Tag: Biomedical Engineering

Suspicious Mammograms: Taking the Guesswork Out of Elastographic Ultrasounds

Jingfeng Jiang uses a graphics processing unit (GPU) to perform advanced processing of raw ultrasound data
Jingfeng Jiang uses a graphics processing unit (GPU) to perform advanced processing of raw ultrasound data, to help radiologists better evaluate suspicious mammograms.

Jingfeng Jiang is the principal investigator on a project that has received a $450,187 research and development grant from the National Institutes of Health, “Elastography-Based Analytics for Benign and Malignant Breast Disease.”

Jingfeng Jiang
Assoc. Professor Jingfeng Jiang, Michigan Tech

Ultrasound elastography is used to pinpoint possible tumors and differentiate malignant, cancerous growths from benign lesions throughout the body, including in the breast. “Cancer tissues are stiff, and aggressively change their surroundings,” says Jiang, an associate professor of biomedical engineering at Michigan Tech.

“Ultrasound elastography uses imaging to measure the stiffness of tissue. Depending on who does the reading, the accuracy can vary from 95 percent to 40 percent,” Jiang says. “Forty percent is very bad—you get 50 percent when you toss a coin. In part, the problem is that ultrasound elastography is a relatively new modality.”

Ultrasound elastography could be an excellent screening tool for women who have suspicious mammograms, but only if the results are properly interpreted. Jiang’s research team, along with Zhengfu Xu, assistant professor of mathematical sciences, will use their graphics processing unit (GPU) to perform advanced processing of raw ultrasound data so physicians can use that information in their clinical workflow. “Mainly, radiologists will use our software together with ultrasound elastography and ultrasound for diagnosis,” says Jiang. “Our goal is to greatly reduce the guesswork.”


Biomedical News Briefs

IMG_5897

Jeremy Goldman (BE/IMP) is the principal investigator on a research and development project that received a $442,004 grant from the U.S. Department of Health and Human Services, National Institutes of Health. The two-year project is titled, Biodegradation Mechanism and Rate, Biocompatibility, and Toxicity for Novel Zn-Mg Stent Materials. Also working on the project are Jaroslaw Drelich (MSE) and Feng Zhao (BE).

Rupak Rajachar (Bio Med) is the primary investigator of a project that is the recipient of a $326,346 research and development grant from the U.S. Department of Health and Human Services – National Institutes of Health.
The project is Adhesive PEG-Fibrinogen Nitric Oxide Releasing Hydrogetls for use as a Wound Healing and Tissue Engineering Support. Also working the project is Bruce Lee (Bio Med, and Megan Frost (Bio Med).

Lake Superior Magazine’s June-July issue includes an article on several Michigan Tech biomedical researchers including Assistant Professor Feng Zhao, Associate Professor Mo Rastgaar, Professor Adrienne Minerick and several biomedical engineering students.

The Michigan Tech Vice President for Research Office announces the Research Execellence Fund Awards. Thanks to the volunteer review committees, as well as the deans and department chairs, for their time spent on this important internal research award process. Infrastructure Enhancement Grants: Sean Kirkpatrick, BRC/Biomed Eng. Repair and Upgrade Advanced Fluorescent Microscope; Research Seed Grants: Feng Zhao, Biomed Eng and Jingfeng Jiang, BRC/Biomed Eng; Link to full list

Assistant professor Bruce Lee (Bio Med) was invited to give an oral presentation at the Adhesive & Sealant Council (ASC) 2015 Spring Convention & EXPO, Monday through Wednesday in Nashville. ASC is a North American trade association comprised of more than 130 U.S. companies in the adhesive and sealant industry.

Jaroslaw Drelich (MSE) and Jeremy Goldman (Bio Med) have received $203,996 from the US Department of Health and Human Services, National Institute of Health for the first year of a 22 month-long project titled “Improved Biocompatibility and Biodegradation of Zn-based Stent Materials through Surface Non-Engineering.”

