Category: News

Paul van Susante Named to Lou and Herbert Wacker Professorship in Mechanical Engineering

Paul van Susante (ME-EM) recently accepted an endowed appointment as the Lou and Herbert Wacker Professor in Mechanical Engineering. Van Susante joined Michigan Tech in 2012 as a lecturer (a role now called assistant teaching professor) before accepting an appointment as an assistant professor. Not only does Dr. van Susante meet or exceed all the criteria for this professorship, he also has a vested interest in teaching.

This endowed position was established to retain and attract high-quality faculty who are at the top of their profession, can excite students to think beyond classroom material, and who can effectively integrate their research into the classroom.

Involving students in his research is vital to van Susante. He’s been recognized in the Dean’s Teaching Showcase and as one of the Department of Mechanical Engineering-Engineering Mechanics’ (ME-EM’s) Teacher of the Year finalists four times. Paul is also the faculty advisor for the Multiplanetary Innovation Enterprise (MINE) team, solving challenges in the mining industry.

In addition to obtaining over $3 million in funding as a principal investigator, Dr. van Susante leads Michigan Tech’s Planetary Surface Technology Development Lab (PSTDL) team. The lab, also known as HuskyWorks, includes several students who advanced to the final round of NASA’s Watts on the Moon Challenge in both 2022 and 2023. As part of these competitions, researchers from NASA and other robotics companies travel to Michigan Tech to meet with van Susante and his team.

Other projects include:

  • NASA Lunar Surface Technology Research (LuSTR 2020)
  • NASA Breakthrough Innovative and Game-changing (BIG) Idea Challenge 2020: “Tethered permanently shaded Region Explorer (T-REX)” –power and communication delivery into PSR
  • NASA Break the Ice Challenge – the latest centennial challenge from NASA designed to develop technologies aiding in the sustained presence on the Moon
  • NASA ESI (Early Stage Innovation) to excavate rock gypsum for water production on Mars
  • NASA GCD MRE – Molten Regolith Electrolysis, or MRE, uses an electric current in a reactor to separate oxygen from lunar dust, also known as regolith. The scope of the project is to provide a regolith feeder and transportation system for the MRE reactor. Research into regolith properties, here on Earth, and in extreme environments like lunar gravity and vacuum are being conducted. Results from these experiments will be vital in choosing and developing these feeder and transportation technologies.
  • HOPLITE (Heavy Onboard Platform for Lunar ISRU and Terrain Excavation) is a modular robotic system built at Michigan Tech that enables the field testing of IDSRU technologies. Many payloads are currently being designed and implemented for lunar applications and there is a need for accurate, reliable, and safe mobility of these payloads during filed testing. Using a large sensor array, fine tuned control and autonomy, HOPLITE is designed to provide a solution to this need.

The success in his research has translated to van Susante publishing 82 papers while at Michigan Tech and giving 37 invited talks. He is currently an associate editor for In-Situ Resource Utilization (ISRU) and the American Society of Civil Engineers (ASCE) Journal of Aerospace Engineering.

(reprinted from October 25, 2023 Tech Today.)

Research Opportunity in Applied Computational Fluids: Vortex Genesis in Uranus’s and Neptune’s Atmospheres

Composite of three images of the surface of Nepture, with one feature boxed.
Figure 1: left: Neptune’s Dark Vortices GDS-89 and DS-2, Voyager-2 Flyby 1989. right: Uranus Dark Spot 2006. bottom: Neptune Dark Spot 2018.

Summary of Project

Dr. Shawn Brueshaber (ME-EM) is seeking applications for 1 PhD student interested in researching the fluid dynamics of Uranus’s and Neptune’s atmospheres starting as early as Spring 2024 if the right candidate is found. Uranus and Neptune, the ‘Ice-Giants,’ are the least explored planets of our Solar System yet thought to be one of the most common types of planets in the Galaxy. The National Academies has recently identified Uranus as the highest priority destination for a new “flagship” class spacecraft mission. Atmospheric science will undoubtedly be a major component of such a mission. The atmospheres of the Ice Giants are quite unlike those of Earth and similar ‘terrestrial’ planets (Venus, Mars, and the moon, Titan), and also unlike those of its larger cousins, the Gas-Giants (Jupiter and Saturn). Uranus, and especially Neptune, occasionally form large dark vortices (Fig.1) but what causes them is unknown.

