) and ICC member Jinshan Tang (CC).

The mission of Joint Center of Biocomputing and Digital Health (BDH) is to conduct research, develop innovative solutions, and provide educational opportunities in the area of biocomputing and digital health, thereby enhancing Michigan Tech’s ability to recruit and retain high-quality researchers and students, elevating Michigan Tech’s presence in developing technologies for healthcare delivery, and increasing knowledge sharing in the global community.

Jingfeng Jiang is a professor with the Department of Biomedical Engineering. His research interests are in biomechanics, automated control of ultrasound scanning including the use of 3D printing technology, image and signal processing, non-invasive assessment of biomechanical properties of soft tissues, and computer aided analyses of cardiovascular flow.

Jinshan Tang is a professor in the Department of Applied Computing. His research interests are in image processing and pattern recognition, biomedical imaging and medical image analysis, and medical informatics and intelligent medical diagnosis systems. Tang is a member of the ICC’s Center for Cyber-Physical Systems.

The Institute of Computing and Cybersystems (ICC) creates and supports an arena in which faculty and students work collaboratively across organizational boundaries in an environment that mirrors contemporary technological innovation.

The Health Research Institute (HRI) aims to establish and maintain a thriving environment that promotes translational, interdisciplinary, and increasingly convergent health-related research and inspires education and outreach activities.

Please contact Jingfeng Jiang (jjiang1@mtu.edu) with questions.

Emily Zhang Is ME-EM Graduate Seminar Speaker

by Mechanical Engineering – Engineering Mechanics

The next virtual Graduate Seminar Speaker will be held at 4 p.m. tomorrow (Feb. 25) via Zoom.

Lan (Emily) Zhang (ECE) will present “Augmenting Radio Environments for better Wireless Ecosystems.”

Zhang is a member of the Institute of Computing and Cybersystems’s (ICC) Center for Cyber-Physical Systems.

Lan Zhang, ECE, to Present Lecture Jan. 15, 3 pm

Assistant Professor Lan “Emily” Zhang, Electrical and Computer Engineering, will present her lecture, “Augmenting Radio Environments for Better Wireless Ecosystems,” on Friday, January 15, 2021, at 3:00 p.m., via online meeting.

The lecture is hosted by the Michigan Tech Department of Computer Science. Zhang is a member of the Cyber-Physical Systems (CPS) research group of the Institute of Computing and Cybersystems (ICC).

Zhang’s research interest span the fields of cyber-physical systems, distributed machine learning, wireless communications, and cybersecurity. In her talk, she will discuss a series of studies leveraging smart-surfaces, e.g., meta-surfaces or reconfigurable intelligent surfaces (RISs), to augment radio environments for various purposes.

Lecture Abstract

In the last several decades, wireless technologies have become well-established to fight against propagation obstacles. Most conventional efforts are focused on optimizing end devices, such as transmitters and receivers, in order to adapt to the given transmission environment for better communications. However, the recent rapid convergence of the cyber and physical worlds (Cyber-Physical Systems or CPSs) presents unprecedented challenges to the wisdom of conventional design. Given ever-growing service demands, as well as the diverse wireless application scenarios, it is critical to adaptively augment the radio environments in a cost-effective way, while maintaining the aesthetic nature of living environments.

In her talk, Zhang will discuss a series of studies leveraging smart-surfaces–e.g., meta-surfaces or reconfigurable intelligent surfaces (RISs)–to augment radio environments for various purposes. Specifically, she will focus on three promising areas for enhancing the throughput and reliability of wireless communications, mitigating the physical-layer security threats, and facilitating wireless sensing activities. Both model-based and learning-based methods will be used for theoretical and practical analysis.

Biography

Dr. Lan Zhang is an assistant professor in the Department of Electrical and Computer Engineering at Michigan Tech. She received a Ph.D. degree in computer engineering from the University of Florida in 2020, and M.S. and B.Eng. degrees in telecommunication engineering from the University of Electronic Science and Technology of China in 2016 and 2013, respectively.

Zhang has served as a technical program committee member for several respected conferences, such as NeurIPS-SpicyFL 2020 and the 2020 IEEE IFOCOM poster/demo section. She has also served as reviewer for leading journals, such as IEEE Transactions on Communications, IEEE Transactions on Vehicular Technology, IEEE Transactions on Mobile Computing, and IEEE Transactions on Wireless Computing.

Lan Zhang, ECE

Sun Named to Lou and Herbert Wacker Professorship in Mechanical Engineering

by Office of the Provost & Senior VP for Academic Affairs

Ye “Sarah” Sun (ME-EM) has accepted the Lou and Herbert Wacker Professorship in Mechanical Engineering, which was created to retain and attract high-quality faculty who are at the top of their profession, can excite students to think beyond the classroom material, and knows how to integrate their research into the classroom.

Sun was chosen for this position as she is recognized as a rising star and outstanding researcher in the area of wearable sensors, systems, and robotics and a respected member of the smart health community.

