
Susanta Ghosh (MEEM/MuSTI) is Principal Investigator on a project that has received a $170,604 research and development grant from the National Science Foundation. The project is titled “EAGER: An Atomistic-Continuum Formulation for the Mechanics of Monolayer Transition Metal Dichalcogenides.” This is a potential 19-month project.
By Sponsored Programs.
Extract
Two-dimensional materials are made of chemical elements or compounds of elements while maintaining a single atomic layer crystalline structure. Two-dimensional materials, especially Transition Metal Dichalcogenides (TMDs), have shown tremendous promise to be transformed into advanced material systems and devices, e.g., field-effect transistors, solar cells, photodetectors, fuel cells, sensors, and transparent flexible displays.
To achieve broader use of TMDs across cutting-edge applications, complex deformations for large-area TMDs must be better understood. Large-area TMDs can be simulated and analyzed through predictive modeling, a capability that is currently lacking.
This EArly-concept Grant for Exploratory Research (EAGER) award supports fundamental research that overcomes current challenges in large-scale atomistic modeling to obtain an efficient but reliable continuum model for single-layer TMDs containing billions of atoms.






Members of Michigan Tech’s
The students in the
Sure signs of spring in the Copper Country are robins returning, ice leaving and Michigan Tech’s Engineering Ambassadors (AE) inspiring students.