The successful candidate will dive ‘under the hood’ to modify and use the EPIC General Circulation Model (a type of computational fluid code; Dowling et al. 1998) to determine how dark anticyclonic vortices are formed. This NASA funded project seeks to test the hypothesis that deep moist convection (e.g., thunderstorms) is the primary mechanism that forms these enigmatic vortices. An alternative hypothesis is that a non-convective hydrodynamic instability is responsible. Dr. Brueshaber has funding available to support the PhD student for a minimum of three years.

Your Qualifications

  • A strong interest in fluid mechanics and meteorology. A strong interest in planetary science is a plus.
  • Coursework in fluid mechanics, atmospheric dynamics, or similar. Coursework in computational fluid dynamics (previously, or planned).
  • Good programming skills (e.g., Python and/or Matlab, C is a strong plus). Experience with Linux commands are a plus.
  • A willingness to learn, modify, and apply a General Circulation Model (GCM).
  • Good written and verbal communication skills.
  • A Masters of Science in Mechanical Engineering, Atmospheric Science, Physics, or other closely-related field. Graduate standing in any of the above disciplines will be considered.
  • Strong oral and written communication skills.
  • US Citizenship is NOT a requirement.

How to Apply

Interested candidates should send their CV (2 pages max) and a cover letter explaining how the candidate’s qualifications match to the research project description to

Cross-disciplinary Research Team and Carbon Nanotube Forests

Two carbon nanotube substrates with a nanotube zoom and a sterilization step.
Detail from a schematic illustration of the process from CNT forest growth to cell seeding.

A cross-disciplinary research team of MTU undergraduate students, graduate students and professors are co-authors of an article published in the Journal of Materials Research.

The article, titled “Conductive 3D nano-biohybrid systems based on densified carbon nanotube forests and living cells,” appears in the journal’s Early Career Scholars in Materials Science issue, 2024.

The research team worked with carbon nanotube (CNT) “forests,” groupings of carbon nanotubes on which conductive biohybrid (cell-material) systems can be developed. Working with fibroblasts or cardiomyocytes, the researchers integrated the cell cultures with the CNT forests coated with gelatin. The novelty of the work lies in the use of the 3D structure of CNT forests as the main part of the scaffold and the development of a conductive, porous, and 3D cardiac scaffold with high cytocompatibility. The results show that the scaffold could be used in applications ranging from organ-on-a-chip systems to muscle actuators.

Congratulations to the research team:

Bagheri, R., Ball, A.K., Kasraie, M. et al. Conductive 3D nano-biohybrid systems based on densified carbon nanotube forests and living cells. Journal of Materials Research (2023).

The original article is licensed under a Creative Commons Attribution 4.0 International License.

Jeff Naber Receives 2023 ASME Internal Combustion Engine Award

Jeffrey D. Naber is the 2023 recipient of the prestigious Internal Combustion Engine (ICE) Award, presented annually by the American Society of Mechanical Engineers (ASME).

Naber is the Department of Mechanical Engineering-Engineering Mechanics’ (ME-EM’s) Richard and Elizabeth Henes Professor in Energy Systems and director of the Advanced Power Systems Research Center (APSRC/APS Labs) at Michigan Technological University. He was honored with the award at the ASME’s 2023 ICE Forward Conference, held Oct. 8-11 in Pittsburgh, Pennsylvania.

The ASME ICE Award recognizes eminent achievement or distinguished contribution over a substantial period of time, which may result from research, innovation or education in advancing the art of engineering in the field of internal combustion engines; or in directing the efforts and accomplishments of those engaged in engineering practice in the design, development, application and operation of internal combustion engines.

