John and Virginia Towers Distinguished Lecture Series, Materials Science and Engineering Graduate Seminar: Zhiqun Lin, Professor, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA; 11:00am-12:00 on Tuesday September 9th at M & M 610
Topic: A Robust Strategy to Monodisperse Functional Nanocrystals with Precisely Tunable Dimensions, Compositions and Architectures for Solar Energy Conversion and Photocatalysis
Nanocrystals exhibit a wide range of unique properties (e.g., electrical, optical, and optoelectronic) that depend sensitively on their size and shape, and are of both fundamental and practical interest. Breakthrough strategies that will facilitate the design and synthesis of a large diversity of nanocrystals with different properties and controllable size and shape in a simple and convenient manner are of key importance in revolutionarily advancing the use of nanocrystals for a myriad of applications in lightweight structural materials, optics, electronics, photonics, optoelctronics, magnetic technologies, sensory materials and devices, catalysis, drug delivery, biotechnology, and among other emerging fields. In this talk, I will elaborate a general and robust strategy for crafting a large variety of functional nanocrystals with precisely controlled dimensions (i.e., plain, core/shell, and hollow nanoparticles) for use in energy-related applications (i.e., solar cells and photocatalysis) by capitalizing on a new class of unimolecular star-like block copolymers as nanoreactors. This strategy is effective and able to produce organic solvent-soluble and water-soluble monodisperse nanoparticles, including metallic, ferroelectric, magnetic, luminescent, semiconductor, and their core/shell nanoparticles, which represent a few examples of the kind of nanoparticles that can be produced using this technique. The applications of these functional nanocrystals on plasmonic solar cells and photocatalysis will also be discussed.