In recognition of her innovative research in wearable sensors, Sun’s NSF CAREER award was selected for presentation to congressional offices in April 2019.

Sun is the director of the Institute of Computing and Cybersystems’s Center for Cyber-Physical Systems.

Among her research honors is the prestigious National Science Foundation (NSF) CAREER Research Award on “System-on-Cloth: A Cloud Manufacturing Framework for Embroidered Wearable Electronics.”

Sun will use this recognition and support to enhance her research in wearable and soft robotics. Her goal is to develop flexible textile robotics by leveraging the physical understanding and modeling of textile materials and dynamics and the recent advances of morphological computing.

Textile robotics are not only able to enhance human capabilities via wearable design but also achieve autonomous locomotion. The controllable structures of textiles directly provide a unified platform that is capable of integrating sensing and actuating into textile robotics itself. The positioning support will be used to recruit graduate students and to set up the manufacturing platform.

Sarah Sun to Present ME-EM Graduate Seminar Dec. 3, 4 pm

by Mechanical Engineering – Engineering Mechanics

The next virtual Graduate Seminar Speaker will be held at 4 p.m. tomorrow (Dec. 3) via Zoom. Sarah Sun (ME-EM) will present “E-Logo: Embroidered Wearable Electronics.”

Sun is an associate professor in the Department of Mechanical Engineering-Engineering Mechanics and an affiliated associate professor in the Department of Biomedical Engineering at Michigan Tech since 2014.

Research Excellence Fund Awards Announced

by Vice President for Research Office

The Vice President for Research Office announces the Fall 2020 REF awards. Thanks to the individual REF reviewers and the REF review panelists, as well as the deans and department chairs, for their time spent on this important internal research award process.

Research Seed Grants:

  • Sajjad Bigham, Mechanical Engineering-Engineering Mechanics
  • Bo Chen, Computer Science
  • Daniel Dowden, Civil and Environmental Engineering
  • Ana Dyreson, Mechanical Engineering-Engineering Mechanics
  • Hassan Masoud, Mechanical Engineering-Engineering Mechanics
  • Xinyu Ye, Civil and Environmental Engineering

ECE Doctoral Defense – Yongyu Wang

by Electrical and Computer Engineering

Computer Engineering doctoral candidate Yongyu Wang will defend at 10 a.m. Tuesday (Dec 1) via Zoom.

The title of his presentation is “High-Performance Spectral Methods for Graph-Based Machine Learning.” Co-advisors are Chee-Wooi Ten (ECE) and Zhuo Feng (ECE).

Chee-wooi Ten is a researcher with the ICC’s Cyber-Physical Systems group.

ME-EM’s Bo Chen is Co-PI of New DoE Grant

by Sponsored Programs

Darrell Robinette (ME-EM/APSRC) is the principal investigator on a project that has received a $1,348,109 research and development co-op/joint agreement from the Department of Energy.

The project is entitled, ” Energy Optimization of Light and Heavy Duty Vehicle Cohorts of Mixed Connectivity, Automation and Propulsion System Capabilities via Meshed V2V-V2I and Expanded Data.”

Jeff Naber (ME-EM/APSRC), Bo Chen (ME-EM/APSRC), Jung Yun Bae (ME-EM/APSRC) and Chris Morgan (PHC/APSRC) are Co-PI’s on this potential 2.3-year project. Bo Chen is a researcher with the ICC’s Cyber-Physical Systems research group.

Hongyu An: Curious About the World and Exploring the Unknown

by Karen S. Johnson, Communications Director, ICC

“A scientist should be a person who is always curious about nature and the world, and who tries to explore the unknown.” –Hongyu An, Assistant Professor, Electrical and Computer Engineering

Hongyu An, Assistant Professor, ECE

Exploring science and technology is always exciting for new Assistant Professor Hongyu An, Electrical and Computer Engineering. He says he is “very pleased to have the chance to mentor the next generation and share my knowledge and experience with undergraduate and graduate students.”

Several things drew Hongyu An to Michigan Tech, including his observation that as an institution Michigan Tech cares about its employees. “The excellent professors, smart students, and the supportive environment are the main reasons I joined Michigan Tech,” he says. “As a new faculty member, I am facing a lot of new challenges. There is great support in my department (ECE) and through the ICC.”

Hongyu is a member of two Institute of Computing and Cybersystems (ICC) research centers: Human-Centered Computing and Scalable Architectures and Systems. He also sees synergies with the Center for Cyber-Physical Systems.

“It is my great pleasure and honor to be a member of the ICC,” Hongyu says. “ I can collaborate with the experts in HCC for exploring the brain and artificial intelligence, and the professors in SAS for hardware and architecture designs. Moreover, the neuromorphic chips I am working on can potentially be applied to Cyber-Physical Systems.”

Hongyu’s primary research area is hardware design for AI and neuromorphic systems. He believes that Artificial Intelligence is probably one of the most challenging research topics in science, noting that recent work in deep learning and artificial neural networks is demonstrating great progress in approaching artificial intelligence. 