Naber, the recipient of Michigan Tech’s 2022 Research Award, was nominated for ASME ICE Award recognition by Seong-Young Lee (ME-EM).

By Mechanical Engineering-Engineering Mechanics.

My Story: Ryan Schwartz, MTUengineer

Ryan Schwartz ’24, mechanical engineering

Ryan Schwartz grew up in Saline, Michigan. He’ll earn his BS in mechanical engineering this spring, and plans to earn an MS in engineering management, too. Ryan works as a LEAP Leader in the Department of Engineering Fundamentals, as a good role model, effective mentor, and learning coach—all rolled into one.

“As a LEAP Leader, I lead a group of roughly 20 students through the First-Year Engineering courses at Michigan Tech. I am with my students in the classroom—along with other groups and their LEAP Leaders—while they work through projects and assignments. I also lead a class once a week with just my students to reinforce the concepts taught that week in a new and interactive way.

When I was a student in the First-Year Engineering courses, I had a fantastic LEAP Leader that made my experience fantastic. I wanted to be able to provide that same experience to others, so I became a LEAP Leader.

“The thing I enjoy most about being a LEAP Leader is helping my students grow and find their place here at Michigan Tech.”

Ryan Schwartz
Ryan has seen the Northern Lights during his time at Michigan Tech
“I love exploring the Keweenaw. My friends and I will often go out adventuring and have great times along the way.”

In my future career, I want to do something in the realm of sustainability and alternative energy. I don’t know yet what form that will take, but I want to do my part to reverse climate change.

I also want to be a manager and leader, wherever I may end up. I’ve developed strong leadership skills, many by serving as a LEAP Leader, that I would love to apply throughout my career.

I knew I would enjoy my time here but I’d had my heart set on going to the University of Michigan my whole life. I did not get accepted there, and I think that was the best thing that ever happened to me.

At Michigan Tech, I’ve been able to flourish. I’ve been exposed to more opportunities than I ever thought possible.

“Classes are only a part of college.”

Advice to incoming students, from Ryan Schwartz, LEAP Leader

The best advice I can give is that classes are only a part of college. College is also about discovering yourself and making friends and memories along the way. Michigan Tech is a great place to do that while getting a quality education.

I am currently the Vice President and a Captain for the MTU Men’s Ultimate Frisbee Club – DiscoTech. My first year at Michigan Tech, I made literally every single one of my friends on Walker Lawn throwing a frisbee, and then our whole group joined the Ultimate team.

Read More

Michigan Tech LEAP Leaders: Assist Fellow Students

My Story: Kasandra Waldi, MTUengineer

First-year engineering student Kasandra Waldi ‘27

I am from Shelby Township, but I grew up in Warren, Michigan until 6th grade, and those are both in the Metro-Detroit area. I chose to come to Tech because of the great community and its strong mechanical engineering degree program, which is what I chose as my major.

When I was younger, I originally wanted to be a veterinarian but, I eventually realized that it wasn’t my calling. Then, I settled on being a computer science major because I liked the small coding projects we did in middle school. In high school, I discovered that I did not want to code any more than I had to. Fortunately, another degree was calling my name. Since I had always loved building things, including in FIRST Robotics, I realized that mechanical engineering was the path I truly wanted to follow.

“Remember to breathe.”

Kasandra Waldi

My advice for incoming students? I would recommend creating a schedule. I use Google Calendar, and set up deadlines and tasks that need to be completed. I even make sure to schedule in my meals and sleep!

My favorite part of Engineering Fundamentals is the first-year engineering class. I love doing small but fun projects!

My biggest challenge thus far is finding a way to resist hanging out with friends. I must do this in order to make sure I can get all of my homework done on time.

I am not exactly sure what my future path holds, but I would like to be in charge of a project and take it from concept to completion.

The best advice that I have been given is, “Remember to breathe.” This is important as I often will spend way too much time on homework and forget to just take a break and relax.

