Archives—March 2014

Biomedical Engineering Graduate Seminar: Magnesium-Neodymium Alloys for Biomedical Applications

Biomedical Engineering Graduate Seminar:
Dr. Jan-Marten Seitz, Institut für Werkstoffkunde, Leibniz Universität Hannover, Garbsen, Germany
Friday, April 4 at 3:00 in U113 M&M

Title: “Development and Characterization of Magnesium-Neodymium Alloys for Biomedical Applications”
The aim of the presented study is to investigate and demonstrate the potential of neodymium additions as a substitute for rare earth (RE) misch-metal in magnesium alloys for biomedical applications. Here, the alloys LAE442, LANd442, ZEK100, ZNdK100, and Nd2 were manufactured and processed to evaluate their material characteristics in different states and to investigate the effects of Nd additions. To determine the mechanical characteristics of these alloys, tensile tests were initially carried out in the hot extruded state. Subsequent T5- and T6-heat treatments were con-ducted to reveal their effect on the alloys’ strength and elongation values. The general degradation behavior of the alloys in a 0.9% NaCl solution was investigated by means of polarization curves and hydrogen evolution. In addition, by using various in-vivo-parameters, a corrosion environ-ment was established to determine the alloys’ degradation in vitro. Comparing LAE442 and LANd442, a lack of corrosive stability could be ob-served while the mechanical strength remained constant in the latter alloy’s Nd substitution for the RE mischmetal. A contrary effect was deter-mined for the alloy ZEK100 compared with ZNdK100. In both substitutional approaches, heat treatment procedures could not align the substi-tutes’ material properties with the educts’ material properties. However, in the case of Nd2, which was initially chosen as relevant alloy to deter-mine the effects of Nd on Mg in a simple binary composition, excellent ductility and corrosion properties could be observed. This makes the alloy a promising candidate for use as resorbable implant material, especially in the field of stenting applications. Here, the enormous increase of duc-tility, promoted by an advantageous microstructural behavior under loadings, could be attributed to additions of Nd.

Biography: Within the past 5 years, Dr. Seitz has worked as a PhD Student and Scientist at Leibniz Universität in Hannover, Germany, with a focus on lightweight materials research and biomedical engineering applications. He developed process chains for resorbable Mg-implant applications such as stents, intramedullary nails, and sutures. This work included basic processes such as casting, hot-extrusion, heat treatment, drawing and coating procedures, as well as many analytical processes. The impact of different alloying elements on the mechanical and corrosive behavior of Mg in different conditions was one of the biggest challenges in this context. Besides the development of promising biodegradable Mg alloys, he also worked on the manufacture of thin wires from magnesium by means of extrusion and drawing processes. During an overseas stay at The University of Auckland, he developed polymer and ceramic based coatings for medical applications with magnesium and analyzed their structural behavior in a corrosive environment.

Biomed Students Earn Biotechnology Research Center Awards

Graduate Research:

$300 Grand Prizes

Biotechnology Research Center

Connor McCarthy (Biomedical Engineering) for “Native Elastin Scaffolds as Blood Contacting Surfaces Incorporating Nitric Oxide Release,” Advisors: Megan Frost and Jeremy Goldman

Ecosystem Science Center

Adam Coble (SFRES) for “Both Height and Light Influence Leaf Morphology in Sugar Maple Canopy,” Advisor: Molly Cavaleri

$100 Merit Awards

Biotechnolgy Research Center

Yiping Mao (Biological Sciences) for “Overexpression of microRNA-30d increases insulin biosynthesis and protects against high-fat diet induced glucose intolerances,” Advisor Xiaoqing Tang

Mu Yang (Chemistry) for Reduction of Porcine Parvovirus Infectivity in the Presence of Protecting Osmolytes,” Advisor: Ashutosh Tiwari

Ecosystem Science Center

Cameron Goble (Biological Sciences for “Assessment of Fish Communities in Tributary Streams of the Big Manistee,” Advisor: Nancy Auer

Mickey Jarvi (SFRES) for “Sugar Maple Fine-Root Respiration is Mechanistically Constrained by Adenylate Control,” Advisor: Andrew Burton

Alida Mau (SFRES) for “Variation in photosynthetic temperature responses across vertical forest canopy gradients: Comparisons between temperate and tropical trees,” Advisor: Molly Cavaleri.