“But the traditional computers under von Neumann architecture cannot keep up with the development of neural networks and deep learning,” he cautions. “My research is addressing this challenge by using a new hardware design, from device to architecture levels.”

Hongyu’s teaching interests include VLSI, Circuits, and Electromagnetics. Desribing his teaching philosophy, he notes that making complicated things simple is more challenging than making simple things complicated, and that he strives for the former. This academic year, An is teaching EE 4271 VLSI Design and mentoring ECE master’s student, Sarvani Marthi Sarvani, whose project aims to design a silicon retina through CMOS and Memristors.

Hongyu and his research team are also investigating associative memory learning, a new learning method that aims to create a neuromorphic system that can learn from its surroundings directly. 

“Associative memory is a widespread self-learning method in biological livings, which enables the nervoussystem to remember the relationship between two concurrent events,” Hongyu explains. “Through this learning method, dogs can learn the sound of bells as a sign of food; people can remember a word representing an object.”

“The significance of rebuilding associative memory at a behavioral level not only reveals a way of designing a brain-like, self-learning neuromorphic system, it is also to explore a method of comprehending the learning mechanism of a nervous system,” he adds.

And finally, beyond his work as a professor and scientist Hongyu hopes that he is “a good husband to my wife, a good father to my sons, and a good son to my parents.”

Hongyu completed his Ph.D. in electrical engineering at Virginia Tech, his M.S. in electrical engineering at Missouri University of Science and Technology, and his B.S. in electrical engineering at Shenyang University of Technology.

Recent Publications

An, Hongyu, Mohammad Shah Al-Mamun, Marius K. Orlowski, Lingjia Liu, and Yang Yi. “Robust Deep Reservoir Computing through Reliable Memristor with Improved Heat Dissipation Capability. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2020).

An, Hongyu, Qiyuan An, and Yang Yi. “Realizing Behavior Level Associative Memory Learning Through Three-Dimensional Memristor-Based Neuromorphic Circuits. IEEE Transactions on Emerging Topics in Computational Intelligence (2019).

Founded in 2015, the Institute of Computing and Cybersystems (ICC) promotes collaborative, cross-disciplinary research and learning experiences in the areas of computing education, cyber-physical systems, cybersecurity, data sciences, human-centered computing, and scalable architectures and systems, for the benefit of Michigan Technological University and society at large.

The ICC creates and supports an arena in which faculty and students work collaboratively across organizational boundaries in an environment that mirrors contemporary technological innovation. The ICC’s 55 members represent more than 20 academic disciplines at Michigan Tech.

Sajjad Bigham Named Quarterfinalist in DOE Solar Desalination Prize Contest

Assistant Professor Sajjad Bigham, Mechanical Engineering-Engineering Mechanics, and his team have advanced to the second phase of the American-Made Challenges Solar Desalination Prize contest for his project, “Sorption-Based ZLD Technology.”

The contest is sponsored by the Solar Energy Technologies Office (SETO) at the U.S. Department of Energy (DOE).

Bigham is one of 19 quarterfinalists. Each receives a $50,000 cash prize.

Selected from among 162 applicants, the quarterfinalists now advance to the second, Teaming phase of the competition, for which each research team will develop and successfully validate an operational prototype of their solar-thermal desalination system.

Bigham is a heat transfer and energy systems specialist studying the scientific and engineering challenges at the intersection of thermal-fluid, material and energy sciences.

His Michigan Tech research lab, Energy-X, is focused on understanding the fundamental transport science of important energy carriers at micro, nano and molecular scales. He is a member of the Institute of Computing and Cybersystems’ Center for Cyber-Physical Systems.

Project Title: Sorption-Based ZLD Technology
Location: Houghton, MI
Project Summary: State-of-the-art zero liquid discharge (ZLD) technologies are currently bound with either intensive use of high-grade electrical energy such as mechanical vapor compressors or high capital cost with environmental concerns such as evaporation ponds. A team of researchers from Michigan Technological University, Oak Ridge National Laboratory, and the company Artic Solar proposes to address these issues by an innovative desiccant-based ZLD desalination system in which a multiple-effect distillation (MED) unit is uniquely embedded at the heart of an absorption-desorption system. The technology employs an absorption-based thermally-driven vapor compressor concept to pressurize the vaporized brine of the ZLD crystallizer unit from a low-pressure absorber to a high-pressure desorber module. This eliminates the need for energy-intensive electrically-driven mechanical vapor compressors currently employed in advanced brine crystallizers.

Timely updates about the American-Made Challenges Solar Desalination Prize are posted here.

The American-Made Challenges are a series of prize competitions that incentivize the nation’s entrepreneurs to strengthen American leadership in energy innovation and domestic manufacturing.

The Solar Desalination Prize is a multi-stage prize competition intended to accelerate the development of low-cost desalination systems that use solar-thermal power to produce clean drinking water from saltwater. It is intended to help achieve the goals of the Water Security Grand Challenge.

Each stage of the competition has increasing prize amounts, totaling millions of dollars.