My Story: Sophie Bollin, MTUengineer

Sophie Bollin ’24, mechanical engineering

During her time at Michigan Tech, Sophie Bollin has attended four career fairs, learning more and more about job opportunities each time. But for internships, she started at Caterpillar, and the wonderful experience she had there has inspired her to return—to do more, and learn more.

“I’ve had the opportunity to complete two internships at Caterpillar as a testing, validation, and design engineering intern within its Paving Products division. I initially spoke with Caterpillar at Michigan Tech’s CareerFEST, an event that takes place on campus each year just prior to the fall Career Fair. It led to an internship offer and, then I returned the following summer to rejoin the same team. Design engineering was my main focus, which allowed me to work on a wide range of projects and designs, with wonderful mentors. I met so many fantastic people. I look forward to returning yet again next summer.

I was born and raised in Woodbury, Minnesota. Michigan Tech was honestly my dream school. I knew I wanted to work in the automotive or related industries and Tech had great opportunities to work in these fields. They also had one of the best mechanical engineering programs, so for me it was a perfect fit.

Each year it seems like more companies come to campus, wanting to hire MTU students. They’re super enthusiastic about every student’s unique background and experiences.

Sophie is a member of Michigan Tech’s Clean Snowmobile Enterprise team.

Michigan Tech has definitely changed my life in many ways. During my time here I have met some lifelong best friends—and some of the best professors and mentors.

Long term I would like to stay in the heavy equipment or motorsports industries as a test engineer, where I can enjoy my work every day. The best advice I have been given is ‘to do what makes you happy,’ which I do try to implement in my everyday life.”

If I could change the world…

I would want it to be by sharing my experiences and passions with others so that they can find what inspires them. 

My advice for first year ME students 

Mechanical engineering allows for you to interact with many of the different aspects of industry and the engineering world. Some of the courses may be intimidating or difficult, so take advantage of the many resources Michigan Tech offers you. 

“Prioritize school, but make sure to explore and have fun.”

Advice for incoming students, from Sophie Bollin

New Faculty Spotlight: Shawn Brueshaber

Shawn Brueshaber comes to Michigan Tech from Western Michigan University, where he earned his MS and PhD in Mechanical Engineering. He earned his BS in Aerospace Engineering at Embry-Riddle Aeronautical University in Daytona Beach, Florida. After graduating, he spent several years in industry, eventually earning his Master’s degree while working full time. His research at Western focused on the polar atmospheric dynamics of the giant planets—Jupiter, Saturn, Uranus, and Neptune. And that’s just for starters. Welcome, Dr. Brueshaber!

What drew you to Michigan Tech?

I like the climate—cool and snowy.  Seriously, I applied to multiple universities and when I interviewed here, I found it to be a good fit.  

What is your primary area of research and what led you to it?

I’ve always had an interest in weather and planetary science. Once I discovered I could combine them with my formal education of mechanical and aerospace engineering to conduct research, I was off and running!

My primary area of research is basically figuring out how weather works on other planets. 

Dr. Shawn Brueshaber

Can you share a little more about your research and what you like about it?

At first glance, atmospheric planetary science doesn’t seem to hold a lot of everyday, practical problem-solving here on Earth, which is what many engineering students tend to do.  However, because our understanding of weather and climate is a subset of fluid dynamics, and, in turn, is a huge area of physics that is still not fully understood, atmospheric planetary science provides another rich field of science that may eventually lead to a more complete understanding of fluid mechanics. 

My ultimate goal is to develop a comprehensive theory of weather and climate applicable to all planetary bodies with an atmosphere. Perhaps along the way, we will gain a better understanding of turbulence, which can help with generating sustainable fusion power production.

What do you consider an important long-term goal for your research, teaching, or outreach?

I am working towards developing a deeper understanding of how planetary atmospheres work.  I intend to do this by continuing my current research plans, as well as conducting new research focusing on clouds and precipitation in the Keweenaw Peninsula. 

I have some nascent research ideas applicable to biological sciences, too. Through all this, I want to create industry- and graduate school-ready engineers with a love of learning and appreciation for the natural world–and how we can move humanity forward in a more sustainable and compassionate path to the future.

