Category: Students

Bruce Lee Group Publishes on Antimicrobial Biomaterials

Chemical Engineering Journal cover.

Bruce Lee (BioMed), post doctoral researcher Bo Liu (BioMed), graduate student Zhongian Zhang (BioMed), undergraduate student James Roland (BioMed) and collaborator Chao Zhao (Changzhou University) co-authored “Antimicrobial property of halogenated catechols,” published in Chemical Engineering Journal.

This paper demonstrated that the adhesive molecule found in mussel adhesive proteins can be chemically modified to prepare antimicrobial biomaterials that are effective against multidrug-resistant bacteria.

https://doi.org/10.1016/j.cej.2020.126340


Biomedical Engineering Graduates Spring 2020

Procession and audience in during commencement.
BME Chair Sean Kirkpatrick (center) attends the previous commencement in support of our graduates.

See BME Student Awards 2020

Graduate Students

  1. Bule, Stephanie
  2. Chandurkar, Mohanish (Graduated w/MS continuing PhD)
  3. Jia, Wenkai
  4. Kord Forooshani, Pegah
  5. Langfoss, Claire S.
  6. Nagam Hanumantharao, Samerender
  7. Pinnaratip, Rattapol
  8. Polega, Elizabeth A.
  9. Que, Carolynn A.
  10. Sandy, Lauren A.
  11. Sunderland, Kevin William
  12. Tyo, Ariana G. (Graduated w/MS continuing PhD)

Undergraduate Students

  1. Al Dulaim, Ahmed H.
  2. Atkin, David T.
  3. Bartkowiak, Sarah J.
  4. Biolchini, Clare F.
  5. Black, Sarah L.
  6. Brandmire, Adam M.
  7. Caspers, Kiaya M.
  8. Chica Toro, Juan Felipe F.
  9. Colaianne, Matthew B.
  10. Creamer, Olivia A.
  11. Daniels, Becky S.
  12. Demaree, Olivia A.
  13. Dertinger, Samantha C.
  14. Fetner, Alex R.
  15. Fournier, Tristan N.
  16. Geschke, Josh E.
  17. Golden, Nick R.
  18. Ha, Tony
  19. Halanski, Nathan
  20. Hill, McKenzie P.
  21. Jackels, Mariah J.
  22. Johnson, Colin M.
  23. Kautzer, Amanda R.
  24. Kostenko, Evan M.
  25. Kugler, Lydia C.
  26. Lasky, Taylor M.
  27. Leithauser, North O.
  28. Lemay, Kelsey F.
  29. Lindquist, Ellen M.
  30. Lohrenz, Gabrielle X.
  31. Marche, Marie
  32. Mills, Ian R.
  33. Ping, Rachel C.
  34. Piotrowski, Ryann E.
  35. Roland, James D.
  36. Schneider, Karl L.
  37. Steupert, Juergen C.
  38. Thomas, Melanie M.
  39. Tuomi, Jacob M.
  40. Turowski, Nicholas A.
  41. Vogl, Brennan J.
  42. Wang, Katherine
  43. Weaver, Jeremy M.

Researchers Attend Annual Meeting of the Adhesion Society

Adhesion Society Meeting Graphic

Rupak Rajachar (BioMed), Bruce Lee (BioMed), Ariana Tyo (BioMed) and Saleh Akram Bhuiyan (BioMed) attended the 43rd Annual Meeting of the Adhesion Society in Charleston, South Carolina.

Rajachar chaired a session entitled “Biomedical Adhesion.” Lee gave an oral presentation entitled “Tuning the ROS Release from Catechol-containing Bioadhesive.”

Tyo gave an oral presentation entitled “Adhesive Antimicrobial Polydopamine Surface Coatings to Prevent Biofilm Formation on Stainless Steel.” The content of this talk was recently published in Frontiers in Chemistry.

Bhuiyan was a finalist for the Peebles Award for Graduate Student Research in Adhesion Science and gave an oral presentation entitled “In Situ Deactivation of Catechol-Containing Adhesive using Electrochemistry.” The content of this talk was recently published in the Journal of the American Chemical Society and was highlighted in the Michigan Tech News.

The meeting was February 23-26, 2020.


Bruce Lee Publishes a Study of a Multifunctional Microgel

ACS Applied Materials and Interfaces cover.

Bruce Lee (BioMed) published a paper titled “Iron Magnetic Nanoparticle-Induced ROS Generation from Catechol-Containing Microgel for Environmental and Biomedical Applications” in ACS Applied Materials & Interfaces.

The coauthors are graduate student Zhongtian Zhang (BioMed), undergraduate student Max Reaume (BioMed), postdoctoral researcher Bo Liu (BioMed) and collaborators Chao Zhou and Min Wu from Changzhou University and Guangdong University of Technology, respectively.

https://doi.org/10.1021/acsami.9b19726

This article is part of the Advances in Biocidal Materials and Interfaces special issue.