The Biotechnology Research Center has announced its Spring 2015 Travel Grant Awards that include the following Biomedical Engineering students. Post-doctoral Research Scientist Presentation:
Qi Xing (Biomed), TERMIS–AM 2014 (poster)
Graduate Student Presentations
Zichen Qian (Biomed), Gordon Research Conference (poster)

Jingfeng Jiang (Biomed/BRC) has received $8,427 from the Radiological Society of North America for a research and development project titled “Development and Validation of Simulations and Phantoms Mimicking the Viscoelastic Properties of Human Liver.”

Technology Century, an online and print publication of the Engineering Society of Detroit, featured editor Matt Roush’s interviews with faculty and graduate students from the College of Engineering at Michigan Tech, the first stop on his annual Tech Tour of university campuses in Michigan.

Tech Times, a technology news website, published an article about Assistant Professor Jingfeng Jiang’s (Biomed) “virtual breast” to improve breast cancer detection.

Jingfeng Jiang, Sean Kirkpatrick and Rupak Rajachar (Biomed/BRC) have received $452,780 from the US Department of Health and Human Services National Institute of Health for a two-year project titled “Virtual Breast Project: Improving Noninvasive Characterization of Tumors.”

Tolou Shokuhfar (ME-EM/Biomed//MuSTI) received $29,600 from the Pacific Northwest National Laboratory for a research and development project titled “In Situ Liquid Microscopy of Biological Materials.”

Science 2.0, a science news website, reported on Assistant Professor Jingfeng Jiang’s (BME) research on a “virtual breast” for improved cancer detection.

Megan Frost (Biomed) has recieved $150,000 from the National Science Foundation for a research and development project titled “Tunable Nitric Oxide Releasing Polymeric Materials.”


Biomedical Engineering Graduate Seminar: Stem Cell-based Musculoskeletal Tissue Regeneration

oct17Biomedical Engineering Graduate Seminar: Wan-Ju Li, Phd, Department of Biomedical Engineering, University of Wisconsin-Madison; Friday, October 17; 3:00 in U113 M&M;
Sponsored by: Department of Biomedical Engineering and the Biotechnology Research Center (BRC)

Title: Stem Cell-based Musculoskeletal Tissue Regeneration

Mesenchymal stem cells (MSCs) can be isolated from several adult tissues, such as bone marrow, fat, and blood, and cultured in vitro for extensive propagation. These cells are multi-potent, and with proper biochemical or physical cues, they can differentiate into various connective tissue linage cells, such as osteoblast, chondrocyte, adipocyte, and tenocyte. Notably, transplanted allogeneic MSCs can regulate the activity of recipient’s immune cells to reduce the immune response. These unique properties make MSCs an attractive cell source for cell therapy and re-generative medicine applications.
Using MSCs to regenerate cartilage for tissue repair is a promising treatment to osteoarthritis (OA) or other cartilage defects. However, one of the challenges using MSCs for regenerative medicine is that the cells isolated from adult tissues are often composed of heterogeneous cell popu-lations, and the heterogeneity increases the difficulty of using the cells for cartilage regeneration. Another challenge is that MSCs become aged and senescent after several cell passages in vitro culture, limiting the use for clinical applications. To overcome the challenges, we derive MSCs from human embryonic stem cells (hESCs) and study the potential of hESC-MSCs for cartilage regeneration. We compare the phenotype of hESC-MSCs with that of bone marrow-derived MSCs. Flow cytometry analysis shows that MSCs and hESC-MSCs express similar cell surface markers. In terms of the potential for chondrogenesis, the mRNA transcript levels of chondrocyte-related matrix proteins and transcription factors, such as collagens type II, IX, and X, aggrecan, and Sox9, are upregulated in MSCs compared to those in hESC-MSCs during chondrogenesis, suggesting that the current differentiation protocol more effectively induces MSCs into chondrocytes than hESC-MSCs, and an improved differen-tiation protocols should be developed to induce chondrogenesis of hESC-MSCs.
For tissue engineering applications, we demonstrate a unique approach using a biomimetic scaffold, intervertebral disc (IVD) and stem cell coculture, and mechanical stimulation to tissue-engineer a biological IVD substitute. The results show that our approach provides both favorable physical and chemical cues through cell-matrix and cell-cell interactions and mechanobiological induction to enhance IVD generation ex vivo. Taken together, we have shown the potential of using stem cell and nanofabrication technologies to regenerate functional tissue for orthopedic treatment.