What do you hope to accomplish, as an educator and as a researcher, over the next few years?

The Flammarion engraving is a wood engraving by an unknown artist that first appeared in Camille Flammarion’s L’atmosphère: météorologie populaire (1888).

I want to set up a more comprehensive suite of meteorology instrumentation for the Keweenaw area, while continuing my current research inquiries on the giant planets. Additionally, I have a strong interest in branching into researching meteorology on Saturn’s giant moon, Titan.  

As for education, I want to develop a new course that teaches engineering students the basics of planetary science, for those that wish to work in the space industry. Understanding why scientists impose a set of instrument requirements for engineers to figure out is an important component in making more efficient and less expensive space exploration missions. In turn, we will get more science return per dollar. 

And, of course, I desire to improve my teaching abilities. I have taught on and off since 1995. I started out by teaching a graduate course (developing a fluids class from scratch), and then undergrad courses (Thermodynamics, Introduction to Mechanical Engineering, and Material Science), and Developmental Algebra. 

Where are you from? What do you like to do in your spare time?

Originally, I’m from Maryland. I like hiking, cross-country skiing, SCUBA diving, backpacking, and running (although I need to start from scratch again). Also reading—history and science fiction—and gaming (both computer and board games).  I enjoy astronomy, cooking, and spending time serving my three cats.

What’s your favorite book, movie, or piece of art?

That is a very difficult question. How can one have only ONE favorite book, movie, or piece of art?  ;-). I’ll answer by saying one of my favorite recently-read books was “Sleepwalkers, How Europe went to War in 1914,” by Christopher Clark.  This book goes into a deep analysis of the situation in Europe and the Near East in the late 19th century and how Europe’s leaders avoided a number of potential flashpoints into the 20th century, but infamously and not at all inevitability, stumbling into the catastrophe of World War I, the Great War. This war, perhaps every bit as the Second World War, shapes much of our geopolitics today. 

As for movies, I can’t really single out a favorite.  But I have been very pleased with the recent Star Trek TV series “Strange New Worlds.”  I’m also a big fan of The Expanse, Star Wars, and Battlestar Galactica. If it is science fiction, I’m going to pay attention.   

As for art, the Flammarion engraving is probably my favorite piece. It first intrigued me as a four-year old. I couldn’t stop looking at it and trying to understand it.

In September of 2022, I attended a planetary science conference in Granada, Spain.  I visited the Alhambra complex and fell in love with the architecture of the Nasrid dynasty, and in Cordoba, the Grand Mosque-Cathedral. The use of thin tall columns, arches, color, use of light, water features, and the elaborate application of geometric patterns on tile, and natural, and astronomical themes was breathtaking. 

“Be open to new ideas and new experiences. You get a finite number of orbits around the Sun so make the most of them.”

Dr. Shawn Brueshaber’s advice to incoming students

Any favorite spots on campus, in Houghton, or in the UP?

I’m new to the area so I don’t really have a truly  favorite place yet. However, on previous trips to the UP, I really enjoyed Munising and hope one day to hike part of the long trail above Pictured Rocks. 

Any advice for incoming students?

Learn to organize your day, week, and semester. Establish a healthy and energetic lifestyle, and engage in intellectual interests beyond your major.  I became a huge history buff in college and took several additional history courses as electives. I read many a book on ancient and military history and it has provided me with useful lessons and a sound understanding of how the world really works. If you are an engineering student, simply sticking to engineering courses is a severe detriment, both as a citizen and as an employee. So, find or rejuvenate your intellectual curiosity. Be open to new ideas and new experiences. You get a finite number of orbits around the Sun so make the most of them. 

A view from the hiking trail above the Pictured Rocks National Lakeshore on Lake Superior. Photo by Richard Hurd, Flickr.