Justina Silva (US Forest Service) for “Assessment of Spatial and Temporal Sedge Mediated Oxygen Dynamics,” Advisor: Erik Lilleskov

Undergraduate Research:

$150 Grand Prizes

Biotechnology Research Center

Keegan Yates (Biomedical Engineering) for “Decellularization of Fibroblast Cell Sheets for Natural Extracellular Matrix Scaffold Preparation)”, Advisor: Feng Zhao

Ecosystem Science Center

Brittany VanderWall (SFRES) for “Leaf Mass Per Area of Sugar Maple (Acer saccharum) Varies Seasonally and Across a Vertical Gradient”, Advisor: Molly Cavaleri

$100 Undergrad Merit Award

Biotechnology Research Center

Michael Bostwick (Biomedical Engineering) for “Biomimetic Adhesive Containing Nanocomposite Hydrogels with Enhanced Mechanical Properties,” Advisor: Bruce Lee

Biomed Students Win 2014 MSGC Awards

2014 MSGC Awardees Announced: Michigan Tech faculty, staff members and students received awards tallying $71,175 in funding through the Michigan Space Grant Consortium (MSGC) sponsored by the NASA.

Undergraduates receiving $2,500 research fellowships are:

Laura Lynch (Biomed): “Prevention of Secondary Lymphedema with Biomaterial Hydrogels”

Roger Guillory (Biomed): “Characterization of the Biocompatibility of Zinc-Magnesium Alloys for Bioabsorable Coronary Stents”

NASA implemented the National Space Grant College and Fellowship Program in 1989 to provide funding for research, education, and public outreach in space-related science and technology. The program has 52 university-based consortia in the United States and Puerto Rico. As an affiliate of the Michigan Consortium, Michigan Tech has been an active participant in MSGC for over fifteen years. For more information, please contact Robert Warrington or Paige Hackney in the Institute for Leadership and Innovation

Kenneth L. Stevenson Biomedical Engineering Fellowship Program

Kenneth L. Stevenson Biomedical Engineering Fellowship Program

The Department of Biomedical Engineering at Michigan Technological University is now accepting applications for the Kenneth L. Stevenson Biomedical Engineering Summer Research Fellowship Program. The primary goal of the program is to provide deserving undergraduate and beginning graduate students the opportunity to participate in meaningful Biomedical Engineering research at Michigan Technological University. Specifically:

a)      Undergraduate students (2 awards): Undergraduates will receive undergraduate-to-graduate transitional research fellowships of $4000 each. Students entering their junior and senior years will be considered. The award is intended to introduce students to the rigors associated with graduate level research in Biomedical Engineering.

b)      Graduate students (2 awards): Students who have completed an undergraduate degree prior to the fellowship period and are beginning studies in Michigan Technological University’s Biomedical Engineering graduate program (PhD or MS) will receive fellowships of $5000 each in support of intensive summer research. These awards will allow students to establish their research in the initial phase of their graduate studies.

The application process is now open!  Program requests for applications will be announced in Tech Today beginning in mid-March, with applications for these annual awards due March 31, 2014 by noon (EST). Fellowship recipients will conduct a research project under the guidance of a Michigan Tech Department of Biomedical Engineering faculty mentor, during the summer semester. Fellowship recipients will be required to:

  • Submit a final progress report of their work and/or evidence clearly showing the work has contributed significantly to a work being prepared for peer-reviewed publication.
  • Present their research in poster or oral form, preferably at a nationally recognized research meeting or the University BRC research forum, or the Biomedical Engineering Graduate Research Forum.

Application process:

Each applicant should submit the following (Incomplete applications at the deadline will not be considered):

  1. Application Coversheet (pick up in Biomed main office MM309, or email malabeau@mtu for a copy)
  2. Project Description (2-page limit, 12-pt font- Arial, ¾-inch margins)
  3. Faculty mentor letter of support
  1. Application Coversheet. Completed coversheet should be included with each application.
  1. Project Description. Project description should be prepared with (not by) a faculty mentor, and at a minimum address the following regarding the proposed project:
    1. Motivation and Significance
    2. Specific objectives, hypotheses, and aims
    3. Brief description of the work that will be done to specifically address aims
    4. Time-line for work to be completed

The Project Description is limited to 2 pages (12-pt font, Arial, ¾-inch margins minimum) and is to be submitted as a PDF file. You may include graphs, images and tables as needed. A separate page may be used for references as needed. All references however must be cited in the text of the project description.

  1. Faculty mentor Letter of support. Letters of support should at the minimum address the following:
    1. How long have you known the student and in what capacity?
    2. Why do you think the student is likely to succeed in the project?
    3. Where does the student’s project fit into your overall research program?

To submit application, email a PDF file that includes both the Application Coversheet and Project Description to Judy Schaefer ( Ask your faculty mentor to email the letter of support to the same address.

Pumping Iron: A Hydrogel Actuator with Mussel Tone

Protein from a small, tasty mollusk inspired Michigan Technological University’s Bruce P. Lee to invent a new type of hydrogel actuator.
Hydrogels are soft networks of polymers with high water content, like jello. Because of their soft, gentle texture, they have the potential to interact safely with living tissues and have applications in a number of medical areas, including tissue engineering. Lee, an assistant professor of biomedical engineering, wanted to make a hydrogel that wouldn’t just sit there.