Extract

Reactive oxygen species (ROS) can degrade organic compounds and function as a broad-spectrum disinfectant. Here, dopamine methacrylamide (DMA) was used to prepare catechol-containing microgels, which can release ROS via metal-catechol interaction. A combination of the microgel and iron magnetic nanoparticle (FeMNP) significantly reduced the concentration of four organic dyes (Alizarin Red S, Rhodamine B, Crystal Violet, and Malachite Green) and an antibiotic drug, ciprofloxacin, dissolved in solution.

Additionally, catechol chelates heavy metal ions, resulting in their removal from solution and repurposed these metal ions for dye degradation.

This multifunctional microgel can potentially be used for environmental applications for the removal of organic pollutants and heavy metal ions from wastewater, as well as reducing bacterial infection in biomedical applications.


Lindsay Sandell Named a University Innovation Fellow

Lindsay Sandell
Lindsay Sandell

Congratulations to Abigail Kuehne (Psychology and Communication, Culture, and Media/ Applied Cognitive Science and Human Factors ’21), Sam Raber (Psychology ’22), Lindsay Sandell (Biomedical Engineering ’21), and Gary Tropp (Computer Network and System Administration ’22), who have been named University Innovation Fellows by Stanford University’s Hasso Plattner Institute of Design (d.school).

Read more and watch the video at the Pavlis Honors College blog.


BME Students Place in 2019 World Water Day Poster Competition

Cholera Poster DetailThanks to all who participated in this year’s World Water Day. Thanks to all of the students who entered posters, the judges, our guest speaker, discussion facilitators,  panelists, artists and the committee who pulled it all together.

The keynote lecture, “Mapping the Water Crisis of Unaffordability,” was by Monica Lewis-Patrick from We the People of Detroit.

The 2019 World Water Day Poster Award winners:

Original Research Awards

Coursework/Informational Awards

World Water Day at Michigan Tech was sponsored by the Great Lakes Research Center, the Departments of Social Sciences and Civil and Environmental Engineering, the School of Forest Resources and Environmental Science, the Sustainable Futures Institute, Center for Diversity and Inclusion,  Department of Visual and Performing Arts and the Western Upper Peninsula Planning and Development Region.

By the Great Lakes Research Center.


Biomedical Engineering Researchers Attend Adhesion Society Meeting

Adhesion Society Annual Meeting location photoBruce Lee (BioMed), Rupak Rajachar (BioMed), Ameya Narkar, Ariana Tyo and Saleh Akram attended the 42 Annual Meeting of the Adhesion Society in Hilton Head, South Carolina.

Lee served as the chair of the Bioadhesion Division within the Adhesion Society and was one of the organizers in the meeting. Rajachar chaired two sessions entitled “Interfaces in Pharmaceutical Sciences” and “Bioadhesive Chemistry.”

Narkar gave an oral presentation entitled “Evaluating Rapid Switching and Reversible Adhesion of Adhesive Hydrogel-Coated PDMS Micropillars,” a project directed by Lee. Narkar also co-chaired a session entitled “Bioadhesive Chemistry.”

Tyo gave an oral presentation entitled “Optimizing of Two-Step Adhesive Coating for the Mitigation of Field Associated Infection in Cetacean Satellite Telemetry Tags,” a project directed by Rajachar.

Akram gave an oral presentation entitled “Controlling Redox Reaction of Conductive Smart Catechol Adhesive using Electrochemistry,” a project directed by Lee.

The meeting took place February 17-20, 2019.


Preparing Pre-health Students for Graduate School Interviews

Biomedical Engineering student looking at a computer screenMichigan Tech students interested in medicine, veterinary medicine and other health-related professions participated in the Health Professions Interview Workshop on Monday, April 9, 2018. The workshop was designed for students preparing for health-related graduate programs and admission interviews.

Thirteen pre-health students engaged in one-on-one personal interviews, Multiple Mini Interviews (MMI) and a large, team-building earthquake simulation.

“I really enjoyed the medical school mock interviews. I think MMIs are so unique to medical school interviews that most students don’t have any exposure to that kind of interaction,” said Rachel Wall, biological sciences student.

MMI interviews are used by many medical and health professions programs as part of the admissions process. An MMI is comprised of short, structured interview stations used to assess non-cognitive qualities and how applicants handle themselves in a particular situation. Some MMI stations involve role-playing situations where the interviewee is required to play a particular role and take an ethical stance in decision-making.

Wall continued, “Even the group activity portion is not something most people experience while being evaluated. I think those of us who participated in this will be much better prepared for our medical school interviews than our peers who haven’t had this type of exposure and practice.”

The biology department has hosted similar events in the past, but on a much smaller scale. This year, the pre-health department teamed up with Career Services to host a larger workshop for students of all majors with an interest in health professions.

More than a dozen volunteer interviewers, facilitators, actors and evaluators participated in the event—including faculty, students and staff from Pre-health, Biological Sciences, Biomedical Engineering, Kinesiology and Integrative Physiology, and Career Services. Central Michigan University’s Doctor of Physical Therapy Program also provided volunteers for the workshop.