New Faculty Spotlight: Chad Walber

Dr. Chad Walber

Chad Walber recently joined the faculty as an Associate Teaching Professor. He earned a BS in Electrical Engineering and a BS in Mechanical Engineering from Michigan Tech, then went to work for PCB Piezotronics for several years as a technical support engineer. He returned to Michigan Tech in 2007 to earn an MS and PhD in Mechanical Engineering. After that, he returned to PCB, working as a research and development engineer for 12 years. He joined Michigan Tech as a Visiting Professor of Practice in January, before joining the ME-EM Department full time this fall.

“I like to tell people I have the Michigan Tech Grand Slam.”

Dr. Chad Walber

What drew you to Michigan Tech?

I’m originally from Wisconsin. I’ve loved the Houghton-Hancock area from the first moment I saw it, when I came up for a tour as a prospective undergrad. After living here and making some of the best friendships of my life during college, I knew I always wanted to end up back up here. To me, the Keweenaw is one of the most beautiful places in the world.

What is your primary area of research and what led you to it?

My background is in Dynamic Systems, Noise and Vibration, Acoustics, and specifically the test and measurement of those quantities. I was very interested in the Signal Processing aspect of all of this from my electrical engineering classes, and really dug into it more when I started to work for PCB. At PCB I helped develop not only new sensors, but new calibration methods for microphones and accelerometers. I am also very involved in microphone and accelerometer calibration standards through the IEC.

Can you share a little more about your research and what you like about it?

As a teaching professor, I’m not really focused on research. For my other professional activities though, I am involved in international standards with respect to microphones and accelerometers. I’ve helped develop both specification and calibration standards around microphones and sound level meters. I’m also involved in the sensors and instrumentation technical committee for the Society of Experimental Mechanics. This coming year at the International Modal Analysis Conference, I will also be teaching Modal Theory at the New/Young Engineer Workshop. 

When it comes to collaboration, I’m happy to help people with various measurement requirements. I’ve got a lot of experience in measurements of dynamics systems, but I’ve done a fair amount of destructive testing as well.

What do you consider an important long-term goal for your teaching, research, and outreach?

I’d like to get more people talking about Metrology. Part of almost every type of research that’s done here has a measurement component, but sometimes we don’t really think about how accurate our measurements really are, or if there might be a better way to measure that phenomena we look at. I worked a lot in calibrated dynamic transducers, and showing how different calibration methods can give you a slightly different answer as to the performance of the particular device.

“Ask for help on anything you have questions on. Don’t be afraid to make mistakes, it’s the best way to learn something.”

Dr. Chad Walber’s advice for incoming students

What do you hope to accomplish over the next few years?

The Starry Night (1889) by Vincent Van Gogh

I’d like to get to know my students better and help them figure out how best they learn. I feel like when folks come to MTU, they don’t realize that they can and should adapt their learning processes. The way a student learned things in high school may not be the best way for them to learn things going forward. 

I also want to make them all more curious about the world around them. I want my students to be okay with questioning things as well as understanding that it’s alright to not know all of the answers the first time.

What do you like to do in your spare time?

I’m very much a tinkerer, and I’ve gotten into 3-D printing, carpentry, programmable electronics, and photography. Astrophotography is a hobby of mine. I also enjoy board games, computer games, and LEGOs. If you come by the ME-EM Department front desk, and my office, you’ll see some of the models I’ve built. I also enjoy camping and all forms of outdoor cooking. Grilling, smoking, and open fire foods are high on my list of favorites.

What’s your favorite book, movie, or piece of art?

My favorite book is “The Martian,” by Andy Weir. My favorite movie is WALL-E. My favorite piece of artwork is The Starry Night by Vincent van Gogh. I just received the LEGO version of this painting today and will be putting it together in the coming week.

Any favorite spots on campus, in Houghton, or in the UP?

Anywhere along the Portage “canalside” is a great place to just sit and collect your thoughts. On campus I do enjoy the green space between the EERC and Rehki Hall. It’s a great place to relax in some shade, and enjoy the day.

