Biomedical Engineering Graduate Seminar: Stem Cell-based Musculoskeletal Tissue Regeneration

oct17Biomedical Engineering Graduate Seminar: Wan-Ju Li, Phd, Department of Biomedical Engineering, University of Wisconsin-Madison; Friday, October 17; 3:00 in U113 M&M;
Sponsored by: Department of Biomedical Engineering and the Biotechnology Research Center (BRC)

Title: Stem Cell-based Musculoskeletal Tissue Regeneration


“Virtual Breast” Could Improve Cancer Detection

image113672-horizNext to lung cancer, breast cancer is the leading cause of cancer death in women, according to the American Cancer Society. That’s why so many medical professionals encourage women to get mammograms, even though the tests are imperfect at best: only a minority of suspicious mammograms actually leads to a cancer diagnosis.
That results in lots of needless worry for women and their families—not to mention the time, discomfort and expense of additional tests, including ultrasounds and biopsies.
MORE


Seminar: Instrumenting the Human Body

sep22Seminar presentation jointly sponsored by Michigan Technological University’s College of Engineering and the Departments of Biomedical Engineering and Electrical and Computer Engineering
Date: Monday, September 22, 2014; Time: 4:00-5:00 p.m.; Location: M&M U115
Title: Instrumenting the Human Body
Richard B. Brown, Ph.D., Dean of Engineering, University of Utah, Salt Lake City


Feng Zhao Named an Academic Editor

image51532-persFeng Zhao, assistant professor of biomedical engineering, has been named an academic editor for PLOS ONE. PLOS ONE is the largest journal in the world, publishing well over 2000 articles per month. The underlying philosophy of PLOS ONE is that all research, if well-performed and well-reported, has something of value to offer the scientific community, and accordingly, PLOS ONE’s editorial criteria focuses on the technical quality of the work rather than any subjective judgments such as perceived novelty or limited relevance to a specialist field. Editorial Board members at PLOS ONE are given a high degree of editorial autonomy over the papers that they handle and are responsible for deciding whether a manuscript adheres to the journal’s criteria for publication.


Study of Key Biomolecule Earns Tolou Shokuhfar CAREER Award

Tolou Shokuhfar will be investigating the inner workings of a protein that plays a key role in human health with funding from a five-year, $400,000 Faculty Early Career Development (CAREER) Award.

Shokuhfar,a faculty member of both departments of biomedical engineering and mechanical engineering-engineering mechanics at Michigan Technological University, will study the biomolecule ferritin, which stores iron in the body in a non-toxic, mineralized form and releases it safely. In humans, ferritin serves as a buffer between iron deficiency and iron overload, and when it malfunctions, it may be involved in a number of degenerative diseases, such as Alzheimer’s and Parkinson’s.
MORE

See previous article: A graphene water balloon may soon open up new vistas for scientists seeking to understand health and disease at the most fundamental level.
It’s the Water: Graphene Balloon Yields Unprecedented Images of Hydrated Protein Molecules


Biomedical Engineering Announces the 2014 Kenneth L. Stevenson Research Fellows

The Department of Biomedical Engineering announces the recipients of the 2014 Kenneth L. Stevenson Research Fellows. Two undergraduate and two graduate students are selected annually to receive these competitive research fellowships. The Stevenson Fellows program provides an opportunity for upper-level undergraduate and early-stage graduate students to spend the summer in a total immersion research experience in a biomedical engineering research laboratory. The annual competition is open to students from all academic departments who wish to explore biomedical engineering research and provides a generous research stipend.


Biomedical Engineering Graduate Seminar

Biomedical Engineering Graduate Seminar: Dr. Monica Hinds, Associate Professor, Department of Biomedical Engineering, Oregon Health & Science University; Friday, 4/18 at 3:00 in U113 M&M

Title: Endothelialization of Vascular Biomaterials

In developing blood-contacting vascular biomaterials, a confluent endothelial cell (EC) monolayer may be required to avoid adverse blood reactions. In vitro, the hemostatic properties (“thrombogenicity”) of ECs have typically been char-acterized using anticoagulated blood, static or non-physiologic flow conditions, and short blood exposure times. Con-sequently, the relevance of these findings for in vivo applications remains uncertain. Moreover, there have been few studies of the reactivity of EC constructs in vivo, and no studies have been reported that systematically relate the in vitro properties of endothelialized surfaces with their responses in vivo. Accordingly, it is now recognized within the tissue engineering community that a key impediment to further progress towards applications in man is the lack of predictive animal models that will enable the rational design of cellular constructs. We are characterizing the in vitro and ex vivo pro-hemostatic and anti-hemostatic properties of ECs (that can affect platelets and coagulation), and im-portant in vivo responses of thrombosis and vascular healing in a physically relevant primate model. Endothelial out-growth cells (EOCs), isolated from the circulating endothelial progenitor cells of baboons, have been seeded on pro-tein-coated ePTFE vascular grafts. We have studied the role of extracellular matrix coatings and hemodynamic pre-conditioning on the EOC phenotype, particularly related to coagulation and inflammation. Subsequently, in an ex vivo baboon shunt model, platelet and fibrin accumulation were measured under conditions of controlled, native blood flow. Finally, the endothelialized vascular grafts were implanted as aorto-iliac interposition grafts for 28 days. After a thorough evaluation of potential correlations, a linear regression model using in vitro data was established to predict platelet accumulation. This regression correlated significantly and strongly to both ex vivo platelet and in vivo intimal hyperplasia data. This is the first work of this type—attempting to determine predictors for vascular graft performance from in vitro endothelial markers, and while future work should examine the scope of the model by applying it to other endothelialized grafts, we are encouraged by these results, which may aid in improving translation of small diameter vascular grafts into clinical improvements.

This seminar is partially funded by the Visiting Women & Minority Lecturer/Scholar Series which is funded by the President’s Office and a grant to the Office of Institutional equity from the State of Michigan’s King-Chavez-Parks Initiative


Yates to Attend NSF Research Program for Undergraduates

Keegan Yates, a third-year biomedical engineering major, has been selected to participate in the National Science Foundation Research Experience for Undergraduates, to be held this summer at Virginia Tech.

He is among 10 students selected nationwide to participate in the program, which will focus on multiscale approaches to biomechanics.

Yates has been working on research projects in Assistant Professor Feng Zhao’s (Biomedical Engineering) Stem Cell and Tissue Engineering Laboratory since his freshman year. His major focus has been on the development and characterization of naturally derived biomaterials for tissue engineering. Dr. Zhao said “Keegan is a very smart, reliable, highly motivated and independent student who has good sense of science. Keegan has great potential to become an outstanding scientist.”

He has coauthored three papers and presented at the Biomedical Engineering Society national meeting in 2013, as well as twice at the Biotech Research Center’s student research forum, where he won a merit award in 2013 and a grand prize for best poster in 2014.

Yates will investigate mechanical properties of structures ranging from cellular component to the whole body and determine how this knowledge can help create devices to prevent, diagnose and treat injuries and disease.

The award includes a $4,000 stipend, lodging and transportation to Virginia Tech.

Keegan Yates, a third-year biomedical engineering major, has been selected to participate in the National Science Foundation Research Experience for Undergraduates