The application and interview process for Health Professions Programs can be daunting, but this workshop, “is a part of the ongoing effort to grow and improve pre-health at Michigan Tech,” according to pre-health coordinator Nicole Seigneurie who spearheaded the workshop.

Elizabeth Scaife, biological sciences major, notes, “the Health Professions Interview Workshop was a wonderful experience full of challenging ethical questions, and a fun group activity that helped me find my strengths and weaknesses for future interviews for vet schools.”

By Career Services.


Award Winning Stent Project Could Save Babies

TranscatheterPosterExpo2017
Team with Transcatheter Poster
Design Expo 2017

GRAND RAPIDS, Mich. – Babies with hypoplastic left heart syndrome may soon be able to forego risky surgery due to a device designed by doctors, students, and technicians from West Michigan.

The condition is complex: a portion of the baby’s heart is pumping with only one chamber instead of two.

Dr. Joseph Vettukattil, chief of pediatric cardiology at Spectrum Health, is working with Spectrum Health Innovations and students and staff from Michigan Technological University in Houghton, Mich.

Dr. Brent Mulder, the Senior Director of Spectrum Health Innovations, says the final product could take up to 10 years to complete, but the wait will be worth it.

Read more and watch the video at FOX 17 West Michigan, by Erica Francis.

The undergraduate student team involved in the project include Emma Davis, Kat Farkas, Amanda Gogola, and Ami Kling, Biomedical Engineering. Their advisors were Jeremy Goldman and Smitha Rao, Biomedical Engineering. For Design Expo 2017 at Michigan Tech, they prepared a project “Customizing Transcatheter Nitinol Stents for Treatment of Hypoplastic Left Heart Syndrome in Infants” with abstract:

Hypoplastic left heart syndrome (HLHS) is a congenital heart defect that is mainly characterized by the underdevelopment of the left ventricle. Currently, multiple open heart surgeries are performed to correct this problem. Our team’s goal was to help eliminate the need for the first surgery by designing and testing catheter deployment of a modified nitinol stent with improved patient matching. The idea of deforming the stent with a microsphere to better fit anatomically relevant infant heart geometries was explored, as well as the feasibility of the use of this deformed shape.

The project was sponsored by Spectrum Health Innovations—Helen DeVos Children’s Hospital. It won several awards at the Design Expo:

  1. Pavlis Honors College Innovation Center for Entrepreneurship Innovation Award: First Place
  2. Ann Arbor SPARK Design Expo Image Contest: Second Place
  3. Black & Veatch Building a World of Difference® Student Design Awards: Senior Design Awards (based on poster): Third Place

STEM Cell Research Funding for Feng Zhao

Feng Zhao
Feng Zhao

Feng Zhao (Bio Med/LSTI) is the principal investigator on a project that has received a $310,000 research and development grant from the National Science Foundation. This is a three-year project.

Anisotropic Human Mesenchymal Stem Cell Patch with Oriented Vasculature

ABSTRACT

Replacement of diseased tissue requires that the implanted material not only have the proper mechanical strength, but it must also have a functioning blood distribution network (vasculature; veins, capillaries), and these are often difficult to manufacture. This project will seek to understand and mimic the structure and vasculature of three-dimensional (3D) cardiac tissue. The goal is to engineer a mechanically strong and functional cell patch for the regeneration of damaged heart tissue.

The proposed research will also provide opportunities for undergraduate and graduate students, as well as underrepresented community college students, to be involved in interdisciplinary stem cell and tissue engineering research. In addition, a series of seminars will be hosted to increase stem cell and tissue engineering awareness among the health community and public in the UP (Upper Peninsula) of Michigan.

The overall objective of the project is to create aligned nanofibrous natural extracellular matrix (ECM) scaffolds for the biofabrication of a prevascularized anisotropic stem cell patch and elucidate the mechanism of microvessel orientation within the in vivo microenvironment. Human mesenchymal stem cells (hMSCs) are immunoregulatory, regenerative, effective in promoting myocardial regeneration, and function as pericytes to stabilize the microvessels formed by endothelial cells (ECs). These unique properties enable hMSCs to combine with ECM scaffolds and ECs to biofabricate an off-the-shelf or patient-specific prevascularized patch, in which hMSCs will play a dual role of stabilizing vasculature formed by ECs in vitro and orchestrating the regeneration of dead cardiac tissue after implantation. In this project, hMSCs will be co-cultured with ECs in a nanofibrous ECM scaffold to form an aligned capillary-like vasculature, and the effects of aligned nanofibers on the density, orientation and maturation of the microvessels will be investigated. The prevascularized hMSC sheets will be multi-layered and further matured in a perfusion bioreactor, and the role of physiological interstitial flow on the inter-connections, alignment and maturation of the existing microvessels within the 3D biomimetic tissue platform will be evaluated. If successful, this project could lead to the development of personalized or off-the-shelf cardiac tissue patches that could dramatically increase the success rate for the treatment of dead cardiac muscle associated with heart attacks.