New Faculty Spotlight: Bhisham Sharma

Bhisham Sharma

Associate Professor Bhisham Sharma comes to Michigan Tech from Wichita State University, where he worked as an assistant professor in the Department of Aerospace Engineering. He earned his BS in Mechanical Engineering at the University of Pune in Pune, India, and his MS and PhD in Aeronautical and Astronautical Engineering at Purdue University. He also spent a few years at Purdue as a post-doctoral research associate and a visiting assistant professor. Welcome, Dr. Sharma!

What drew you to Michigan Tech?

I was initially drawn to Michigan Tech for its exceptional academic reputation and its commitment to interdisciplinary research and innovation. This environment offers a fantastic opportunity to foster collaboration, a critical element in addressing complex research challenges. What sets Michigan Tech apart is the visible support and resources provided by the administration, a feature not commonly found at every university.

Another significant factor in my decision was the ME-EM department’s outstanding academic program and its strong emphasis on equipping students with real-world experiences. As a faculty member, my own teaching philosophy and vision perfectly align with the department’s approach as we bridge the gap between theoretical knowledge and practical engineering applications.

Last but not least, who wouldn’t jump at the chance to reside in such a breathtaking and unique natural environment? Michigan’s Upper Peninsula offers a quality of life that is second to none, with an abundance of outdoor activities and natural beauty. I am looking forward to exploring all there is to explore!

“Always remember that the word ‘school’ derives from the Greek word for leisure. True learning only happens when your mind is free to explore and think new thoughts.”

Dr. Bhisham Sharma’s advice for incoming students

What is your primary area of research?

My research primarily falls in the overlap of solid mechanics, structural dynamics, acoustics, and advanced manufacturing. At one end of the spectrum, I seek to understand fundamental mechanics and acoustics of novel engineered material systems such as acoustic metamaterials, phononic structures, architected lattice structures, and stochastic foams. At the other end, I focus on developing advanced manufacturing methods that can enable such structures and to translate this fundamental knowledge—create performance-tailored solutions to critical engineering problems across various industries.

Can you share a little more about your research and what you like about it?

Overall, my research revolves around a central question: Can we develop lightweight structures that possess tailored multifunctional properties for specific applications? Let’s take, for example, the outer casing of a cutting-edge aircraft engine, a nacelle, which is designed as a set of separate components. Each serves a single function: the duct shells bear the primary loads; acoustic liners absorb engine noise; thermal management relies on heat shields; and composite fabric wraps ensure blade containment. This conventional “single-component, single-function” approach hampers cost savings, weight reduction, and fuel efficiency gains. It also constrains innovation in vehicle configuration.

My overarching research objective is to drive a paradigm shift and replace this design approach with a new, “single-component, multiple-functions” approach, a transformation that involves creating application-specific multifunctional structures, and advancing the essential tools for their design, analysis, and certification.

My work is inherently interdisciplinary, encouraging me to delve into physics, mathematics, and manufacturing. This continuous opportunity to acquire new knowledge fuels my passion and excitement for this field. I am motivated by the prospect of pushing the boundaries of what is possible. I find immense fulfillment in the daily process of discovery and learning that this field offers.

What do you like to do in your spare time?

Most of my spare time these days is spent enjoying the adorable shenanigans of my two 1-year old kittens. I love Indian classical music and enjoy discovering new aspects to its underlying theory. I also read quite a bit. I have always been fascinated by geopolitics, so I spend a fair amount of time reading up on the current state of world affairs. I am also an ardent Manchester United soccer fan, and make sure to watch their game over the weekends. Watching TV—baking shows or murder mysteries—is my go-to after a busy day at work.

What’s your favorite book, movie, or piece of art?

Candide by Voltaire and Animal Farm by George Orwell. I have read both books multiple times. Guide, an old Bollywood movie—and Taxi Driver are my favorite movies. My favorite piece of art is Beethoven’s Symphony No. 5. I don’t think any human being has ever created anything more beautiful than its allegro con brio.

Great Sand Bay, source: Visit Keweenaw

Any favorite spots on campus, in Houghton, or in the UP?

I have only been here two months, so it is too early for me to pick a favorite spot! For now, I think the Great Sand Bay in Eagle Harbor is my favorite spot on a warm day.