Professor Wan-Ju Li is the Principal Investigator of the Musculoskeletal Biology and Regenerative Medicine Laboratory at the University of Wisconsin-Madison in the United States of America. He is also an affiliated faculty member in Cellular and Molecular Biology Program, and Stem Cell and Regenerative Medicine Center. His research interests include stem cell, tissue engineering, nanobiomaterial, and skeletal biology.


“Virtual Breast” Could Improve Cancer Detection

image113672-horizNext to lung cancer, breast cancer is the leading cause of cancer death in women, according to the American Cancer Society. That’s why so many medical professionals encourage women to get mammograms, even though the tests are imperfect at best: only a minority of suspicious mammograms actually leads to a cancer diagnosis.
That results in lots of needless worry for women and their families—not to mention the time, discomfort and expense of additional tests, including ultrasounds and biopsies.
MORE


Biomedical Engineering Graduate Seminar: Magnesium-Neodymium Alloys for Biomedical Applications

Biomedical Engineering Graduate Seminar:
Dr. Jan-Marten Seitz, Institut für Werkstoffkunde, Leibniz Universität Hannover, Garbsen, Germany
Friday, April 4 at 3:00 in U113 M&M

Title: “Development and Characterization of Magnesium-Neodymium Alloys for Biomedical Applications”
The aim of the presented study is to investigate and demonstrate the potential of neodymium additions as a substitute for rare earth (RE) misch-metal in magnesium alloys for biomedical applications. Here, the alloys LAE442, LANd442, ZEK100, ZNdK100, and Nd2 were manufactured and processed to evaluate their material characteristics in different states and to investigate the effects of Nd additions. To determine the mechanical characteristics of these alloys, tensile tests were initially carried out in the hot extruded state. Subsequent T5- and T6-heat treatments were con-ducted to reveal their effect on the alloys’ strength and elongation values. The general degradation behavior of the alloys in a 0.9% NaCl solution was investigated by means of polarization curves and hydrogen evolution. In addition, by using various in-vivo-parameters, a corrosion environ-ment was established to determine the alloys’ degradation in vitro. Comparing LAE442 and LANd442, a lack of corrosive stability could be ob-served while the mechanical strength remained constant in the latter alloy’s Nd substitution for the RE mischmetal. A contrary effect was deter-mined for the alloy ZEK100 compared with ZNdK100. In both substitutional approaches, heat treatment procedures could not align the substi-tutes’ material properties with the educts’ material properties. However, in the case of Nd2, which was initially chosen as relevant alloy to deter-mine the effects of Nd on Mg in a simple binary composition, excellent ductility and corrosion properties could be observed. This makes the alloy a promising candidate for use as resorbable implant material, especially in the field of stenting applications. Here, the enormous increase of duc-tility, promoted by an advantageous microstructural behavior under loadings, could be attributed to additions of Nd.

Biography: Within the past 5 years, Dr. Seitz has worked as a PhD Student and Scientist at Leibniz Universität in Hannover, Germany, with a focus on lightweight materials research and biomedical engineering applications. He developed process chains for resorbable Mg-implant applications such as stents, intramedullary nails, and sutures. This work included basic processes such as casting, hot-extrusion, heat treatment, drawing and coating procedures, as well as many analytical processes. The impact of different alloying elements on the mechanical and corrosive behavior of Mg in different conditions was one of the biggest challenges in this context. Besides the development of promising biodegradable Mg alloys, he also worked on the manufacture of thin wires from magnesium by means of extrusion and drawing processes. During an overseas stay at The University of Auckland, he developed polymer and ceramic based coatings for medical applications with magnesium and analyzed their structural behavior in a corrosive environment.